GÜÇ SİSTEMLERİ KONFERANSI Kasım 2018 Ankara
|
|
|
- Ilhami İncesu
- 7 yıl önce
- İzleme sayısı:
Transkript
1 Transformatörlerinde Kapasitansların Yıldırım Darbe Üzerindeki Etkisinin İncelenmesi Investigation the Effect of Capacitances on Lightning Impulse in Transformers Mustafa Akdağ 1, Mehmet Salih Mamiş 2 1 Bitlis Eren Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü [email protected] 2 İnönü Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü [email protected] Özet Bu çalışmada, güç ve dağıtım transformatörlerinde sargı ile nüve arası, sargılar arası ve nötr noktası ile toprak arası kapasitans değerlerinin primer tarafına uygulanan yıldırım darbesinin sekonder tarafına geçişi üzerindeki etkisi incelenmiştir. Transformatör modelleri Alternative Transient Program da (ATP) oluşturulmuştur. Benzetim çalışmalarında Primer tarafa 1.2/ µs yıldırım darbesi uygulanmıştır. Güç transformatörlerinde, sargılar arası kapasitansların ve nötr ile toprak arası kapasitansların değerlerinin değişiminin sekonder yıldırım darbe gerilimin sadece genliğini etkilediği; dağıtım transformatörlerinde ise kapasitans değerlerinin sekonder yıldırım darbe gerilimini etkilemediği görülmüştür. Anahtar kelimeler: Yıldırım Darbe Tepkisi, Alternative Transient Program (ATP), Dağıtım Transformatörü, Güç Transformatörü, Yüksek Frekans Modeli. Abstract In this study, the effects of the values of winding, interwinding and neutral-ground capacitances in power transformers and distribution transformers on the secondary side are investigated in the case of lightning impulse applied to primary side. Transformer Models are simulated in Alternative Transient Program (ATP). In the simulations, 1.2/ µs lighting impulse wave is applied to the primary side. It is observed that the change in the values of inter-winding and neutral-ground capacitances affect only amplitude of the secondary lightning voltage in power transformer, in the case of distribution transformer, change in the values of capacitances have no effect on the secondary lightning voltage. Keywords: Lightning Impulse Response, Alternative Transient Program (ATP), Distribution Transformer, Power Transformer, High Frequency Model. 1. Giriş Transformatör modelleri, uygulanan kaynak frekansına göre düşük frekans [1] ve yüksek frekans [2] modelleri olarak sınıflandırılabilir. Düşük frekans modelleri, açık ve kısa devre testleri ile oluşturulur [3]. Düşük frekans modeli ile ilgili yapılan çalışmalar nüvenin lineer olmayan karakteristiklerini modellemeyi amaçlar [1,3]. Yüksek frekans modeli ile ilgili yapılan çalışmalar ise transformatörlerin arıza tespiti ve geçici rejim tepkisinin tespitini amaçlar [3,4]. Frekans bağımlı olan bu modellerde düşük frekans modelindeki parametrelere ek olarak kapasitanslar da dahil edilmektedir. Düşük frekanslarda bu kapasitansların etkisi ihmal edilebilir düzeyde düşüktür. Yüksek frekanslarda ise transformatör çıkışını önemli ölçüde etkiler. Transformatörlerin yıldırım darbe tepkisine yönelik çalışmalardan [3] te akım transformatörüne deneysel testler yapılmış ve yıldırım darbe tepkisi ölçülmüştür. Test sonuçları ile transformatörün eşdeğer devresi ve transfer fonksiyonu oluşturulmuştur. ATP de hazırlanan benzetim ile ölçülen yıldırım darbe tepkisi karşılaştırılmıştır. [4] te Frekans Tepkisi Analizi (FRA) yöntemi ve arıza tespiti için kullanılmak üzere üç fazlı bir güç transformatörünün frekans tepkisinin gelişmiş bir modeli sunulmaktadır. [5] te güç transformatörüne ve dağıtım transformatörüne FRA (Frequency Response Analysis) cihazı ile testler yapılmış ve transformatörlerin eşdeğer devreleri çıkarılmıştır. [6] da güç trafosu için Electromagnetic Transients Program da (EMTP) kolayca uygulanabilecek frekans alanındaki ölçüm verilerine dayanan basit bir modelleme yöntemi sunmaya çalışılmıştır. Modelin önemli fonksiyonu, yıldırım çarpması veya anahtarlama sonrasında bir sargıdan diğerine aktarılan geçici rejim geriliminin benzetimini yapabilmesidir. Bu çalışmada, [5] teki güç ve dağıtım transformatörleri modellerinde kapasitans değerlerinin değişiminin primer tarafına uygulanan yıldırım darbe durumunda sekonder tarafına etkisi incelenmiştir. Transformatör modelleri doi:.5281/zenodo
2 ATP programında oluşturulmuştur. Primer Tarafa 1.2/ µs yıldırım darbe uygulanmış ve sekonder gerilim dalga formları karşılaştırılmıştır Güç Transformatörü Modeli [5] çalışması güç transformatörü modelini [6] çalışmasından almıştır. MVA 415/15,75 kv luk Y- Δ bağlı güç transformatörüne 1.2/ µs yıldırım darbe uygulanması ile deneysel testler yapılmıştır. Şekil 1 de güç transformatörü modeli verilmiştir. Şekil 2. Güç Transformatörü Primer Test Düzeneği [2] =. =. ( ), = = (1) = Eşitlik (1) deki Ω direnci ölçüm cihazının iç direncidir. Aynı test düzeneği sekonder sargı için oluşturularak gerekli parametreler belirlenebilir. Şekil 3 te Sekonder A fazı test düzeneği verilmiştir [2]. ( (2) Şekil 3. Güç Transformatörü Sekonder Test Düzeneği Sargılar arası kapasitelerin belirlenmesi için Primer ve Sekonder gerilimler ölçülmüştür. Bu çalışmada, primer ve sekonder gerilimleri frekans analizinin sargılara arası empedansı verdiğine yer verilmiştir. Düşük frekanslarda ( Hz) bu empedans kapasitif olarak davranmaktadır ve rektanstan kapasitans değeri elde edilmiştir [2]. Çalışmada bu testin detaylarına yer verilmemiştir. Şekil 4 te bu testin düzeneği verilmiştir. Şekil 1. Yüksek Frekans Güç Transformatörü Modeli [5] Bu modelde bakır kayıpları hesaba katılmamıştır. C 1, - C 6, sargı kapsitanslarını; C 7, C 8, ve C 9 sargılar arası kapasitansları; C, C 11, ve C 12 ise nötr noktası ile toprak arasındaki kapasitansı temsil eder. R 1-R 6 ve L 1-L 6 demir kayıplarını (manyetik devre) temsil eder. R 7 ise nötr direncini temsil eder. Şekil 2 de Primer - Toprak (V in) ve Nötr- Toprak (V out) gerilimlerinin Frekans Tepkisi Analizi (FRA) sargı empedansının ölçümü için gerekli test düzeneği yer almaktadır [6]. Sargı empedansısın genliğinin ve açısının frekans spektrumu kullanılarak manyetik devre direnci ve endüktansı ile sargı kapasitansı elde edilebilmektedir [6]. Düşük frekanslarda ( Hz) empedans endüktif olduğundan, sargı kapasitansı açık devre olarak kabul edilebilir ve böylece ölçülen reaktans değerinden manyetik devre endüktansı belirlenebilir. İlk rezonans frekansı ve düşük frekans hesabında bulunan endüktanstan yararlanarak sargı kapasitansı hesaplanır. Eşitlik (1) de gerilimler ile sargı empedansı arasındaki bağıntı verilmiştir. Eşitlik (2) de ise rezonans frekansı eşitliği verilmiştir. Şekil 4. Güç Transformatörü Primer-Sekonder Test Düzeneği [2] [1] de geçen modelde sargılar arasında oluşan endüktif kuplajdan dolayı primer tarafın kapasitif etkisi sekonder tarafa kaçak endüktans olarak aktarılmıştır. Sekonder sargının frekans analizinde ikinci rezonans frekansında empedansın endüktif olduğu görülür. Bu frekanstaki empedans değerinden endüktans; (2) eşitliğinden de C, C 11 ve C 12 kapasitansları bulunabilmektedir. Şekil 1 de verilen güç transformatörü modelinin yapılan testler ve hesaplamalar sonucundaki parametreleri Tablo 1 de verilmiştir. Bu çalışmada, manyetik devre dirençlerinin hesabına yer verilmemiştir. Bu dirençlerin düşük frekanstaki ( Hz) empedanstan çıkarılmadığı çalışmadan anlaşılabilir. Tablo 1. Güç Transformatörü Parametreleri [5] R 1 (Ω).8231 R 2 (Ω).8235 R 3 (Ω).8236 R 4 (Ω).53 R 5 (Ω).53 R 6 (Ω).53 R 7 (Ω) 1 L 1 (H) L 2 (H) doi:.5281/zenodo
3 L 3 (H) L 4 (H).257 L 5 (H).351 L 6 (H).366 C 1 (nf).69 C 2 (nf).88 C 3 (nf).319 C 4 (nf) 3.57 C 5 (nf) 2.61 C 6 (nf) 2.8 C 7 (nf) 78.3 C 8 (nf) 78.3 C 9 (nf) 78.3 C (nf) 7.8 C 11 (nf) 7.8 C 12 (nf) Dağıtım Transformatörü Modeli [5] te dağıtım transformatörü modeli ve kva, 21 kv/ 4 V dağıtım transformatörü parametreleri [7] çalışmasından alınmıştır. [7] çalışmasındaki transformatör modeli ve yapılan testler [8] çalışması referans alınarak oluşturulmuştur. Primer tarafına 9 V 1.2/ µs Yıldırım darbe uygulanmış, sekonder uçları açık bırakılmıştır. İkinci bir testte ise sekonder tarafa aynı yıldırım darbe uygulanmış ve primer tarafı açık bırakılmıştır. Şekil 5 te transformatör modeli verilmiştir. şeklinde olur. Bu empedansların frekans spektrumundan ilk ve ikinci rezonans frekansı kullanılarak modelin parametrelerinin detaylı hesabı [7] çalışmasının ek bölümünde yer verilmiştir. Bu parametreler Tablo 2 de verilmiştir. Tablo 2. Dağıtım Transformatörü Parametreleri [7] R 1 (Ω) R 2 (Ω) R 3 (Ω R 4 (Ω) 1* -6 R 5 (Ω) R (Ω) L 1 (mh).856 L 2 (mh).46 L 3 (mh) L 4 (mh) C 1 (μf).263 C 2 (μf).2967 C 3 (μf).512 C 4 (μf) C 5 (μf).4221 C 6 (μf) Benzetim [5] teki güç transformatörü ve dağıtım transformatörü modelleri ATP de oluşturulmuş ve yıldırım darbe tepkisi incelenmiştir. Güç transformatörüne kv 1.2/ µs yıldırım darbe gerilimi, dağıtım transformatörüne ise kv 1.2/ µs yıldırım darbe gerilimi uygulanmıştır. Simülasyon µs ye ayarlanmış, örnekleme frekansı 833 Mhz dir. Yıldırım darbe, gerilim dalgasını tam olarak görebilmek için 1. µs de uygulanmıştır. Şekil 6 da güç transformatörü benzetim ekranı, Şekil 7 de ise dağıtım transformatörü benzetim ekranı verilmiştir. Şekil 5. Yüksek Frekans Dağıtım Transformatörü Modeli [7] Parametre hesaplamaları temelde iki uçlu devre teorisine dayanır. Ölçülen akım ve gerilim değerlerine FFT uygulanır. Şekil 4 te verilen iki uçlu devrenin eşitlikleri (3) ve (4) te verilmiştir. = + (3) = + (4) Burada primer gerilim, sekonder gerilim, primer akımı sekonder akımıdır. Primer tarafa gerilim uygulandığı testte sekonder tarafı açık olduğu için bir akım oluşmaz ( = ). Aynı şekilde, sekonder tarafa gerilim uygulandığı testte primer tarafı açık olduğu için bir akım oluşmaz ( = ). Ayrıca = şeklidedir. Sekonder tarafına da aynı şekilde yıldırım darbe gerilimi uygulanması durumunda empedans değerleri; =, =, =, = (5) Şekil 6. Güç Transformatörü ATP Modeli doi:.5281/zenodo
4 Şekil. Güç Transformatörü kv 1.2/ µs Yıldırım Darbe Uygulanması Gerilimleri (C7,C8,C9 % arttırılmış yeşil) Şekil 7. Dağıtım Transformatörü ATP Modeli 3. Bulgular Şekil 8 de güç transformatörünün primer A fazına uygulanan gerilimin formu, Şekil 9 da uygulanan bu gerilim sonucu sekonder A fazında oluşan gerilimin formu verilmiştir. Primer Faz A,,2,4,6,8 [ms], Şekil 11. Güç Transformatörü kv 1.2/ µs Yıldırım Darbe Uygulanması Gerilimleri (C7,C8,C9 % azaltılmış yeşil) C 1,C 2,C 3 ve C 4,C 5,C 6 kapasitans değerlerinin arttırılması veya azaltılmasının sekonder gerilimi etkilemediği görülmüştür (Şekil 12).,,2,4,6,8 [ms], (file TR_1_1.pl4; x-var t) v:pa Şekil 8. Güç Transformatörü kv 1.2/ µs Yıldırım Darbe Uygulanması Primer Faz A Gerilimi,,2,4,6,8 [ms], Şekil 12. Güç Transformatörü kv 1.2/ µs Yıldırım Darbe Uygulanması Gerilimleri (C1,C2,C3 veya C4,C5,C6 kapasitans değerlerinin % arttırılması veya azaltılması, yeşil) Şekil 13 ve 14 de güç transformatörü C,C 11,C 12 kapasitans değerlerinin değişimi durumunda sekonder gerilimleri dalga formlarının karşılaştırılması verilmiştir.,,2,4,6,8 [ms], (file TR_1_1.pl4; x-var t) v:sa Şekil 9. Güç Transformatörü kv 1.2/ µs Yıldırım Darbe Uygulanması Gerilimi Şekil ve 11 de güç Transformatörü C 7,C 8,C 9 kapasitans değerlerinin değişimi durumunda sekonder gerilimleri dalga formlarının karşılaştırılması verilmiştir.,,2,4,6,8 [ms], Şekil 13. Güç Transformatörü kv 1.2/ µs Yıldırım Darbe Uygulanması Gerilimleri (C,C11,C12 % arttırılmış yeşil),,2,4,6,8 [ms], tr_1_1.pl4: v:sa doi:.5281/zenodo.14829
5 ,,2,4,6,8 [ms], Şekil 14. Güç Transformatörü kv 1.2/ µs Yıldırım Darbe Uygulanması Gerilimleri (C,C11,C12 % azaltılmış yeşil) Şekil 15 de dağıtım transformatörü primerine uygulanan gerilim sonucu sekonderde oluşan gerilimin formu verilmiştir. Dağıtım Transformatörü kapasitans değerlerinin değişimi sekonder gerilimleri etkilemediği görülmüştür (Şekil 16). 4. Sonuçlar Güç transformatörü modelinde sargılar arası kapasitans değerleri (C 7, C 8 ve C 9) % arttırıldığında sekonder gerilimin genliğinin arttığı, % azaltıldığında ise genliğin azaldığı Şekil ve 11 dan görülebilir. Nötr- Toprak arasındaki kaçak kapasitelerin (C, C 11 ve C 12) % artması sekonderdeki gerilimin genliğinin azalmasını, % azalması ise gerilimin genliğinin artmasını sağlamıştır (Şekil 13 ve 14). Diğer kapasitans değerlerinin değişimi sekonder gerilim dalgasını değiştirmediği görülebilir (Şekil 12). Dağıtım transformatörü modelinde kapasitans değerlerinin değişimim sekonder gerilimi etkilemediği söylenebilir (Şekil 16). Gelecekte yapılacak bir çalışma ile deneysel çalışma sonucu elde edilecek transformatör kapasitans ve diğer parametrelerinin kullanılarak simülasyonların yapılması ve sonuçların deneysel sonuçlarla karşılaştırılması hedeflenmiştir. 21, Primer (Kırmızı) ve Sekonder (Yeşil) Gerilim 16,6 12,2 7,8 3,4-1,,,2,4,6,8 [ms], (file TR_2_1.pl4; x-var t) v:p v:s Şekil 15. Dağıtım Transformatörü kv 1.2/ µs Yıldırım Darbe Uygulanması Primer ve Sekonder Gerilimleri (Primer kırmızı, Sekonder yeşil) Sekonder Gerilim -1,,2,4,6,8 [ms], TR_2_1.pl4: v:s tr_2.pl4: v:s Şekil 16. Dağıtım Transformatörü kv 1.2/ µs Yıldırım Darbe Uygulanması Sekonder Gerilimleri (Kapasitans değerlerinin ayrı ayrı % arttırılması veya azaltılması, yeşil) 5. Kaynaklar [1] Chen X. Venkata S. S. A three-phase three-winding core-type transformer model for low-frequency transient studies, IEEE Transactions on Power Delivery, Vol. 12, no. 2, s , [2] Morched A., Marti L., Ottevangers J., A high frequency transformer model for the EMTP, IEEE Transactions on Power Delivery, Vol. 8, no. 3, s , [3] Elhaffar A, ve Lehtonen M, High Frequency Current Transformer Modeling for Traveling Waves Detection, IEEE Power Engineering Society General Meeting, 7. [4] Abeywickrama N., Serdyuk Y. V., Gubanski S.M., High-Frequency Modeling of Power Transformers for Use in Frequency Response Analysis (FRA), IEEE Transactions on Power Delivery, Vol. 23, no. 4, s , 8. [5] Subedi D., Lightning Induced Over-voltages in Power Transformer and Voltage Spikes in Connected Load, Master Tezi, Aalto University, Helsinki, Finlandiya, 17 [6] Shirvani A., Malekian K., Schmidt U., ve Schufft W., A New Power transformer Model Over Wide Frequency range for EMTP, 45 th International Universities Power Engineering Conference UPEC,, s [7] Sabiha N. A., Lightning-Induced Overvoltages in Mediumvoltage Distribution Systems and Customer Experienced Voltage Spikes, Doktora Tezi, Aalto University, Helsinki, Finlandiya,. [8] Piantini A., Malagodi C. V. S., Modeling of Three- Phase Distribution Transformers for Calculating Lightning Induced Voltages Transferred to the Secondary, IEEE, 5 th International Symposium on Lightning Protection, doi:.5281/zenodo
ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU
T.C. MARMARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU Mehmet SUCU (Teknik Öğretmen, BSc.)
ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI-II DENEY RAPORU
ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI-II DENEY RAPORU DENEY NO : DENEYİN ADI : DENEY TARİHİ : DENEYİ YAPANLAR : RAPORU HAZIRLAYANIN
DENEY-4 RL DEVRE ANALİZİ. Alternatif akım altında seri RL devresinin analizi ve deneysel olarak incelenmesi.
DENEY-4 RL DEVRE ANALİZİ 1. DENEYİN AMACI Alternatif akım altında seri RL devresinin analizi ve deneysel olarak incelenmesi. Kullanılan Alet ve Malzemeler: 1. Osiloskop 2. Sinyal jeneratörü 3. Çeşitli
DENEY TARİHİ RAPOR TESLİM TARİHİ NOT
DENEY 3 SERİ VE PARALEL RLC DEVRELERİ Malzeme Listesi: 1 adet 100mH, 1 adet 1.5 mh, 1 adet 100mH ve 1 adet 100 uh Bobin 1 adet 820nF, 1 adet 200 nf, 1 adet 100pF ve 1 adet 100 nf Kondansatör 1 adet 100
ELEKTRİK DEVRELERİ-2 LABORATUVARI VII. DENEY FÖYÜ
ELEKTRİK DERELERİ-2 LABORATUARI II. DENEY FÖYÜ TRANSFORMATÖR ÖZELLİKLERİNİN BELİRLENMESİ Amaç: Transformatörün özelliklerini anlamak ve başlıca parametrelerini ölçmek. Gerekli Ekipmanlar: Ses Transformatörü,
Alternatif Akım Devreleri
Alternatif akım sürekli yönü ve şiddeti değişen bir akımdır. Alternatif akımda bazı devre elemanları (bobin, kapasitör, yarı iletken devre elemanları) doğruakım devrelerinde olduğundan farklı davranırlar.
ALTERNATİF AKIMDA EMPEDANS (PARALEL DEVRELER)
1 ALTERNATİF AKMDA EMPEDANS (PARALEL DEVRELER) Paralel Devreler Direnç, bobin ve kondansatör birbirleri ile paralel bağlanarak üç farkı şekilde bulunabilirler. Direnç Bobin (R-L) Paralel Devresi Direnç
ELEKTRİK DEVRELERİ-2 LABORATUVARI IV. DENEY FÖYÜ
EEKTİK DEEEİ-2 ABOATUAI I. DENEY FÖYÜ ATENATİF AKIM ATINDA DEE ANAİİ Amaç: Alternatif akım altında seri devresinin analizi ve deneysel olarak incelenmesi Gerekli Ekipmanlar: Güç Kaynağı, Ampermetre, oltmetre,
KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK222 TEMEL ELEKTRİK LABORATUARI-II
ALTERNATİF AKIM KÖPRÜLERİ 1. Hazırlık Soruları Deneye gelmeden önce aşağıdaki soruları cevaplayınız ve deney öncesinde rapor halinde sununuz. Omik, kapasitif ve endüktif yük ne demektir? Açıklayınız. Omik
Elektrik Müh. Temelleri -II EEM 112
Elektrik Müh. Temelleri II EEM 112 7 1 TRANSFORMATÖR Transformatörler elektrik enerjisinin gerilim ve akım değerlerini frekansta değişiklik yapmadan ihtiyaca göre değiştiren elektrik makinesidir. Transformatörler
ENDÜSTRİYEL BİR TESİSTE DİNAMİK KOMPANZASYON UYGULAMASI
ENDÜSTRİYEL BİR TESİSTE DİNAMİK KOMPANZASYON UYGULAMASI Özgür GENCER Semra ÖZTÜRK Tarık ERFİDAN Kocaeli Üniversitesi Mühendislik Fakültesi, Elektrik Mühendisliği Bölümü, Kocaeli San-el Mühendislik Elektrik
ALTERNATİF AKIMDA EMPEDANS SERİ DEVRELER
1 ALTERNATİF AKMDA EMPEDANS SERİ DEVRELER ALTERNATİF AKMDA EMPEDANS Empedans, gerilim uygulandığında bir elektrik devresinin akımın geçişine karşı gösterdiği zorluğun ölçüsüdür. Empedans Z harfi ile gösterilir
Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Seri ve Paralel RLC Devreleri
YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK LABORATUARI (LAB I) DENEY 3 Deney Adı: Seri ve Paralel RLC Devreleri Öğretim Üyesi: Yard. Doç. Dr. Erhan AKDOĞAN
Nedim Tutkun, PhD, MIEEE Düzce Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Konuralp Düzce
GÜÇ ELEKTRONİĞİ ÖRNEK ARASINAV SORULARI Nedim Tutkun, PhD, MIEEE [email protected] Düzce Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü 81620 Konuralp Düzce Soru-1) Şekildeki diyotlu R-L devresinde,
ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ
DENEY 1 ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ 1.1. Genel Bilgi MV 1424 Hat Modeli 40 kv lık nominal bir gerilim ve 350A lik nominal bir akım için tasarlanmış 40 km uzunluğundaki
DENEY TARİHİ RAPOR TESLİM TARİHİ NOT
DENEY 2 OHM-KIRCHOFF KANUNLARI VE BOBİN-DİRENÇ-KONDANSATÖR Malzeme Listesi: 1 adet 47Ω, 1 adet 100Ω, 1 adet 1,5KΩ ve 1 adet 6.8KΩ Dirençler 1 adet 100mH Bobin 1 adet 220nF Kondansatör Deneyde Kullanılacak
ALTERNATİF AKIMDA EMPEDANS SERİ DEVRELER
1 ALTERNATİF AKMDA EMPEDANS SERİ DEVRELER Empedans, gerilim uygulandığında bir elektrik devresinin akımın geçişine karşı gösterdiği zorluğun ölçüsüdür. Empedans Z harfi ile gösterilir ve birimi ohm(ω)
Deney 3 5 Üç-Fazlı Tam Dalga Tam-Kontrollü Doğrultucu
Deney 3 5 Üç-Fazlı Tam Dalga Tam-Kontrollü Doğrultucu DENEYİN AMACI 1. Üç-fazlı tam dalga tam-kontrollü doğrultucunun çalışma prensibini ve karakteristiklerini anlamak. 2. Üç-fazlı tam dalga tam-kontrollü
ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU
ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU DENEY NO : DENEYĠN ADI : DENEY TARĠHĠ : DENEYĠ YAPANLAR : RAPORU HAZIRLAYANIN
ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ
ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ELEKTRİK MAKİNALARI 4.HAFTA 1 İçindekiler Transformatörlerde Eşdeğer Devreler Transformatör
Bölüm 3 AC Devreler. 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak.
Bölüm 3 AC Devreler DENEY 3-1 AC RC Devresi DENEYİN AMACI 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak. GENEL BİLGİLER Saf
YÜKSEK GERİLİM ENERJİ NAKİL HATLARI
Enerjinin Taşınması Genel olarak güç, iletim hatlarında üç fazlı sistem ile havai hat iletkenleri tarafından taşınır. Gücün taşınmasında ACSR(Çelik özlü Alüminyum iletkenler) kullanılırken, dağıtım kısmında
Per-unit değerlerin avantajları
PER-UNİT DEĞERLER Per-unit değerlerin avantajları Elektriksel büyüklüklerin karşılaştırılmasında ve değerlendirilmesinde kolaylık sağlar. Trafoların per-unit eşdeğer empedansları primer ve sekonder taraf
DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri
DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri Deneyin Amacı: Seri ve paralel rezonans devrelerini incelemek, devrelerin karakteristik parametrelerini hesaplamak ve ölçmek, rezonans eğrilerini çizmek.
DENEY 1-1 AC Gerilim Ölçümü
DENEY 1-1 AC Gerilim Ölçümü DENEYİN AMACI 1. AC gerilimlerin nasıl ölçüldüğünü öğrenmek. 2. AC voltmetrenin nasıl kullanıldığını öğrenmek. GENEL BİLGİLER AC voltmetre, ac gerilimleri ölçmek için kullanılan
Rev MANYETİK AKI VE ENERJİ TRANSFERİ
Rev. 001 16.01.2017 MANYETİK AKI VE ENERJİ TRANSFERİ Bir iletken üzerinden akan elektrik akımı, akım yönüne dik ve dairesel olacak şekilde bir manyetik akı oluşturur. Oluşan manyetik akının yönü sağ el
TRAFO BAĞLANTILARINA DAYALI ÇOK DARBELİ STATCOM TASARIM ÇALIŞMALARI
TRAFO BAĞLANTILARINA DAYALI ÇOK DARBELİ TASARIM ÇALIŞMALARI Burhan Gültekin TÜBİTAK-Uzay Teknolojileri Araştırma Enstitüsü 06531, ODTÜ/ ANKARA Öz- İletim sistemlerindeki gerilim regülasyonu ve bölgeler
DENEY 3. Maksimum Güç Transferi
ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN2024 Elektrik Devreleri Laboratuarı II 2013-2014 Bahar DENEY 3 Maksimum Güç Transferi Deneyi Yapanın Değerlendirme Adı
DENEY 5: ALTERNATİF AKIMDA FAZ FARKI (R, L VE C İÇİN)
DENEY 5: ALTERNATİF AKIMDA FAZ FARKI (R, L VE C İÇİN) A. DENEYİN AMACI : Bu deneyin amacı, pasif elemanların (direnç, bobin ve sığaç) AC tepkilerini incelemek ve pasif elemanlar üzerindeki faz farkını
ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI
ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI DENEY FÖYÜ DENEY ADI ELEKTRİK İLETİM HATLARINDA GERİLİM DÜŞÜMÜ VE GÜÇ FAKTÖRÜ
TRANSFORMATÖRÜN YÜKLÜ ÇALIŞMASI, REGÜLASYON VE VERİMİN BULUNMASI
DENEY-4 TRANSFORMATÖRÜN YÜKLÜ ÇALIŞMASI, REGÜLASYON VE VERİMİN BULUNMASI 4. Teorik Bilgi Yüklü çalışmada transformatörün sekonder sargısı bir tüketiciye paralel bağlanmış olduğundan sekonder akımının (I2)
Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Ohm-Kirchoff Kanunları ve AC Bobin-Direnç-Kondansatör
YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK LABORATUARI (LAB I) DENEY 2 Deney Adı: Ohm-Kirchoff Kanunları ve Bobin-Direnç-Kondansatör Malzeme Listesi:
BÖLÜM 1 RF OSİLATÖRLER
BÖÜM RF OSİATÖRER. AMAÇ. Radyo Frekansı(RF) Osilatörlerinin çalışma prensibi ve karakteristiklerinin anlaşılması.. Osilatörlerin tasarlanması ve gerçeklenmesi.. TEME KAVRAMARIN İNEENMESİ Osilatör, basit
DENEY-4 BİR FAZLI TRANSFORMATÖRÜN KISA DEVRE DENEYİ
DENEY-4 BİR FAZLI TRANSFORMATÖRÜN KISA DEVRE DENEYİ TRANSFORMATÖRLERİN EŞDEĞER DEVRESİ Transformatörlerin devre analizinde ve simülasyonunda gerçek modelinin yerine eşdeğer devreleri kullanılır. Eşdeğer
ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI
ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI DENEY FÖYÜ DENEY ADI ELEKTRİK İLETİM HATLARINDA GERİLİM DÜŞÜMÜ VE GÜÇ FAKTÖRÜ
YILDIRIM DARBE YÜKSEK GERİLİM ÖLÇÜMLERİ
317 YILDIRIM DARBE YÜKSEK GERİLİM ÖLÇÜMLERİ Serkan DEDEOĞLU Ahmet MEREV Kaan GÜLNİHAR ÖZET Yüksek gerilim teknolojisinde; darbe yüksek gerilimler, iç (anahtarlama) ve dış (yıldırım) aşırı gerilimlerin
EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME
OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME Deney No:1 Amaç: Osiloskop kullanarak AC gerilimin genlik periyot ve frekans değerlerinin ölçmesi Gerekli Ekipmanlar: AC Güç Kaynağı, Osiloskop, 2 tane 1k
MV 1438 KABLO HAT MODELİ KARAKTERİSTİKLERİ VE MV 1420 İLETİM HATTI ÜZERİNDEKİ GERİLİM DÜŞÜMÜ
MV 1438 KABLO HAT MODELİ KARAKTERİSTİKLERİ VE MV 1420 İLETİM HATTI ÜZERİNDEKİ GERİLİM DÜŞÜMÜ MV 1438 KABLO HAT MODELİ KARAKTERİSTİKLERİ Genel Bilgi MV 1438 hat modeli 11kV lık nominal bir gerilim için
BÖLÜM 5 KISA DEVRE HESAPLARI
BÖLÜM 5 KISA DEVRE HESAPLARI Kısa Devre Nedir? (IEEE Std.100-1992): Bir devrede, genellikle farklı gerilimli iki ve ya daha fazla noktanın bağıl olarak düşük direnç veya empedans üzerinden kaza veya kasıt
Transformatörlerin Sinüzoidal Olmayan Şartlarda Azami Yüklenme Oranı Hesabı Kısım 2: Analiz Sonuçları
Transformatörlerin Sinüzoidal Olmayan Şartlarda Azami Yüklenme Oranı Hesabı Kısım 2: Analiz Sonuçları Emrah ARSLAN 2 Şevket CANTÜRK 3 Murat Erhan BALCI,2,3 Elektrik-Elektronik Mühendisliği Bölümü, Mühendislik-Mimarlık
3 FAZLI SİSTEMLER fazlı sistemler 1
3 FAL SİSTEMLER Çok lı sistemler, gerilimlerinin arasında farkı bulunan iki veya daha la tek lı sistemin birleştirilmiş halidir ve bu işlem simetrik bir şekilde yapılır. Tek lı sistemlerde güç dalgalı
ELEKTRİK DAĞITIM ŞEBEKELERİNDE GERİLİM DEĞİŞİMLERİNİN İNCELENMESİ
ELEKTRİK DAĞITIM ŞEBEKELERİNDE GERİLİM DEĞİŞİMLERİNİN İNCELENMESİ Özgür KARACASU Yiğit BORHAN 2 M. Hakan HOCAOĞLU 3,3 Elektronik Mühendisliği 2 Enerji Sistemleri Mühendisliği Mühendislik Fakültesi Gebze
EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME
OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME Deney No:1 Amaç: Osiloskop kullanarak AC gerilimin genlik periyot ve frekans değerlerinin ölçmesi Gerekli Ekipmanlar: AC Güç Kaynağı, Osiloskop, 2 tane 1k
ELM 324 ELEKTROMEKANİK ENERJİ DÖNÜŞÜMÜ DERSİ LABORATUVARI
ELM 324 ELEKTROMEKANİK ENERJİ DÖNÜŞÜMÜ DERSİ LABORATUVARI Deney 1 : Histeresiz Eğrisinin Elde Edilmesi Amaç : Bu deneyin temel amacı; transformatörün alçak gerilim sargılarını kullanarak B-H (Mıknatıslanma)
Şekil 5-1 Frekans modülasyonunun gösterimi
FREKANS MODÜLASYONU (FM) MODÜLATÖRLERİ (5.DENEY) DENEY NO : 5 DENEY ADI : Frekans Modülasyonu (FM) Modülatörleri DENEYİN AMACI :Varaktör diyotun karakteristiğinin ve çalışma prensibinin incelenmesi. Gerilim
11. Sunum: İki Kapılı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık
11. Sunum: İki Kapılı Devreler Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş İki kapılı devreler giriş akımları ve gerilimleri ve çıkış akımları
Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=?
S1-5 kw lık bir elektrik cihazı 360 dakika süresince çalıştırılacaktır. Bu elektrik cihazının yaptığı işi hesaplayınız. ( 1 saat 60 dakikadır. ) A-30Kwh B-50 Kwh C-72Kwh D-80Kwh S2-400 miliwatt kaç Kilowatt
AC YÜKSEK GERİLİMLERİN ÜRETİLMESİ
AC İN Genel olarak yüksek alternatif gerilimler,yüksek gerilim generatörleri ve yüksek gerilim transformatörleri yardımıyla üretilir. Genellikle büyük güçlü yüksek gerilim generatörleri en çok 10 ile 20
Güç Transformatörü Uç Empedans Eğrisinin Yapay Sinir Ağları Yardımıyla Kestirimi
Politeknik Dergisi Journal of Polytechnic Cilt: 7 Sayı: 3 s.185-189, 2004 Vol: 7 No: 3 pp. 185-189, 2004 Güç Transformatörü Uç Empedans Eğrisinin Yapay Sinir Ağları Yardımıyla Kestirimi İlhan KOŞALAY*,
ALTERNATİF AKIMIN TEMEL ESASLARI
ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ ALTERNATİF AKIMIN TEMEL ESASLARI Dr. Öğr. Üyesi Ahmet ÇİFCİ Elektrik enerjisi, alternatif akım ve doğru akım olarak
Elektrik Dağıtım Şebekesi: İletim hattından gelen ve şalt merkezlerinde gerilim seviyesi düşürülen elektriği, ev ve işyerlerine getiren şebekedir.
DAĞITIM TRAFOLARI Genel Tanımlar Elektrik Dağıtım Şebekesi: İletim hattından gelen ve şalt merkezlerinde gerilim seviyesi düşürülen elektriği, ev ve işyerlerine getiren şebekedir. EEM13423 ELEKTRİK ENERJİSİ
EK 1 ENTERKONNEKTE ŞEBEKEDE KULLANILACAK İNDİRİCİ GÜÇ TRANSFORMATÖRLERİNİN KARAKTERİSTİKLERİ
EK ENTERKONNEKTE ŞEBEKEDE KULLANILACAK İNDİRİCİ GÜÇ TRANSFORMATÖRLERİNİN KARAKTERİSTİKLERİ 2 EK 2 İLETİM HATLARINDA ÇAPRAZLAMA 380 kv ELEKTRİK İLETİM HATLARINDA ÇAPRAZLAMA A C B B A C C B A 0 yaklaşık
ELEKTRİK DEVRELERİ-2 LABORATUVARI VIII. DENEY FÖYÜ
EEKTRİK DEVREERİ-2 ABORATUVARI VIII. DENEY FÖYÜ SERİ VE PARAE REZONANS DEVRE UYGUAMASI Amaç: Seri ve paralel rezonans devrelerini incelemek, devrelerin karakteristik parametrelerini ölçmek, rezonans eğrilerini
TRANSFORMATÖRLERDE BOŞ ÇALIŞMA VE KISA DEVRE DENEYİ
DENEY-3 TRANSFORMATÖRLERDE BOŞ ÇALIŞMA VE KISA DEVRE DENEYİ 3. Teorik Bilgi 3.1 Transformatörler Bir elektromanyetik endüksiyon yolu ile akımı veya gerilimi frekansı değiştirmeden yükselten veya düşüren,
Eleco 2014 Elektrik Elektronik Bilgisayar ve Biyomedikal Mühendisliği Sempozyumu, Kasım 2014, Bursa
Eleco 4 Elektrik Elektronik Bilgisayar ve Biyomedikal Mühendisliği Sempozyumu, 7 9 Kasım 4, Bursa Harmonik Bozunum Kompanzasyonu için Melez ve Çift Ayarlı Pasif Güç Filtresi Tasarımı ve Performans Analizi
100 kv AC YÜKSEK GERİLİM BÖLÜCÜSÜ YAPIMI
465 100 kv AC YÜKSEK GERİLİM BÖLÜCÜSÜ YAPIMI Ahmet MEREV Serkan DEDEOĞLU Kaan GÜLNİHAR ÖZET Yüksek gerilim, ölçülen işaretin genliğinin yüksek olması nedeniyle bilinen ölçme sistemleri ile doğrudan ölçülemez.
Chapter 14. Elektrik Devreleri. Principles of Electric Circuits, Electron Flow, 9 th ed. Floyd
Elektrik Devreleri Karşılıklı indüklenme (Ortak endüktans) İki bobin birbirine yakın yerleştirildiğinde, bir bobindeki değişen akı diğer bobinde indüklenmiş bir gerilime sebep olur. Bobinlerin ortak endüktansı
Deneyle İlgili Ön Bilgi:
DENEY NO : 4 DENEYİN ADI :Transistörlü Akım ve Gerilim Kuvvetlendiriciler DENEYİN AMACI :Transistörün ortak emetör kutuplamalı devresini akım ve gerilim kuvvetlendiricisi, ortak kolektörlü devresini ise
Yüksek Gerilim Tekniği İÇ AŞIRI GERİLİMLER
İÇ AŞIRI GERİLİMLER n Sistemin kendi iç yapısındaki değişikliklerden kaynaklanır. n U < 220 kv : Dış aşırı gerilimler n U > 220kV : İç aşırı gerilimler enerji sistemi açısından önem taşırlar. 1. Senkron
2.5. İletkenlerde R, L, C Hesabı İletim Hatlarında Direnç (R) İletim hatlarında gerilim düşümüne ve güç kaybına sebebiyet veren direncin doğru
2.5. İletkenlerde R, L, C Hesabı 2.5.1. İletim Hatlarında Direnç (R) İletim hatlarında gerilim düşümüne ve güç kaybına sebebiyet veren direncin doğru hesaplanması gerekir. DA direnci, R=ρ.l/A eşitliğinden
DENEY-3 BİR FAZLI TRANSFORMATÖRÜN BOŞ ÇALIŞMASI VE DÖNÜŞTÜRME ORANININ BULUNMASI
DENEY-3 BİR FAZLI TRANSFORMATÖRÜN BOŞ ÇALIŞMASI VE DÖNÜŞTÜRME ORANININ BULUNMASI TRANSFORMATÖRLER Bir elektromanyetik endüksiyon yolu ile akımı veya gerilimi frekansı değiştirmeden yükselten veya düşüren,
Dengeli Üç Fazlı Devreler
BÖLÜM 11 Dengeli Üç Fazlı Devreler Kaynak:Nilsson, Riedel, «Elektrik Devreleri» Büyük miktarda elektrik gücün üretimi, iletimi, dağıtımı ve kullanımı üç fazlı devrelerle gerçekleşir. Ekonomik nedenlerden
KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 2008 DEVRELER II LABORATUARI
DİRENÇ-ENDÜKTANS VE DİRENÇ KAPASİTANS FİLTRE DEVRELERİ HAZIRLIK ÇALIŞMALARI 1. Alçak geçiren filtre devrelerinin çalışmasını anlatınız. 2. Yüksek geçiren filtre devrelerinin çalışmasını anlatınız. 3. R-L
ÇOK FAZLI DEVRELER EBE-212, Ö.F.BAY 1
ÇOK FAL DERELER EBE-212, Ö.F.BAY 1 Üç Fazlı Devreler EBE-212, Ö.F.BAY 2 Eğer gerilim kaynaklarının genlikleri aynı ve aralarında 12 faz farkı var ise böyle bir kaynağa dengeli üç fazlı gerilim kaynağı
7. Sunum: Çok Fazlı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık
7. Sunum: Çok Fazlı Devreler Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Üç Fazlı Devreler Üç fazlı devreler bünyesinde üç fazlı gerilim içeren devrelerdir.
BÖLÜM 3 ALTERNATİF AKIMDA SERİ DEVRELER
BÖÜM 3 ATENATİF AKMDA SEİ DEVEE 3.1 - (DİENÇ - BOBİN SEİ BAĞANMAS 3. - (DİENÇ - KONDANSATÖÜN SEİ BAĞANMAS 3.3 -- (DİENÇ-BOBİN - KONDANSATÖ SEİ BAĞANMAS 3.4 -- SEİ DEVESİNDE GÜÇ 77 ATENATİF AKM DEVE ANAİİ
Alternatif Akım. Yrd. Doç. Dr. Aytaç Gören. Alternatif Akım
Yrd. Doç. Dr. Aytaç Gören Paralel devre 2 İlk durum: 3 Ohm kanunu uygulandığında; 4 Ohm kanunu uygulandığında; 5 Paralel devrede empedans denklemi, 6 Kondansatör (Kapasitans) Alternatif gerilimin etkisi
Temel Devre Elemanlarının Alternatif Gerilim Etkisi Altındaki Davranışları
Temel Devre Elemanlarının Alternatif Gerilim Etkisi Altındaki Davranışları Direnç (R) Alternatif gerilimin etkisi altındaki direnç, Ohm kanunun bilinen ifadesini korur. Denklemlerden elde edilen sonuç
Akım Modlu Çarpıcı/Bölücü
Akım Modlu Çarpıcı/Bölücü (Novel High-Precision Current-Mode Multiplier/Divider) Ümit FARAŞOĞLU 504061225 1/28 TAKDİM PLANI ÖZET GİRİŞ AKIM MODLU ÇARPICI/BÖLÜCÜ DEVRE ÖNERİLEN AKIM MODLU ÇARPICI/BÖLÜCÜ
Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Transformatörün İncelenmesi
YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK LABORATUARI (LAB I) DENEY 4 Deney Adı: Transformatörün İncelenmesi Öğretim Üyesi: Yard. Doç. Dr. Erhan AKDOĞAN
DENEY 3. Maksimum Güç Transferi
ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM2104 Elektrik Devreleri Laboratuarı II 2014-2015 Bahar DENEY 3 Maksimum Güç Transferi Deneyi Yapanın Değerlendirme Adı
4. Sunum: AC Kalıcı Durum Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık
4. Sunum: AC Kalıcı Durum Analizi Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş Aşağıdaki şekillere ve ifadelere bakalım ve daha önceki derslerimizden
R 1 R 2 R L R 3 R 4. Şekil 1
DENEY #4 THEVENİN TEOREMİNİN İNCELENMESİ ve MAKSİMUM GÜÇ TRANSFERİ Deneyin Amacı : Thevenin teoreminin geçerliliğinin deneysel olarak gözlemlenmesi Kullanılan Alet ve Malzemeler: 1) DC Güç Kaynağı 2) Avometre
Koaksiyel Kablo Koruyucuları Coaxiel Cable Protectors
RPD L4JY N LPZ O A -1 bölgesinde, 50Ω anten vb koaksiyel kablo sisitemleri için, GB 18802.21 / IEC 61643-2 standardı ile tasarlanmıştır. For protecting 50Ω coaxial system, appied in coaxial systems, cell
11. SINIF SORU BANKASI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 6. Konu ALTERNATİF AKIM VE TRANSFORMATÖRLER TEST ÇÖZÜMLERİ
. SINIF SORU BANKASI. ÜNİTE: EEKTRİK VE MANYETİZMA 6. Konu ATERNATİF AKIM VE TRANSFORMATÖRER TEST ÇÖZÜMERİ 6 Alternatif Akım ve Transformatörler Test in Çözümleri. Alternatif gerilim denklemi; V sinrft
DENEY 8: BOBİNLİ DEVRELERİN ANALİZİ
A. DENEYİN AMACI : Bobin indüktansının deneysel olarak hesaplanması ve basit bobinli devrelerin analizi. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. AC güç kaynağı,. Değişik değerlerde dirençler ve bobin kutusu.
ŞEBEKEYE BAĞLI FOTOVOLTAİK SİSTEMLERDE OLUŞAN HARMONİKLERİN ŞEBEKEYE ETKİLERİ
ŞEBEKEYE BAĞLI FOTOVOLTAİK SİSTEMLERDE OLUŞAN HARMONİKLERİN ŞEBEKEYE ETKİLERİ Abdulvahid Çelebi, Metin Çolak Ege Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü 35040, Bornova, İzmir [email protected],
Bilgi Teknolojileri için Parafudurlar Surge Protective Devices for IT Systems
L CD 5-0 LPZ 0 A - veya daha yüksek bölgeler için, doğrudan korunacak cihaza bağlanarak kullanılırlar. Dengeli veya dengesiz arayüzlü kablolu ölçü ve kontrol sistemlerinde kullanılırlar. IEC 66-, GB 880.
EEM 202 DENEY 10. Tablo 10.1 Deney 10 da kullanılan devre elemanları ve malzeme listesi
EEM 0 DENEY 0 SABİT FEKANSTA DEVEEİ 0. Amaçlar Sabit frekansta devrelerinin incelenmesi. Seri devresi Paralel devresi 0. Devre Elemanları Ve Kullanılan Malzemeler Bu deneyde kullanılan devre elemanları
ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler. Yard.Doç.Dr. Ahmet Özkurt.
ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler Yard.Doç.Dr. Ahmet Özkurt [email protected] http://ahmetozkurt.net İçerik AC ve DC Empedans RMS değeri Bobin ve kondansatörün
ARASINAV SORULARI. EEM 201 Elektrik Devreleri I
Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü 2017-2018 EĞĠTĠM- ÖĞRETĠM YILI YAZ OKULU ARASINAV SORULARI EEM 201 Elektrik Devreleri I Tarih: 04-07-2018 Saat: 11:45-13:00 Yer: Merkezi Derslikler
DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ
Deneyin Amacı DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ Seri ve paralel RLC devrelerinde rezonans durumunun gözlenmesi, rezonans eğrisinin elde edilmesi ve devrenin karakteristik parametrelerinin ölçülmesi
ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU
T.. MARMARA ÜNİVERSİTESİ FEN İLİMLERİ ENSTİTÜSÜ ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN İLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU Mehmet SUU (Teknik Öğretmen, Sc.) YÜKSEK
TEK FAZLI KONTROLLU VE KONTROLSUZ DOĞRULTUCULAR
FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY NO:1 TEK FAZLI KONTROLLU VE KONTROLSUZ DOĞRULTUCULAR 1.1 Giriş Diyod ve tristör gibi
DENEY 5: İŞLEMSEL YÜKSELTEÇLER ve UYGULAMA DEVRELERİ
DENEY 5: İŞLEMSEL YÜKSELTEÇLER ve UYGULAMA DEVRELERİ Amaç: İşlemsel yükselteç uygulamaları Kullanılan Cihazlar ve Devre Elemanları: 1. Dirençler: 1k, 10k, 100k 2. 1 adet osiloskop 3. 1 adet 15V luk simetrik
Enerji Sistemleri Mühendisliği Bölümü
YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ Enerji Sistemleri Mühendisliği Bölümü ESM 413 Enerji Sistemleri Laboratuvarı-II RL, RC ve RLC DEVRELERİNİN AC ANALİZİ Puanlandırma Sistemi: Hazırlık Soruları:
ELEKTRİK MÜHENDİSLERİ ODASI GÜÇ SİSTEMLERİNDE HARMONİKLER VE FİLTRELEMELERİN İNCELENMESİ
ELEKTRİK MÜHENDİSLERİ ODASI EMO ANKARA ŞUBESİ İÇ ANADOLU ENERJİ FORUMU GÜÇ SİSTEMLERİNDE HARMONİKLER VE FİLTRELEMELERİN İNCELENMESİ EMO ŞUBE : KIRIKKALE ÜYE : Caner FİLİZ HARMONİK NEDİR? Sinüs formundaki
Sinüsoidal Gerilim ve Akım ALIŞTIRMALAR
Sinüsoidal Gerilim ve Akım 65 2.7. ALŞTRMALAR Soru 2.1 : 4 kutuplu bir generatörde rotor (hareketli kısım) 3000 devir/dk ile döndüğüne göre, üretilen gerilimin frekansını bulunuz. (Cevap : f=100hz) Soru
Elektrik Güç Sistemlerinde Kalite Pasif Filtreler. Yrd. Doç. Dr. M. Mustafa ERTAY DÜZCE ÜNİVERSİTESİ
Elektrik Güç Sistemlerinde Kalite Pasif Filtreler Yrd. Doç. Dr. M. Mustafa ERTAY DÜZCE ÜNİVERSİTESİ HARMONIK STANDARTLARı Standartlar ve kılavuzlar IEEE, ANSI, IEC vb teknik organizasyonlar tarafından
12. DC KÖPRÜLERİ ve UYGULAMALARI
Wheatstone Köprüsü ile Direnç Ölçümü 12. DC KÖPRÜLERİ ve UYGULAMALARI Orta değerli dirençlerin (0.1Ω
DENEY-6 THEVENİN TEOREMİNİN İNCELENMESİ MAKSİMUM GÜÇ TRANSFERİ
DENEY-6 THEVENİN TEOREMİNİN İNCELENMESİ MAKSİMUM GÜÇ TRANSFERİ Deneyin Amacı : Thevenin teoreminin geçerliliğinin deneysel olarak gözlemlenmesi. Maksimum güç transferi teoreminin geçerliliğinin deneysel
EEM 202 DENEY 8 RC DEVRELERİ-I SABİT BİR FREKANSTA RC DEVRELERİ
Ad&oyad: DEELEİ- ABİT Bİ FEKANTA DEELEİ 8. Amaçlar abit Frekanslı seri devrelerinde empedans, akım ve güç bağıntıları abit Frekanslı paralel devrelerinde admitans, akım ve güç bağıntıları. 8.4 Devre Elemanları
MANYETİK DENETİMLİ BOBİN İLE ELEKTRONİK BALAST GÜÇ DENETİMİ
P A M U K K A L E Ü Nİ V E R Sİ T E Sİ M Ü H E N Dİ S LİK F A K Ü L T E Sİ P A M U K K A L E U N I V E R S I T Y E N G I N E E R I N G F A C U L T Y M Ü H E N DİS LİK BİLİML E Rİ D E R GİSİ J O U R N A
KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK TESİSLERİ LABORATUARI RAPOR KİTABI
KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK TESİSLERİ LABORATUARI RAPOR KİTABI KOCAELİ 2016 RAPOR HAZIRLAMA KURALLARI 1. Deney raporlarının yazımında A4 kağıdı kullanılmalıdır.
Enerji Dönüşüm Temelleri. Bölüm 2 Transformatörlere Genel Bakış
Enerji Dönüşüm Temelleri Bölüm 2 Transformatörlere Genel Bakış Transformatorlar-Giriş Transformator, alternatif akım elektrik gücünü bir gerilim seviyesinden başka bir gerilim seviyesine değiştirir. Bu
ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU
ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU DENEY NO : DENEYĠN ADI : DENEY TARĠHĠ : DENEYĠ YAPANLAR : RAPORU HAZIRLAYANIN
BİR FAZLI TRANSFORMATÖR
KRDENİZ TEKNİK ÜNİERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği ölümü Güç Dağıtım Sistemleri Laboratuarı İR FZLI TRNSFORMTÖR Deneyin macı: ) Mıknatıslanma karakteristiği ve fazlı transformatörün
Bara Tipi Akım Transformatörü Bus Type Current Transformer. Kablo Tipi Akım Transformatörü Cable Type Current Transformer
Bara Tipi Akım Transformatörü Bus Type Current Transformer Primer iletkeni (sargısı) bulunmayan, ancak primer yalıtımı olan, doğrudan doğruya bir iletken ya da bara üzerinden bağlanabilen akım transformatörüdür.
