ELEKTROKİMYASAL GENOSENSÖR İLE DNA DİZİ TAYİNİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ELEKTROKİMYASAL GENOSENSÖR İLE DNA DİZİ TAYİNİ"

Transkript

1 T.C. EGE ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ ELEKTROKİMYASAL GENOSENSÖR İLE DNA DİZİ TAYİNİ Analitik Kimya Programı Yüksek Lisans Tezi Eczacı Işıl CİN Danışman Prof. Dr. M. E. Şengün Özsöz İzmir 2007

2

3 III ÖNSÖZ Çalışmalarımdaki değerli katkılarından dolayı başta, Analitik Kimya Anabilim Dalı Başkanı, danışmanım Sayın Prof. Dr. Mehmet Emin Şengün ÖZSÖZ e, Ege Üniversitesi Eczacılık Fakültesi Analitik Kimya Anabilim Dalı Araştırma Görevlisi Sayın Dilşat Özkan ARIKSOYSAL a teşekkür eder, saygılarımı sunarım. Her zaman desteklerini gördüğüm tüm değerli çalışma arkadaşlarıma; manevi desteğini hiçbir zaman esirgemeyen aileme ve Dekim Ecza ve Kimyevi Mad. Tic. San. A.Ş. Yönetim Kurulu Başkanı Sayın Ecz.Tanıl DİNÇSOY a teşekkür ederim. Ecz. Işıl CİN

4 IV İÇİNDEKİLER BÖLÜM I GİRİŞ ve AMAÇ...1 GENEL BİLGİLER Elektrokimya Elektrokimyasal Olaylarda Kütle Aktarım Yolları Elektrokimyasal Tabakalar Voltametri ve Voltametrinin Esasları Voltametride Kullanılan Uyarma Sinyalleri Voltametride Kullanılan Cihazlar Voltametride Kullanılan Çalışma Elektrotları Sıvı Elektrotlar Katı Elektrotlar a. Karbon Elektrotlar a.1. Camsı Karbon Elektrot (GCE) a.2. Perde Baskılı Karbon Elektrotlar (SCPE) a.3. Karbon Pastası Elektrodu a.4. Kalem Grafit Elektrodu b. Metal Elektrotlar...19

5 V Voltametride Kullanılan Referans Elektrotlar a. Referans Elektrot Çeşitleri a.1. Kalomel Referans Elektrot a.2. Gümüş-Gümüş Klorür Referans Elektrot a.3. Civa-Civa(1) sülfat Referans Elektrot Voltamogramlar Voltametrik Akımlar Elektrokimyasal Bir Olayda Faradayik İşlemler ve Nernst Eşitliği Uyarma Sinyallerine Göre Voltametrik Teknikler Dönüşümlü Voltametri (CV) Diferansiyel Puls Voltametrisi Kare Dalga Voltametrisi Biyosensörler İdeal Bir Biyosensörde Olması Gereken Özellikler Biyosensör Çeşitleri Biyosensör Tasarımında Kullanılan Moleküller ve Yapıları Nükleik Asitler ve DNA DNA ile İlgili Bazı Terimlerin Tanımlamaları DNA Baz Dizilerinin Yazılımı ile İlgili Temel Bilgiler İnterkalasyon...45

6 VI Nükleik Asit Hibridizasyonu Replikasyon DNA Biyosensörleri İlaç-DNA Etkileşmesinin DNA Biyosensörleri ile Tayini Elektrot Yüzeyine DNA Bağlama (immobilizasyon) Teknikleri Elektrostatik Bağlanma Kovalent Bağlanma SH (tiyol) Grubu ile İşaretli Oligonükleotidin Altın Elektrot Yüzeyine Afinitesi BÖLÜM II GEREÇ VE YÖNTEM Kullanılan Cihazlar Kullanılan Kimyasal Maddeler DNA ile Etkileşime Giren Maddeler Hakkında Genel Bilgi Kullanılan Çözeltilerin Hazırlanışı Tampon Çözeltilerin Hazırlanışı ,50 M Asetat Tampon Çözeltisinin Hazırlanışı (ph 4,8) (ACB ) ,02 M Tris HCl Tampon Çözeltisinin Hazırlanışı (ph 7,0) (TBS)...57

7 VII ,05 M Fosfat Tampon Çözeltisinin Hazırlanışı (ph 7,4 ) (PBS) İlaç Stok Çözeltilerinin Hazırlanışı Kullanılan Yöntem Kullanılan Elektrotların Hazırlanışı Karbon Pastası Elektrodunun (CPE) Hazırlanışı Kalem Grafit Elektrot (PGE) Hazırlanışı Dönüşümlü Voltametri Tekniği (CV) kullanılarak Maddelerin Yükseltgenme ve İndirgenme Sinyallerinin Saptanması DNA İmmobilize Edilmiş Kalem Grafit Elektroduna (PGE) Dayalı Tek Kullanımlık Sensör Geliştirilmesine Yönelik Çalışmalar PGE Yüzeyine İmmobilize Edilen Farklı Konsantrasyondaki dsdna nın Elektrokimyasal Tayinine Yönelik Çalışma dsdna nın PGE Yüzeyine Farklı Sürelerde İmmobilize Edilmesinin Elektrokimyasal Yanıta Etkisinin İncelenmesine Yönelik Çalışma PGE Yüzeyine İmmobilize Edilen Farklı Konsantrasyonlardaki ssdna nın Elektrokimyasal Tayinine Yönelik Çalışma ssdna nın PGE Yüzeyine Farklı Sürelerde İmmobilize Edilmesinin Elektrokimyasal Yanıta Etkisinin İncelenmesine Yönelik Çalışma PGE Yüzeyine İmmobilize Edilen Farklı Konsantrasyonlardaki İlaçların Elektrokimyasal Tayinine Yönelik Çalışma dsdna nın İlaç İle Etkileşimine Dayalı Çalışmalar Farklı Konsantrasyonlardaki İlaç Çözeltisi ile Yapılan Çalışmalar...64

8 VIII Farklı Konsantrasyonlardaki İlaç Çözeltisi ile Yapılan Çalışmalar Farklı Konsantrasyonlardaki İlaç Çözeltisi ile Yapılan Çalışmalar ssdna nın İlaç İle Etkileşimine Dayalı Çalışmalar ph Değişiminin PGE Yüzeyine İmmobilize Edilen İlaç ve dsdna İle Etkileşmiş olan İlacın Pik Akımına Etkisi ph Değişiminin PGE Yüzeyine İmmobilize Edilen İlacın Pik Akımına Etkisi ph Değişiminin PGE Yüzeyine İmmobilize Edilen dsdna İle Etkileşime Giren İlacın Pik Akımına Etkisi...68 BÖLÜM III BULGULAR PGE Yüzeyine İmmobilize Edilen Farklı Konsantrasyondaki dsdna nın Elektrokimyasal Tayinine Yönelik Çalışmadan Elde Edilen Bulgular dsdna nın PGE Yüzeyine Farklı Sürelerde İmmobilize Edilmesinin Elektrokimyasal Yanıta Etkisinin İncelenmesine İlişkin Bulgular PGE Yüzeyine İmmobilize Edilen Farklı Konsantrasyondaki ssdna nın Elektrokimyasal Tayinine Yönelik Çalışmadan Elde Edilen Bulgular PGE Yüzeyine İmmobilize Edilen Farklı Konsantrasyondaki İlacın Elektrokimyasal Tayinine Yönelik Çalışmadan Elde Edilen Bulgular...73

9 IX Farklı Konsantrasyonlardaki İlaç Çözeltilerinin, Guanin Yükseltgenme Sinyaline Olan Etkilerinin PGE ile Elektrokimyasal Olarak İncelenmesinde Elde Edilen Bulgular Farklı Konsantrasyonlardaki İlaç Çözeltilerinin, Guanin Yükseltgenme Sinyaline Olan Etkilerinin PGE ile Elektrokimyasal Olarak İncelenmesinde Elde Edilen Bulgular Farklı Konsantrasyonlardaki İlaç Çözeltilerinin, Guanin Yükseltgenme Sinyaline Olan Etkilerinin PGE ile Elektrokimyasal Olarak İncelenmesinde Elde Edilen Bulgular ssdna nın İlaç İle Etkileşimine Dayalı Çalışmaların İncelenmesinde Elde Edilen Bulgular ph Değişiminin Etkilerinin İncelenmesinde Elde Edilen Bulgular ph Değişiminin PGE Yüzeyine İmmobilize Edilen İlacın Pik Akımına Etkisinin İncelenmesinde Elde Edilen Bulgular ph Değişiminin; PGE Yüzeyine İmmobilize Edilen dsdna ile Etkileşime Giren İlacın Pik Akımına Etkisinin İncelenmesinde Elde Edilen Bulgular...86 BÖLÜM IV TARTIŞMA dsdna ile İlaç Etkileşimlerinin Genel Olarak İncelenmesi...88

10 X BÖLÜM V SONUÇ ve ÖNERİLER...92 ÖZET...94 SUMMARY...95 YARARLANILAN KAYNAKLAR...96 ÖZGEÇMİŞ...112

11 1 BÖLÜM I GİRİŞ ve AMAÇ IUPAC ın, Analitik Kimyada oldukça yaygın kullanım alanı olan elektrokimyasal sensörler (elektrokimyasal algılayıcı sistemler) için yapmış olduğu tanımlama şu şekildedir: Elektrokimyasal sensörler; iyonlara ya da kimyasal bileşiklere seçici ve tersinir bir şekilde cevap veren ve konsantrasyona bağımlı elektriksel sinyaller oluşturan küçültülmüş cihazlardır. (17 ). Bir elektrokimyasal sensörün yapısına; DNA, enzim, hücre, doku, antikor, nükleikasit vb. biyolojik maddeler eklendiği zaman elektrokimyasal sensörlerin yaygın kullanım alanlarından biri olan BiYOSENSÖRLER oluşur (107). Biyosensörler, biyo (biyolojik kökenli) ve sensör (algılayıcı) kelimelerinin birleşmesiyle oluşan, nicel ve nitel analiz yapabilen kompleks cihazlar olarak tanımlanmaktadır. Bir diğer tanımla ise birbiri içine geçmiş, biri biyokimyasal, diğeri elektrokimyasal iki çevirici sistemden oluşan algılayıcı sistemlerdir. Biyokimyasal çeviricilerin çalışma prensibini; analizlenecek madde ile etkileşerek onu tanıma ve bu etkileşme sonucunda oluşan biyokimyasal ürünün vermiş olduğu sinyalin, elektrokimyasal çevirici tarafından okunabilir bir sayısal değere çevrilmesi oluşturmaktadır (22). Biyosensör tasarımında kullanılan nükleik asitlerden oluşmuş tanıma yüzeyleri yani DNA biyosensörleri (DNA nın; analizi yapılacak maddeyle

12 2 etkileşerek onu tanıyan biyolojik materyal olarak kullanıldığı biyosensörlerdir.) Analitik Kimya alanında her geçen gün daha fazla kullanım alanı bulmakta (4,117) ve çip teknolojisine önemli adımlar atılmaktadır (83, 85, 104). Elektrokimyasal DNA biyosensörlerinin; gelecekte hasta başında yapılacak doktor gözetimindeki analizlerde çok önemli bir rol oynayacağı düşünülmektedir (113). Elektrokimyasal yöntemlerle birlikte, DNA nın nitel ve nicel analizini yapma amacına yönelik tasarlanan biyosensörlerde, tanıma yüzey katmanı olarak DNA kullanılmasına her geçen gün artan bir ilgi bulunmaktadır (7, 10, 14, 15, 42, 46, 94, 96). Tanıma yüzeyi olarak nükleik asit içeren biyosensörler (Genosensörler; gene dayalı sensörler), bu yüzey ile etkileşime giren analitin (karsinojen maddeler, ilaçlar vb.) etkileşim mekanizmasının aydınlatılması veya miktarının tayin edilmesi veya DNA nın baz dizisi belli bölgelerindeki hibridizasyonun saptanması gibi çeşitli amaçlarla kullanılabilir (23, 24, 29, 83). Analitin DNA ile etkileşmesi sonucunda, DNA daki bir bazda meydana gelen veya analitte oluşan değişiklikler sayesinde güvenilir tayinler yapılabilmektedir (52, 57, 69). Günümüzde tanıma yüzeyi olarak DNA nın kullanıldığı biyosensörler genetik ve bulaşıcı hastalıkların hızlı bir şekilde teşhis edilmesine olanak sağlamaktadır. Ayrıca DNA ile etkileşerek ona zarar veren maddelerin saptanmasını da mümkün kılmaktadır. Özellikle de antikanser özellik taşıyan ilaç molekülleri ile DNA nın etkileşmesi ve bu etkileşmenin geliştirilen yeni yöntemlerle tayin edilmesi; yeni ilaç tasarımları için çok büyük önem taşımaktadır (35, 37, 52, 65, 69, 89). Bazı maddelerin (çevresel kirlilik ajanları (42), toksik moleküller, vb.) çift sarmal DNA ile interkalasyon (düzlemsel yapıdaki kimyasal maddenin DNA çift sarmalı arasına girerek yerleşmesi), baza seçimli bağlanma vb. yollarla etkileşimi

13 3 sonucu bir ürünün meydana gelmesi, bu ürüne duyarlı elektrokimyasal DNA biyosensörlerinin tasarımını getirmiştir (39). Bir kimyasalın ya da metabolitin DNA ile etkileşimi sonrasında DNA da oluşabilecek yan ürünlerin (adduct) kısa zamanda tespiti kanser araştırmalarında çok önemlidir (3, 23, 24, 44). DNA madde etkileşimi sonucunda, çalışmanın özelliklerine bağlı olarak DNA sinyalinde artma veya azalma ya da madde sinyalinde olan değişimler elektrokimyasal yöntemlerle tespit edilebilmektedir. Bu tür tayinlerde; DNA modifiye edilmiş camsı karbon elektrotlar (GCE), karbon pastası elektrotlar (CPE), kalem grafit elektrotlar (PGE), perde baskılı karbon elektrotlar (SCPE), altın perde baskılı karbon elektrotlar (Au-SCPE), altın elektrotlar (AuE) ve asılı civa damla elektrotları (HMDE) kullanılmaktadır. İncelenen maddelerin çok düşük miktarlardaki (mikromolar hatta nanomolar) konsatrasyonlarının dahi, kısa bir biriktirme aşaması sonrası ölçümlerini mümkün kılmaktadır (10, 20, 56, 65, 67, 75, 115, 116, 121). Son yıllarda indikatör kullanılmadan elektrokimyasal DNA biyosensörleri kullanılarak, DNA bazlarından en elektroaktifleri olan Guanin ve Adeninin yükseltgenme sinyallerinden faydalanılarak hibridizasyon tayinlerinde çok büyük gelişmeler kaydedilmiştir. Çeşitli kalıtsal hastalıkların tanısında hiçbir indikatör kullanılmadan DNA hibridizasyon tayini yöntemi ile çalışmalar yapılmaktadır. Bu yöntem J.Wang, E.Palacek, M.Mascini ve arkadaşları tarafından litaratüre geçirilmiştir (45, 61, 73, 78, 92, 99, 100, 107, 110). Günümüzda kan, serum, doku, vücut sıvıları gibi biyolojik materyallerde mutasyon gibi kalıtsal bir olayı simgeleyen DNA dizisinin saptanması ve bu örneklerden hastalık tayinlerinin yapılabiliyor olması tıbbi analizler ve uygulamalarında oldukça önemlidir.

14 4 Nükleik asit tanıma yöntemlerine dayanan elektrokimyasal DNA biyosensörleri, klasik analiz yöntemlerine yeni bir alternatif olup; genetik ve bulaşıcı hastalıkların hızlı, basit ve ucuz yoldan teşhis edilebilmesini, DNA hasar ve etkileşimlerinin saptanabilmesini mümkün kılar. Bazı bulaşıcı ve kalıtımsal hastalıklara neden olan DNA dizilerinin tanımlanması, genomik DNA çiplerinin tasarımı, nükleik asit hibridizasyonuna dayanmaktadır (4, 31, 63). Elektrokimyasal DNA biyosensörlerinin tasarlanmasındaki ana amaç DNA daki hibridizasyonun tayin edilmesidir (44). Diziye özgün ve seçimli olarak tayin yapabilen DNA biyosensörleri, bir DNA probu içeren kısım ve tanıma olayını ölçülebilir bir sinyale dönüştüren çevirim sisteminden oluşmaktadır (61, 82). Çalışmalarımızda, Ege Üniversitesi Eczacılık Fakültesi Farmasötik Kimya Anabilim Dalı Araştırma Görevlileri tarafından sentezlenen maddelerin DNA ile etkileşiminin elektrokimyasal biyosensörle tayininde; diferansiyel puls voltametri (DPV) tekniği, elektrot olarak da karbon pastası elektrodu ve kalem grafit elektrot (PGE) kullanıldı. DNA ilaç etkileşimlerinde, etkileşimler çözelti fazında ve elektrot yüzeyinde (DNA modifiye edilmiş elektrot yüzeyinde veya ilaç modifiye edilmiş elektrot yüzeyinde) gerçekleştirildi. Çalışmalarımızda maddenin dsdna ve ssdna ile etkileşim öncesi ve sonrasında, hem DNA daki elektroaktif bazlardan olan guaninin yükseltgenme pik akımındaki değişim hem de maddenin kendine özgü pik akımındaki değişim incelendi. Bu etkileşim sonucunda elektroaktif baza ait pik akımında ve maddenin kendi pik akımında azalma saptandı. Çalışmamız sırasında; kullanılan madde ile DNA nın etkileşme süresi, madde ve DNA konsantrasyonundaki değişimin elektrokimyasal yanıta olan etkisi ve tekrarlanabilirlik gibi deneysel parametreler incelendi. Kalem grafit elektrot

15 5 kullanarak gerçekleştirdiğimiz çalışmanın getirdiği en önemli yarar; PGE nin tek kullanımlık olmasından ötürü tekrarlanabilir sonuçlar alınması oldu. Sonuç olarak, çalışmamızda tasarımını yaptığımız DNA madde etkileşmesine dayalı tek kullanımlık elektrokimyasal biyosensörle maddelerin DNA ile etkileşmesi ve meydana gelen değişiklikler saptanmıştır. Bu çalışmalarımızın amacında; gelecekte yeni antikanser ilaç hedefleme çalışmalarının temelini oluşturmak ve DNA biyoçip teknolojisini oluşturacak olan elektrokimyasal genosensörlerin bir öncüsünü geliştirmiş olmak vardır.

16 6 GENEL BİLGİLER 1. ELEKTROKİMYA Maddeninin, elektrik enerjisi ile etkileşmesi sonucu ortaya çıkan kimyasal ve fiziksel değişiklikler ile kimyasal enerjinin elektrik enerjisine çevrilmesini inceleyen bilim dalı elektrokimya olarak adlandırılır. Elektrokimyasal tepkimeler, yükseltgenme ve indirgenme tepkimeleri olup, elektron paylaşımına veya transferine dayalı kimyasal olaylar sonucu meydana gelirler. Elektrokimyasal tepkimeler; elektrokimyasal hücre adı verilen bir hücrede yürütülür. Elektrokimyasal tepkimenin oluşabilmesi için; analizi yapılacak maddeyi içeren çözelti (elektriksel iletkenliği sağlamak amacıyla çeşitli tampon çözeltiler kullanılır), maddenin kimyasal dönüşüme uğradığı elektrot sistemi (genellikle üçlü elektrot sistemi) ve bu elektrotları birbirine bağlayan bir çevirim sistemi (transducer) gereklidir. Şekil 1: Elektrokimyasal bir hücre şeması ve üçlü elektrot sistemi

17 7 Şekil 2: Analitik Kimya Anabilimdalı çalışma labarotuvarımızda kullandığımız elektrokimyasal bir hücre ve üçlü elektrot sistemi Elektroanalitik kimya, analiz edilecek çözelti bir elektrokimyasal hücrenin parçası olduğu zaman çözeltinin elektrokimyasal özelliklerine uygun bir grup kantitatif analiz yöntemini kapsar. Elektroanalitik yöntemler ile çok düşük tayin sınırlarına ulaşılıp, elektrokimyasal yöntemlerin uygulanabildiği sistemler hakkında, kimyasal reaksiyonların hız ve denge sabitleri, adsorbsiyon, kütle aktarım hızı vb. birçok bilgi elde edilebilmektedir. Elektroanalitik yöntemlerin; diğer analiz yöntemlerine göre bazı üstünlükleri bulunmaktadır. Bu avantajlardan birincisi, elektrokimyasal ölçümlerin çoğu kez bir

18 8 elementin, molekülün veya tepkime sonunda oluşan ürünün özel bir yükseltgenme basamağı için spesifik olması; diğer önemli avantajı ise, kullanılan cihazların diğer yöntemlerde kullanılan cihazlara göre nispeten ucuz olmasıdır (2,13) Elektrokimyasal Olaylarda Kütle Aktarım Yolları: Bir elektrot, sadece elektrot yüzeyindeki çok ince bir çözelti tabakasında etkin olabilmektedir. Ancak faradayik bir akım, ana çözeltiden elektrot yüzeyine reaksiyona giren türlerin devamlı aktarımını gerektirir. Bir elektrokimyasal hücrenin çalışması sırasında iyonlar veya moleküller ana çözeltiden yüzey tabakaya (yani elektrot yüzeyine) veya yüzey tabakadan ana çözeltiye konveksiyon (karıştırma), elektriksel göç ve difüzyon olmak üzere üç yöntem ile aktarılırlar (28). 1-Konveksiyon: Sıcaklık veya yoğunluk farkıyla, elektrot yüzeyinden geçen çözeltinin akışı gibi doğal olarak meydana gelen bir kütle aktarım yolu olmakla beraber aynı zamanda karıştırma ve çalkalama sonucunda ortaya çıkan mekanik hareket ile de meydana gelen kütle aktarımını ifade etmektedir. 2-Elektriksel Göç: İyonlarla, yüklü elektrot arasındaki elektrostatik çekimden kaynaklanan iyonların hareketidir. Yani elektriksel alanın etkisiyle meydana gelen bir aktarım yoludur. Elektriksel göç, elektriksel migrasyon olarak da adlandırılır. 3-Difüzyon: Türlerin derişim farkı nedeniyle yaptıkları harekettir. Yani elektrot yüzeyindeki sıvı film ile çözelti arasındaki derişim farkından dolayı meydana gelen bir kütle aktarımıdır.

19 Elektrokimyasal Tabakalar: Elektrokimyasal ölçüm yapılırken elektrot yüzeyi ile analit sıvısı arasında heterojen tabakalar meydana gelmektedir. Bunun nedeni elektrot, kendisine bitişik olan çözelti tabakasındaki bir türe elektron verebilir veya o tabakadan elektron alabilir. Genel olarak karıştırılan sistemlerdeki heterojen tabakaların bileşimi Şekil 3 te görülmektedir. Şekil 3: Elektrot yüzeyindeki tabakaların şematize olarak gösterilmesi. Türbülent akış tabakası: Elektrottan uzak çözelti yığınında gözlenir. Laminer akış bölgesi: Yüzeye yaklaştığında bir laminer akışa geçiş olur. Laminer akışta sıvı tabakaları elektrot yüzeyine paralel bir yönde birbirleri üzerinde kayarlar. Nernst difüzyon tabakası: Elektrot yüzeyinden δ cm uzaktaki laminer akımın hızı, sıvı ile elektrot arasındaki sürtünmeden dolayı sıfıra yaklaşır ve bunun sonucunda da elektrot çevresindeki ince, durgun bir çözelti tabakası oluşur. Genellikle bu çözelti tabakası, cm kalınlığında olmaktadır.

20 Voltametri ve Voltametrinin Esasları: Bir indikatör veya çalışma elektrodunun polarize olduğu koşullar altında, elektroda uygulanan gerilimin (potansiyelin) bir fonksiyonu olarak akımın ölçülmesine dayanan elektrokimyasal yönteme voltametri adı verilir. Uygulanan gerilimin ölçülen akım değerine karşı çizilen grafiğine de voltamogram denir. Voltametride, herhangi bir maddenin elektrokimyasal davranışını incelemek için elektroda uygulanabilecek gerilim aralığının sınırları, kullanılan çalışma elektrodu, kullanılan çözelti ve elektrolit türlerine bağlıdır. Voltametri, potansiyelin kontrol altında tutulduğu dinamik bir yöntem olup, ara yüzey yöntemleri grubunda olan elektroanalitik bir yöntemdir. Voltametri; Çekoslavak kimyacı Jaroslav Heyrovsky tarafından1920 lerin başında polorografi tekniği üzerinde yapılan çalışmalara dayanarak geliştirilmiştir. Voltametrinin önemli ve özel bir dalı olan hatta temelini oluşturan polorografinin diğer voltametrik yöntemlerden farkı çalışma elektrodu olarak damlayan civa elektrodu (DCE) kullanılmasıdır. Voltametri Analitik Kimya, İnorganik Kimya, Fizikokimya ve Biyokimya bilim dallarında yükseltgenme ve indirgenme reaksiyonlarının, elektrot yüzeyinde meydana gelen elektrot aktarım mekanizmalarının ve yüzeylerde meydana gelen adsorbsiyon olaylarının incelenmesi gibi alanlarda yaygın olarak kullanılan bir elektroanalitik yöntemdir.

21 Voltametride Kullanılan Uyarma Sinyalleri: Voltametride, bir mikroelektrot içeren elektrokimyasal hücreye değiştirilebilir bir potansiyelde uyarma sinyali uygulanır. Bu uyarma sinyalleri karakteristik akım cevaplarını oluşturur. Voltametride en çok kullanılan dört uyarma sinyalinin şematize edilmiş durumları şekil 4 te gösterilmiştir. Bunlar doğrusal taramalı, diferansiyel puls, kare dalga ve üçgen dalga uyarma sinyalleridir. Şekil 4: Voltametride kullanılan uyarma sinyalleri

22 Voltametride Kullanılan Cihazlar: 1-Çalışma elektrodu: Zamanla potansiyeli doğrusal olarak değişen ve yüzeyinde analitin yükseltgendiği veya indirgendiği mikroelektrottur. Bu elektrodun boyutları polarizasyonu artırmak için küçük tutulur. 2-Referans elektrot: Elektrokimyasal analizler sırasında potansiyeli dış ortamdan etkilenmeyen ve analiz süresince potansiyeli sabit kalan elektrottur. Genellikle referans elektrot olarak gümüş/gümüş klorür (Ag/AgCl) veya doymuş kalomel elektrot (DKE) kullanılır. Referans elektrotlar çalışılan maddelere karşı duyarsızdır. 3-Yardımcı elektrot: Sinyal kaynağından gelen elektriğin, çözeltinin içinden geçerek çalışma elektroduna aktarılmasını sağlayan yardımcı (karşıt) elektrottur. Genellikle helezon şeklinde bir platin tel veya bir civa havuzu şeklinde olan yardımcı elektrotlar, çalışma elektrodu ile bir çift oluşturur; fakat ölçülen potansiyelin tayininde rol oynamaz Voltametride Kullanılan Çalışma Elektrotları: Voltametrik reaksiyonlar, çalışma elektroduyla ara yüzey arasında meydana gelmektedir. Bu nedenle elektrot seçimi çok önemlidir. Çalışma elektrodunun yapımında kullanılan iletken malzeme, platin ya da altın gibi inert bir metal; karbon, pirolitik grafit ya da camsı karbon; kalay oksit ya da indiyum oksit gibi yarı-iletken veya bir civa filmi ile kaplanmış bir metal olabilir. Bu elektrotlar biyosensör tasarımı için çeşitli şekil ve büyüklüklerde geliştirilmektedirler. Bu tür elektrotların kullanıldığı voltametrik reaksiyonlarda, potansiyel aralığının tespiti çok önemlidir. Ancak bu potansiyel aralığı, sulu çözeltilerde sadece elektrot malzemesine bağlı olarak değil, aynı zamanda bu elektrotların

23 13 daldırıldığı çözeltinin bileşimine bağlı olarak da değişir. Pozitif potansiyel sınırları genellikle moleküler oksijen verecek şekilde, suyun yükseltgenmesi sonucunda oluşan büyük akımlarca belirlenir. Negatif potansiyel sınırları yine suyun indirgenmesi sonucunda oluşan hidrojenden kaynaklanır. Şekil 5: Kullanılan çalışma ortamına göre çalışma elektrotları için seçilen potansiyel aralıkları. Şekil 5 te de belirtildiği gibi kullanılan çalışma ortamına göre çalışma elektrotları için seçilen potansiyel aralıkları; civa elektrodu için 1 M H 2 SO 4 çalışma ortamında (- 0,8 V) ile (+0,4 V) aralığı ve 1 M KCl çalışma ortamında (- 1,6 V) ile (+0,2 V) aralığıdır. Karbon elektrodu için ise 1M HClO 4 ortamında (+0,2 V) ile (+1,8 V) aralığı ve 0,1 M KCl ortamında (-1,0 V) ile (+1,2 V) aralığıdır Sıvı Elektrotlar: Sadece civa ve gallium oda ısısında sıvı halde bulunmaktadır. Oda ısısında sıvı halde bulunmalarından dolayı bu iki elektrot sıvı elektrot ismini alır. Ancak civa analitik işlemlerde galliuma göre daha çok kullanılmaktadır.

24 14 Analitik İşlemlerde Civa Elektrodun Tercih Edilme Nedenleri; a) Düşük negatif potansiyel aralıklarında çalışılabilmesi yani negatif potansiyel sınırının çok yüksek olması, b) Kolayca oluşturulabilen yeni bir civa damlası ile yeni bir metalik yüzey oluşturulabilmesi, c) Birçok metal iyonunun civa yüzeyinde tersinir reaksiyon verebilmesi yani pek çok metal iyonunun bir civa elektrodunun yüzeyinde amalgam oluşturmak suretiyle tersinir olarak indirgenebilmesidir. Ancak civa elektrodunun bu avantajları yanında dar bir pozitif potansiyel aralığına sahip olması bu metalin anot olarak kullanılmasını sınırlamakta; toksik bir metal olması nedeniyle de kullanımının zahmetli olması gibi sakıncaları bulunmaktadır. Bu sakıncalar civa elektrodun kullanımını sınırlamaktadır. Dört Çeşit Civa Elektrodu Bulunmaktadır: 1- Disk elektrot 2- Asılı civa damla elektrot 3- Damlayan civa elektrot 4- Durgun civa damla elektrot Katı Elektrotlar: Sıvı elektrotların voltametrik analizlerde kullanımının sınırlı olması sebebiyle katı elektrotlar daha geniş bir kullanım alanına sahiptirler. Katı Elektrotların Daha Sık Kullanılma Nedenleri; Geniş bir potansiyel aralığına sahip olmaları, Çeşitli şekillerde modifiye edilebilmeleri, Kullanım alanının daha rahat olması,

25 15 Yüksek sıcaklık ve basınç aralıklarında çalışılmasına imkan vermeleridir a. Karbon Elektrotlar: Karbon elektrotlar özelikle çok ucuz olmaları ve geniş bir potansiyel aralığında çalışılmasına olanak vermesi nedeniyle elektrokimyasal analizlerde sıklıkla kullanılırlar. Ancak karbonun geniş bir yüzeye sahip olması ve bu sebeple organik bileşikler tarafından kolayca kirletilebilir olması dezavantaj oluşturmaktadır. Hidrojen, hidroksil ve karboksil grupları ile karbon yüzeyinde bağlar oluşabilmektedir. Bu fonksiyonel gruplar sayesinde karbon yüzeyine birçok madde tutturulabilir. Dört Çeşit Karbon Elektrot Bulunmaktadır: 1- Camsı karbon elektrot (GCE) 2- Perde baskılı karbon (grafit) elektrot (SCPE) 3- Karbon pastası elektrot 4- Kalem grafit elektrot a.1. Camsı Karbon Elektrot (GCE): Camsı Karbon Elektrot, fenol/formaldehit polimerlerinin veya poliakrilonitrilin 1000 o C 3000 o C arasında, basınç altında karbonizasyona uğratılması ile elde edilir. GCE yüksek yoğunluğa sahip, küçük porlar içeren amorf bir yapıdır. Birbiri içerisine geçmiş, ince, grafite benzer şeritlerden oluşmuştur.

26 16 Şekil 6: GCE nin amorf yapısı GCE, ticari olarak elektrot üretimine uygun olmamasına (kolayca kırılabilir olması ve sert olması) rağmen çok iyi mekanik ve elektriksel özelliklere sahip olması, geniş bir potansiyel aralığı olması, genellikle tekrarlanabilir yüzeyler sağlaması ve kimyasal tepkimelere girmemesi nedeniyle elektroanalitik kimyada sıkça kullanılmaktadır. Camsı karbon elektrotlar; mikrometre boyutlu grafit tozu partiküllerinin, sert ve yapıştırıcı bir madde ile inert bir malzemeden yapılmış olan elektrot gövdesi içerisine sıkıştırılması ile elde edilir. Karbon pastası elektrotlarına göre elektrokimyasal yanıt özellikleri, yüzeyin çok daha pürüzsüz ve düzgün olması nedeniyle daha iyidir. Ayrıca camsı karbon elektrodun fiziksel dayanıklılığı da

27 17 daha fazladır ve CPE de olduğu gibi metal iyonlarının negatif potansiyelde biriktirilmesine ve çeşitli polimerlerin kaplanmasına olanak sağlamaktadır a.2. Perde Baskılı Karbon (grafit) Elektrotlar (SCPE): Tek kullanımlık perde baskılı karbon elektrotlar çok yaygın şekilde kullanılmaktadır. Elektrokimya alanında çok önemli olan karbon elektrotlarının tüm çeşitlerinde yüzeylerinin düzgün bir şekilde hazırlanması oldukça önemlidir. Özellikle biyosensör teknolojisinin geleceği olan DNA mikroçip teknolojisine uygulanabilirliği açısından oldukça başarılı sonuçlar veren bu elektrotlar geleceğin elektrotları olarak gösterilmektedir a.3. Karbon Pastası Elektrodu: Grafit tozunda bulunan karbon moleküllerinin düzlemsel ve aromatik halkalar halinde dizilimleri ve birbirlerine zayıf π bağlarıyla bağlı olması nedeniyle bu tabakalar arasında hızlı bir elektron alışverişi olmaktadır. Şekil 7: Grafit tozunda bulunan karbon atomlarının dizilimi Grafit tozundaki aromatik halkaların aktif oksijen grupları muhteva etmeleri nedeniyle çeşitli foksiyonel guruplar (hidroksil, karbonil, karboksil v.b.) eklenebilir.

28 18 Bu özelliği nedeniyle karbon pastası elektroda bu fonksiyonel grupları içeren yapılar (enzim, antikor v.b.) eklenerek elektrot modifiye edilebilir. Şekil 8: Karbon pastası elektrodu Karbon pastası elektrot; toplam kütlesinin % 70 i oranında grafit ile % 30 u oranında çeşitli organik bağlayıcıların karıştırılması ile hazırlanır. Hazırlanan karışım 2-4 mm çapında teflon ya da camdan yapılmış elektrot gövdesi içerisine sıkıştırılır, elektriksel iletkenliği sağlamak için iletken bir tel gövdenin 2/3 ne kadar yerleştirilerek hazırlanır. Bağlayıcı madde olarak nujol (mineral yağ), parafin yağı, silikon yağı ve bromonaftalen kullanılmaktadır. Bağlayıcı organik sıvı oranı arttıkça, elektron transfer hızı azalmaktadır. Pasta bileşiminin de elektrot aktivitesine büyük etkisi vardır. Karbon pastası elektrodu ucuz olması, hazırlanmasının zahmetsiz oluşu, yüzey yenilenmesinin kolay olması, artık akımların az olması nedeniyle sıklıkla tercih edilmektedir. Ancak karbon pastası elektrot yeterli miktarda organik çözücü içeren çözeltilerde kullanıldığı zaman çözeltide dağılmaktadır. Bu da karbon pastası elektrodun kullanımındaki en büyük sakıncadır.

29 a.4. Kalem Grafit Elektrodu: Son yıllarda tekrarlanabilirliğinin daha iyi olması, daha düşük tayin sınırı, ucuz ve tek kullanımlık olması sebebiyle kalem grafit elektrodun kullanılmasına artan bir ilgi bulunmaktadır (53,118). Şekil 9: Kalem Grafit Elektrot b. Metal Elektrotlar: Bu elektrotlar geniş pozitif potansiyel aralığına ve yüksek elektron transfer kinetiklerine sahiptirler. En sık kullanılan metal elektrot çeşitleri platin ve altın elektrotlardır. Bakır, nikel, radyum gibi çeşitli metaller de değişik analizler için elektrot olarak kullanılabilir. Örneğin bakır ve nikel elektrotlar karbonhidratların ve aminoasitlerin tayininde kullanılmaktadırlar. Kullanılan çözeltinin ph sına bağlı olarak (-0,2 V)-(-0,5 V) aralığında çalışabilirler. Ayrıca metal elektrotlar elektrokimyasal veya kimyasal işlemlere sokularak modifiye edilebilir. Tiyol gruplarının özellikle altın ve platine ilgisi ve yüksek akım cevabı nedeniyle son yıllarda biyosensör teknolojisinde kullanımı artmıştır. Son 10 yıl içerisinde boyutları mikroelektrotlardan daha küçük olan ultramikroelektrotların ve nanoelektrotların tasarımı gerçekleştirilmiştir. Yeni

30 20 tasarlanan bu elektrotların ve karbon fiber elektrotların elektrokimyasal analizlerde kullanımı son yıllarda oldukça artmıştır Voltametride Kullanılan Referans Elektrotlar (Karşılaştırma Elektrotları) (2, 28, 35, 91, 105): Elektrokimyasal çalışmalar sırasında, daldırıldığı çözeltinin bileşiminden etkilenmeyen ve potansiyeli dış ortamdan bağımsız olan elektrotlardır. İdeal Bir Referans Elektrot Şu Özelliklere Sahip Olmalıdır: 1-Belli bir akım aralığında tersinir davranmalıdır. 2-Nernst eşitliğine uymalıdır yani zamanla potansiyeli değişmemelidir. 3-Ufak bir akıma maruz kaldıktan çok kısa bir süre sonra orijinal potansiyeline geri dönebilmelidir. 4-Potansiyelin sıcaklıkla değişim katsayısı küçük olmalıdır yani sıcaklık değişimlerinde çok az bir değişim göstermelidir. 5-Kolay hazırlanabilir olmalıdır. 6-Tekrarlanabilen bir potansiyel değerini hızlı bir şekilde okumalıdır. 7-Polarize edilemeyen bir elektrot olmalıdır a. Referans Elektrot Çeşitleri: a.1. Kalomel Referans Elektrot: Kalomel referans elektrotlar, doygun civa(i)klorür (kalomel) elektrotla temasta olan ve yaygın olarak kullanılan elektrotlardan bir tanesidir. Bu elektrodun potansiyeli, klorür iyonlarının aktifliğine bağlıdır. Hazırlanışının çok kolay olması nedeniyle analitik kimyacılar tarafından çok tercih edilen bir referans elektrottur. Kalomel referans elektrotta,

31 21 Hg 2 Cl 2 (k) + 2e - 2Hg (k) + 2Cl - e (sulu) reaksiyonu gerçekleşir. Böyle bir reaksiyonun potansiyeli ortamdaki klor iyonu konsantrasyonuna bağlıdır. Elektrot kabında çökmüş halde bol miktarda kalomel olmak şartı ile üç kalomel elektrottan söz edilebilir. Bunların verdikleri potansiyel az çok sıcaklığa bağlıdır. Bu elektrotlardan en çok kullanılanı doymuş kalomel elektrottur. Sıcaklıkla potansiyeli diğerlerine göre fazla değişmesine rağmen akım alımlarına karşı çok dayanıklıdır. Doygun kalomel elektrodun (DKE), standart hidrojen elektroda (SHE) karşı 25 0 C de potansiyeli V olarak bulunmuştur a.2. Gümüş-Gümüş Klorür Referans Elektrot: Bu elektrot elektrolitik yoldan gümüş klorür (AgCl) ile kaplanmış bir gümüş (Ag) telin belli konsantrasyondaki klorür (Cl - ) çözeltisine daldırılması ile elde edilir. Gümüş-Gümüş Klorür elektrotta; AgCl (k) + e - Ag (k) +Cl - (sulu) reaksiyonu gerçekleşir a.3. Civa-Civa(1) Sülfat Referans Elektrot: Bu elektrot, doygun kalomel elektroda benzemektedir. Elektrodun potansiyeli, sülfat iyonlarının aktifliği ile tayin edilir Voltamogramlar: Doğrusal taramalı voltamogramlar, çoğunlukla voltametrik dalga adı verilen sigmoidal şekilli (S şeklinde) eğrilerdir. Dik ve keskin bir artıştan sonra gelen sabit akıma sınır akımı veya difüzyon kontrollü akım denir. Sınır akımı i s olarak gösterilir. Bu akım, analitin yani analizlenecek maddenin kütle aktarım yoluyla elektrot yüzeyine taşınmasındaki hızıyla sınırlıdır ve sınır akımı genellikle

32 22 analitin konsantrasyonu ile doğru orantılıdır. Sınır akımı aşağıdaki formülle ifade edilebilir: I s = k.c A Bu formülde: İ s sınır akımını C A analit konsantrasyonunu K, sınır akımı sabitini belirtir. Kantitatif doğrusal taramalı voltametri bu ilişkiye dayanır. Akımın, sınır akımın yarısına eşit olduğu potansiyele yarı dalga potansiyeli denir ve E 1/2 ile gösterilir. Sınır akımlarının hızlı bir şekilde elde edilebilmesi için çözelti veya elektrot sürekli hareket halinde olmalı ya da damlayan civa elektrodu gibi bir elektrot kullanılmalıdır. Çözelti veya mikroelektrodun sürekli hareket halinde olduğu doğrusal taramalı voltametriye hidrodinamik voltametri adı verilir. Damlayan civa elektrodunun kullanıldığı voltametriye de polarografi adı verilir. Polarografi ilk bulunan ve kullanılan voltametri tipidir. Hidrodinamik voltametriden; konveksiyonun önlenmiş olması ve elektrot olarak damlayan civa elektrot kullanılması gibi iki temel özelliği ile ayrılır. Konveksiyonun önlenmiş olması sebebiyle, sınır akımları sadece difüzyonla kontrol edilir. Polarografide yani damlayan civa elektrodu içeren bir hücrenin kullanıldığı voltametrideki akım; damlama hızına bağlı olarak periyodik iniş ve çıkışlar gösterir. Damla kapillerden kopunca akım sıfıra düşer ve yeni damlanın yüzey alanı büyümeye başladıkça akım hızla artmaya başlar. Ortalama akım, hipotetik olarak sabit bir akımdır. Ortalama akımı tayin etmek için iniş ve çıkışları süzecek

33 23 elektronik bir filtre kullanmak veya akımın zamanla değişiminin daha küçük olduğu damla süresinin sonunu ölçmek gerekir. Polarografide, hidrodinamik voltametride olduğu gibi, akımın büyüklüğü analitin elektrot yüzeyine taşınma hızı ile sınırlı olduğu zaman, sınır akımları gözlenir. Fakat polarografide tek kütle aktarım şekli difüzyonla kütle aktarımı olduğu için polarografik sınır akımlarına difüzyon akımları da denir. Destek elektrolite ait polarogramın incelenmesi ile ortamda analizlenecek madde yokken bile hücrede artık akım adı verilen küçük bir akımın oluştuğu tespit edilmiştir. Artık akımların oluşma sebepleri olarak safsızlıkların indirgenmesi ve bu safsızlıkların içinde az miktarda çözünmüş oksijen, damıtık sudan gelen ağır metal iyonları ve destek elektrolit olarak kullanılan tuzdaki safsızlıklar sayılabilir. Polarografik yöntemlerde doğruluk ve duyarlık, faradayik olmayan artık akımın büyüklüğüne bağlıdır ve doğru bir sonuç elde etmek için artık akımın etkisini giderme yoluna gidilir. Polarografide ph nın Etkisi: Bazı organik ve inorganik madde reaksiyonları aşağıdaki gibi ifade edilir: R, analitin yükseltgenmiş şekli ve RH n, indirgenmiş şeklini göstermektedir. Bu tip bileşiklerin yarı-dalga potansiyelleri denklemden de anlaşılacağı gibi önemli ölçüde ph ya bağlıdır. ph nın değişimi, reaksiyon sonucunda oluşan ürününün değişmesine bile sebep olabilir. Bu nedenle ortamda tampon çözeltiler kullanılmalıdır. Eğer tampon çözelti kullanılmazsa, elektrot yüzeyindeki çözeltinin

34 24 ph'sı büyük oranda değişebilmektedir. Bu değişimler, reaksiyonun indirgenme potansiyelini etkiler ve iyi bir görünümü olmayan yayvan eğrilerin elde edilmesine neden olur. Ayrıca, özellikle organik maddelerle yapılan polarografide tekrarlanabilir yarı-dalga potansiyelleri ve difüzyon akımları elde etmek için tampon çözelti kullanmak çok önemlidir. Bir Elektrot Sistemine Potansiyel Uygulandığında Oluşan Akımlar: 1-Kapasitif akım 2-Faradayik akım 1-Kapasitif akım (i c ): Bir elektrokimyasal analiz sırasında elektrodun bir elektrolit çözeltisine daldırılması ve negatif yükle yüklenmesiyle, çözeltideki pozitif yüklü iyonlar elektroda doğru çekilir. Bu sayede ara yüzeyde bir gerilim farkı oluşur. Ters işaretli yüklerin ara yüzeyin iki tarafında birikmesi ile bu bölgede bir elektriksel çift tabaka oluşur. Oluşan bu çift tabaka, bir kapasitör gibi davranır. Bu kapasitörü yüklemek için ortamda yükseltgenecek veya indirgenecek madde olmasa dahi bir akım oluşur. Oluşan bu akıma kapasitif akım denir. Kapasitif akım reaksiyona bağlı değildir, sadece sistemden kaynaklanır. Kapasitif akım ne kadar düşük olursa, o kadar doğru ölçüm yapılır. 2-Faradayik akım (i f ): Bir elektrokimyasal analiz sırasında elektrokimyasal hücreye dışarıdan bir gerilim uygulanır. Bu gerilim sonucu elektrotlardan herhangi birinde elektroaktif maddeye ait yükseltgenme indirgenme tepkimeleri oluşur. Bu tepkimeler sonucu oluşan ürün miktarı, kullanılan elektrik miktarıyla doğru orantılıdır. Q = I.t

35 25 Bir devreden t saniyede I amper akım geçirildiğinde kulon cinsinden harcanan elektrik miktarı Q dur. Analizi yapılacak tek bir türe ait maddenin tümünün elektrolizlenebilmesi için gereken elektrik miktarı; Q = n.f.c.v eşitliği ile bulunur. Bu eşitlikte: n: molekül ya da iyon başına tüketilen elektron sayısını F: faraday sabitini (96485 kulon / mol elektron) C: analitin konsantrasyonunu (M) V: hacmi (L) Q: harcanan elektrik miktarını (kulon) belirtir. Bu eşitliğe faraday yasası adı verilir. Analizi yapılacak maddenin kimyasal dönüşümü için harcanan ve yalnızca elektron alış verişine dayanan akıma faradayik akım denir. Kısacası faradayik akım reaksiyondan kaynaklanan yani analiz edilecek maddeden kaynaklanan akımdır. I = I f + I c olduğundan, i c azalırsa duyarlılık artar. Yani bir reaksiyonda meydana gelen akım, faradayik akım ve kapasitif akımın birleşmesiyle oluşmaktadır ve kapasitif akım yani reaksiyona dayalı olmayan akım ne kadar az olursa duyarlılık artar, daha iyi bir sonuç elde edilir. Genellikle 10-3 M ve üstünde; i c < i f dir ve çalışılabilir M da kısmen iyi sonuç alınır M ve altında; i c >> i f olduğu için çalışılamaz.

36 Voltametrik Akımlar: İncelenen bir elektroliz işleminde akım, analitin difüzyon tabakasının dış tarafından elektrot yüzeyine taşınma hızı ile kontrol edilir ve bu hız C A / X ile ifade edilir. Burada X, cm cinsinden elektrottan olan uzaklığı göstermektedir. Düzlemsel bir elektrot için akım I = n.f.d A. ( C A / X ) şeklindedir. Burada: I = t zamanındaki akımı, n= elektrokimyasal tepkimeye giren elektron sayısını, F =Faraday sabitini( kulon / mol elektron), A = elektrot yüzey alanını (cm 2 ) D A = analitin difüzyon katsayısını (cm 2 / sn), C A = analitin konsantrasyonunu (mol /L) göstermektedir. Oluşan difüzyon akımının zamana karşı fonksiyonu cottrell denklemini verir. i = nfacd 1 / 2 π t 1 / 2 1 / 2 Cottrell denklemi analiz esnasında gerçekleşen tepkimelerin difüzyon kontrollü olup olmadığı hakkında bilgi verir Elektrokimyasal Bir Olayda Faradayik İşlemler ve Nernst Eşitliği: Bir elektrokimyasal hücrede çözelti ve elektrot arasındaki yüzeyden akımın iletimi sırasında, elektrotlardan birinde yükseltgenme reaksiyonları olurken diğerinde indirgenme reaksiyonu meydana gelir.

37 27 O + ne - R Bu reaksiyonlarda O ve R, sırasıyla, redoks çiftinin, yükseltgenmiş (oksitlenmiş) ve indirgenmiş (redüklenmiş) şeklini ifade etmektedir. Termodinamik kurallarla kontrol edilen sistemlerde, elektrot potansiyeli, elektroaktif türün elektrot yüzeyindeki derişiminin [C o (0,t) ve C R (0,t)], Nernst denklemine göre saptanmasında kullanılabilir. E = E 0 + 2,3 RT nf log C C 0 R E 0 = Redoks tepkimesi için standart potansiyeli R = İdeal gaz sabitini (8,314 JK -1 mol -1 ) T = Sıcaklığı ( 0 K) n = Reaksiyonda transfer edilen elektron sayısını F = Faraday sabitini (96497 culon / mol elektron) C o ve C r = Tepkimedeki türlerin konsantrasyonunu (mol / L) ifade eder Uyarma Sinyallerine Göre Voltametrik Teknikler: Dönüşümlü Voltametri (CV) : Dönüşümlü voltametri (CV), sürekli değişen potansiyel değerlerine karşı belirli bir potansiyel aralığında ve karıştırılmayan ortamda mikroelektrodun akım cevabı olarak tanımlanabilir. Yani dönüşümlü voltametride gerilimin bir fonksiyonu olarak akım ölçülür. Dönüşümlü voltametride de doğru akımdaki gibi kapasitif akımın en düşük olduğu bölgede çalışılır. Duyarlılık 10-5 M ile sınırlıdır. Çalışılan potansiyel aralığı, yapılan deneyde kullanılan bir veya daha fazla analitin (analizlenecek maddenin) yükseltgenmesinin veya indirgenmesinin meydana

38 28 geldiği potansiyel aralığıdır. Bu potansiyel aralığına çevirici potansiyeller de denir. Şekil 10: Dönüşümlü voltametride kullanılan uyarılma sinyali Şekil 10 da gösterildiği gibi analitin yükseltgenmesi ve indirgenmesi voltamogramda gözlenebilmektedir. Önce potansiyel doğrusal olarak değiştirilir, daha sonra tarama yönü tersine çevrilir ve orjinal değerine geri döner (üçgen dalga şekilli potansiyel). Yani ilk olarak potansiyel bir maksimum değere kadar artar ve daha sonra başlangıç değerine yine doğrusal olarak geri döner. Başlangıç taramasının yönü kullanılan maddenin bileşimine bağlı olarak negatif ya da pozitif olabilir. Dönüşümlü voltamogramların şekli ve yapısında seçilen potansiyel aralığının yanı sıra seçilen tarama hızının, kaç defa tarama yapıldığının da etkisi vardır.

39 29 Şekil 11: a) Dönüşümlü voltametride elektroda uygulanan gerilimin zamana karşıgrafiği b) Dönüşümlü voltametride elde edilen akım-gerilim eğrisi. Kullanılan çözeltiye potansiyel uygulandığında, elektrot yüzeyi uygulanan potansiyele göre pozitif ya da negatif bir karakter gösterir ve çevresindeki çözeltiden elektron alır ya da çözeltiye elektron verir bu da ölçülebilir bir akım oluşmasına neden olur. Çalışma ortamında karıştırma yapılmadığı için elektron transferi elektrot yüzeyi ve çevresinde olur, bu nedenle elektrot çevresindeki madde miktarı zamanla azalır. Sonuç olarak oluşan akım başlangıçta bir pik yapar ve elektrot çevresindeki madde azalmaya başladığında akım piki de azalmaya başlar ve en sonunda başlangıç noktasına geri döner. Bu piklere indirgenme ve yükseltgenme pikleri denir. Bir dönüşümlü voltamogramın en önemli parametreleri; anodik pik potansiyeli E pa, katodik pik potansiyeli E pc, anodik pik akımı İ pa ve katodik pik akımı İ pc dır. Tersinir bir reaksiyon için anodik ve katodik pik akımları mutlak değer olarak yaklaşık olarak eşittir. Pik potansiyelleri farkı 0,0592/n dir. n yarı reaksiyonda yer alan elektron sayısını ifade etmektedir. İ p = pik akımı

40 30 n = transfer edilen elektron sayısı A = elektrot yüzey alanı (cm 2 ) D = türlere ait difüzyon katsayısı (cm 2 / sn) C = türlerin çözelti içerisindeki konsatrasyonları (mm) V = tarama hızı (V / sn) dır. Bir dönüşümlü voltamogramdaki indirgenme ve yükseltgenme arasındaki pik gerilimleri farkı, E p ile ifade edilir. E p =(57/n).mV E p bu değere ne kadar yakın ise, dönüşümlü (reversible); ne kadar uzaksa dönüşümsüz (irreversible) olarak adlandırılır Şekil 12: Klasik dönüşümlü bir voltamogramın önemli parametreleri; anodik pik potansiyeli E pa, katodik pik potansiyeli E pc, anodik pik akımı İ pa ve katodik pik akımı İ pc dir.

41 31 Dönüşümlü voltametri çeşitli şartlar altında elektrokimyasal işlemler hakkında kantitatif bilgiler sağlayan, temel ve teşhise dayalı bir çalışma yöntemidir. Dönüşümlü voltametri miktar tayinine dayalı bir yöntem değildir yani rutin kantitatif analizlerde kullanılmamaktadır. Ancak organik ve metal organik sistemlerde yükseltgenme ve indirgenme işlemlerinin mekanizma ve hız çalışmaları için oldukça önemli bir yöntemdir. Analizlenecek maddenin hangi potansiyelde nasıl davrandığı hakkında bilgi verdiği için, o maddenin hangi potansiyelde optimum cevabı vereceğini gösterir. Bu gibi sebeplerden ötürü, dönüşümlü voltametri yöntemi elektrokimyasal olarak belirtilebilen bir sistemin araştırılması için seçilen ilk yöntemdir Diferansiyel Puls Voltametrisi: Çok duyarlı bir yöntem olan diferansiyel puls voltametrisinde uyarma sinyalleri, doğrusal bir tarama esnasında periyodik pulsların oluşturulmasıyla gerçekleştirilir. Tayin sınırı(yani gözlenebilme sınırı) M arasındadır. Bu sınırlar klasik polarografinin gözlenebilme sınırlarından kat daha düşüktür. Diferansiyel puls polarografisi yöntemi ile yarı dalga potansiyelleri 0,04 0,05 V kadar farklı olan maddeler için bile pik maksimumları elde edilebilmektedir. Fakat normal ve klasik puls polarografilerinde yarı dalga potansiyelleri farkı en az 0,2 V olmalıdır. Diferansiyel puls voltametrisinde, doğrusal bir tarama sırasında çalışma elektroduna periyodik darbeler (örneğin 10 mv luk veya 30 mv luk) uygulanır. Darbe (puls) uygulamadan önce ve sonra olmak üzere iki kez akım ölçülür. Puls başına elde edilen akımdaki fark, doğrusal olarak artan potansiyelin fonksiyonu

42 32 olarak kaydedilir. Elde edilen diferansiyel puls voltamogramı yüksekliği, analizi yapılan maddelerin derişimi ile orantılı akım piklerinden oluşmaktadır. Şekil 13: Diferansiyel puls polarografisi için uyarma sinyalleri: a)analog cihazlarda diferansiyel puls voltametrisi için kullanılan uyarma sinyali b) Dijital cihazlarda diferansiyel puls voltametrisi için kullanılan uyarma sinyali c) Diferansiyel puls voltametrisinde elde edilen bir voltamogram. Yukarıdaki 13-a ve 13-b şekillerinde de görüldüğü gibi iki tane akım ölçümü yapılmaktadır. İlki doğru akım pulsundan önce diğeri de doğru akım pulsundan

43 33 sonra yapılmaktadır. Puls başına akımdaki fark doğrusal olarak artan potansiyelin fonksiyonu olarak kaydedilmektedir. DPV nin yüksek duyarlılığa sahip bir teknik olmasının iki temel etmeni bulunmaktadır. Birinci etmen faradayik akımın yüksek olması, ikinci etmen ise faradayik olmayan yükleme akımının düşük değerde olmasıdır. Diferansiyel puls voltametrisi özellikle ağır metal iyonlarının eser derişimlerinin tayini olmak üzere birçok alanda kullanılmaktadır Kare Dalga Voltametrisi: Kare Dalga Voltametrisi, damlayan civa elektrodu ve kromotografik dedektörler kullanılarak yapılabilen, son derece hızlı ve duyarlı bir puls polarografi tekniğidir. Tayin sınırları 10-7 M ile 10-8 M arasındadır. Voltamogramın tamamı 10 ms den daha az bir sürede elde edilir. Ölçümün son derece hızlı yapılmasından dolayı; analizin kesinliğini artırmak birkaç voltametrik taramanın ortalamasının alınması ile sağlanabilir. Damlayan civa elektrodu ile yapılan taramada ölçüm; damla ömrünün son birkaç saniyesi içinde gerçekleşir. Yani ölçüm yükleme akımı hemen hemen sabitken yapılır. Elde edilen akımlar arasındaki fark ( i), birinci gerilimindeki akımdan, ikinci gerilimindeki akım değeri çıkarılarak bulunur. Tersinir bir indirgenme reaksiyonunda bir pulsun boyutu, ileri tarama sırasında oluşan ürünün geri tarama sırasında yükseltgenmesini sağlamaya yetecek kadar büyüktür. İleri puls bir katodik akımını (i 1 ), geri puls da bir anodik akımını (i 2 ) oluşturur. Genellikle voltamogramı elde etmek için elde edilen akımlar arası fark grafiğe geçirilir. Akımlar arası bu fark konsantrasyonla doğru orantılıdır.

44 34 Şekil 14: Bir kare-dalga voltametrisinde uyarma sinyalinin oluşumu (a) daki uyarma sinyali (b) deki puls taraması ile (c) deki kare-dalga uyarma sinyalini elde edecek şekilde toplanıyor.

45 35 2. BİYOSENSÖRLER Biyosensörler, biyolojik tepkimelerde hedef analitlerin analizi için kullanılan, biyokimyasal ve elektriksel olmak üzere biribiri içine geçmiş iki çeviriciden oluşan küçük algılayıcı cihazlardır. Aslında biyosensör sistemleri üç temel bileşenden oluşmaktadır. Bunlar; 1-selektif (seçici) tanıma mekanizmasına sahip biyomolekül (biyoajan), 2- biyomolekülün incelenen maddeyle etkileşmesi sonucu oluşan fizikokimyasal sinyalleri, elektronik sinyallere dönüştüren çevirici bölüm (elektrokimyasal çevirici) ve 3- elektronik kısımdır. Biyosensörlerdeki biyokimyasal kısım analizlenecek maddeyle etkileşerek onu seçici olarak tanır. Biyosensörlerdeki ikinci kısım olan elektrokimyasal çevirici; tanıma olayını okunabilir (ölçülebilir) bir sayısal değere çevirir. Yani elektrokimyasal kısım; biyoajan-analit etkileşmesi sonucu gerçekleşen fizikokimyasal sinyali elektrik sinyaline dönüştürerek, bu sinyalin daha sonraları güçlenerek okunabilir ve kaydedilebilir bir şekle girmesine öncülük eder (22, 92)..

46 36 Şekil 15: Biyosensörün yapısı 2.1. İdeal Bir Biyosensörde Olması Gereken Özellikler (41): a-seçicilik: Biyoaktif bileşenin seçici olması, girişim yapabilecek türleri içeren karmaşık içerikli ölçüm ortamlarında bile ön işlem yapmaksızın analiz yapılmasını sağlar. Eğer bir biyosensörde yeterli derecede seçicilik mevcut değilse, bunu giderecek ek işlemlerin yapılması gereklidir. Bu yüzden ideal bir biyosensörün sahip olması gereken en önemli özelliklerden biri seçici olmasıdır. b-kullanım ömrü: Biyosensörün kullanım ömrünü kısıtlayan en önemli faktör, biyolojik çeviricinin aktivitesindeki azalmadır. Biyoaktif bileşenin kararlı olması, çok sayıda analize imkan vereceğinden, biyosensörün ekonomik olmasına zemin hazırlar. Biyosensörün kullanım ömrü; biyosensörün kalibrasyon sıklığı, stabilite, tekrarlanabilirlik gibi diğer parametrelerden de etkilenmektedir. c-tekrarlanabilirlik: İdeal bir biyosensör için elektrodun aynı koşullar altında arka arkaya yapılan ölçümlerde birbirine çok yakın hatta hemen hemen aynı sonuçları vermesi istenir. Pratikte bu durumun pek mümkün olmadığı göz

47 37 önünde bulundurularak, yapılan çalışmalarda tekrarlanabilirlik parametresi mutlaka incelenmelidir. Tekrarlanabilirlik ne kadar iyi olursa, biyosensörün uygulamalarının o kadar iyi olduğu ifade edilebilir. d-kalibrasyon Gereksinmesi: İdeal bir biyosensörün hiç kalibrasyona gerek duymaması veya çok az kalibrasyona ihtiyaç duyması istenir. Ancak kalibrasyon gerekliliği pratikte, teorikte planlandığı gibi gerçekleştirilememiştir. Biyosensörler kullanım ömürleri boyunca sıklıkla kalibre edilmelidirler. e-yüksek Duyarlılık: Biyosensöre immobilize edilmiş biyolojik materyalin belirli maddelere karşı yüksek duyarlılık göstermesi, ideal biyosensörün taşıması gereken özelliklerdendir. f-yeterli Düzeyde Tayin Sınırı: Tasarlanan bir biyosensörün tayin sınırının belirli bir konsantrasyon değerinin altında olması gerekmektedir. Belirtilen bu sınır; elektrot yüzeyinin büyüklüğü, biyolojik materyalin tayin edilecek materyale afinitesi (ilgisi), immobilize edilen madde miktarı gibi faktörlerden etkilenir. g-stabilite: Elektrot stabilitesinin (kararlılığının) yüksek olması ideal bir biyosensörde mutlaka olması gereken bir özelliktir. Elektrodun stabilitesi, kullanılan biyolojik materyalin fiziksel dayanıklılığına bağlı olmakla beraber; ph, ısı, nem, ortam, oksijen konsantrasyonu gibi faktörlerden de etkilenmektedir. h-geniş Ölçüm Aralığı: Biyosensör uygulamalarında ölçüm aralığı olarak adlandırılan bölge biyosensörlerden alınan akım-konsatrasyon eğrilerinin lineer olduğu konsatrasyon aralığıdır ve bu aralığın geniş olması istenir. ı-hızlı Cevap Zamanı: Bir biyosensörün cevap zamanı elde edilen akımzaman eğrilerinden anlaşılabilir. Örneğin elde edilen eğride basamakların şekli yayvan ve genişse cevap zamanı uzun (yavaş), tersi söz konusu ise cevap zamanı kısa (hızlı) olarak değerlendirilir.

ELEKTROKİMYA Elektrokimya: Elektrokimyasal hücre

ELEKTROKİMYA Elektrokimya: Elektrokimyasal hücre ELEKTROKİMYA Elektrokimya: Maddenin elektrik enerjisiyle etkileşmesi ve sonucunda meydana gelen kimyasal dönüşümler ile fiziksel değişiklikleri ve kimyasal enerjinin elektrik enerjisine çevrilmesini inceleyen

Detaylı

İLAÇ-DNA ETKİLEŞİMİ VE DNA ANALİZLERİ İÇİN ELEKTROKİMYASAL SENSÖRLERİN GELİŞTİRİLMESİ. Danışman T.C. EGE ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ

İLAÇ-DNA ETKİLEŞİMİ VE DNA ANALİZLERİ İÇİN ELEKTROKİMYASAL SENSÖRLERİN GELİŞTİRİLMESİ. Danışman T.C. EGE ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ T.C. EGE ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ İLAÇ-DNA ETKİLEŞİMİ VE DNA ANALİZLERİ İÇİN ELEKTROKİMYASAL SENSÖRLERİN GELİŞTİRİLMESİ Analitik Kimya Programı Yüksek Lisans Tezi Eczacı Ayfer TURAN Danışman

Detaylı

BİYOMOLEKÜLER ALGILAMAYA YÖNELİK ELEKTROKİMYASAL SENSÖRLERİN TASARIMI VE UYGULAMALARI

BİYOMOLEKÜLER ALGILAMAYA YÖNELİK ELEKTROKİMYASAL SENSÖRLERİN TASARIMI VE UYGULAMALARI T.C. EGE ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ BİYOMOLEKÜLER ALGILAMAYA YÖNELİK ELEKTROKİMYASAL SENSÖRLERİN TASARIMI VE UYGULAMALARI Analitik Kimya Programı Doktora Tezi Uzman Eczacı Hakan KARADENİZ

Detaylı

DNA ANALİZLERİNE YÖNELİK ELEKTROKİMYASAL GENOSENSÖRÜN TASARIMI VE UYGULAMALARI

DNA ANALİZLERİNE YÖNELİK ELEKTROKİMYASAL GENOSENSÖRÜN TASARIMI VE UYGULAMALARI T.C. EGE ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ DNA ANALİZLERİNE YÖNELİK ELEKTROKİMYASAL GENOSENSÖRÜN TASARIMI VE UYGULAMALARI Analitik Kimya Programı Yüksek Lisans Tezi Eczacı Hakan KARADENİZ Danışman

Detaylı

a. Yükseltgenme potansiyeli büyük olanlar daha aktifdir.

a. Yükseltgenme potansiyeli büyük olanlar daha aktifdir. ELEKTROKİMYA A. AKTİFLİK B. PİLLER C. ELEKTROLİZ A. AKTİFLİK Metallerin elektron verme, ametallerin elektron alma yatkınlıklarına aktiflik denir. Yani bir metal ne kadar kolay elektron veriyorsa bir ametal

Detaylı

ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ

ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ AY EKİM 06-07 EĞİTİM - ÖĞRETİM YILI. SINIF VE MEZUN GRUP KİMYA HAFTA DERS SAATİ. Kimya nedir?. Kimya ne işe yarar?. Kimyanın sembolik dili Element-sembol Bileşik-formül. Güvenliğimiz ve Kimya KONU ADI

Detaylı

3) Oksijenin pek çok bileşiğindeki yükseltgenme sayısı -2 dir. Ancak, H 2. gibi peroksit bileşiklerinde oksijenin yükseltgenme sayısı -1 dir.

3) Oksijenin pek çok bileşiğindeki yükseltgenme sayısı -2 dir. Ancak, H 2. gibi peroksit bileşiklerinde oksijenin yükseltgenme sayısı -1 dir. 5.111 Ders Özeti #25 Yükseltgenme/İndirgenme Ders 2 Konular: Elektrokimyasal Piller, Faraday Yasaları, Gibbs Serbest Enerjisi ile Pil-Potansiyelleri Arasındaki İlişkiler Bölüm 12 YÜKSELTGENME/İNDİRGENME

Detaylı

Elektrot Potansiyeli. (k) (k) (k) Tepkime vermez

Elektrot Potansiyeli. (k) (k) (k) Tepkime vermez Elektrot Potansiyeli Uzun metal parçası, M, elektrokimyasal çalışmalarda kullanıldığında elektrot adını alır. M n+ metal iyonları içeren bir çözeltiye daldırılan bir elektrot bir yarı-hücre oluşturur.

Detaylı

HAZIRLAYAN Mutlu ŞAHİN. Hacettepe Fen Bilgisi Öğretmenliği. DENEY NO: 6 DENEYİN ADI: DOYMUŞ NaCl ÇÖZELTİSİNİN ELEKTROLİZİ

HAZIRLAYAN Mutlu ŞAHİN. Hacettepe Fen Bilgisi Öğretmenliği. DENEY NO: 6 DENEYİN ADI: DOYMUŞ NaCl ÇÖZELTİSİNİN ELEKTROLİZİ HAZIRLAYAN Mutlu ŞAHİN Hacettepe Fen Bilgisi Öğretmenliği DENEY NO: 6 DENEYİN ADI: DOYMUŞ NaCl ÇÖZELTİSİNİN ELEKTROLİZİ DENEYİN AMACI: Doymuş NaCl çözeltisinin elektroliz sonucu elementlerine ayrışmasının

Detaylı

ELEKTROKİMYASAL HİBRİDİZASYON İNDİKATÖRLERİ VE DNA BİYOSENSÖRLERİNDE KULLANILMASININ İNCELENMESİ

ELEKTROKİMYASAL HİBRİDİZASYON İNDİKATÖRLERİ VE DNA BİYOSENSÖRLERİNDE KULLANILMASININ İNCELENMESİ T.C. EGE ÜNİVERSİTESİ SAĞLIK BiLiMLERi ENSTİTÜSÜ ELEKTROKİMYASAL HİBRİDİZASYON İNDİKATÖRLERİ VE DNA BİYOSENSÖRLERİNDE KULLANILMASININ İNCELENMESİ Analitik Kimya Programı Yüksek Lisans Tezi Eczacı Dilşat

Detaylı

ve denge sabitleri gibi bilgilere ulaşı şılabilir.

ve denge sabitleri gibi bilgilere ulaşı şılabilir. ELEKTROANALİTİK K KİMYAK Elektrokimya: Maddenin elektrik enerjisi ile etkileşmesi sonucu ortaya çıkan fiziksel ve kimyasal enerjinin elektrik enerjisine çevrilmesini inceleyen bilim dalı. Elektroanalitik

Detaylı

Şekilde görüldüğü gibi Gerilim/akım yoğunluğu karakteristik eğrisi dört nedenden dolayi meydana gelir.

Şekilde görüldüğü gibi Gerilim/akım yoğunluğu karakteristik eğrisi dört nedenden dolayi meydana gelir. Bir fuel cell in teorik açık devre gerilimi: Formülüne göre 100 oc altinda yaklaşık 1.2 V dur. Fakat gerçekte bu değere hiçbir zaman ulaşılamaz. Şekil 3.1 de normal hava basıncında ve yaklaşık 70 oc da

Detaylı

İNFLUENZA A VİRÜSÜNÜN TANISINA YÖNELİK ELEKTROKİMYASAL DNA BİYOSENSÖR TASARIMI

İNFLUENZA A VİRÜSÜNÜN TANISINA YÖNELİK ELEKTROKİMYASAL DNA BİYOSENSÖR TASARIMI T. C. EGE ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ İNFLUENZA A VİRÜSÜNÜN TANISINA YÖNELİK ELEKTROKİMYASAL DNA BİYOSENSÖR TASARIMI Analitik Kimya (Eczacılık) Programı Yüksek Lisans Tezi Biyolog Buket MERİÇ

Detaylı

BÖLÜM. Elektrotlar ve Elektrokimyasal Hücreler 1. ÜNİTE İÇERİK Elektrot ve Elektrolit Yarı Hücre ve Hücre

BÖLÜM. Elektrotlar ve Elektrokimyasal Hücreler 1. ÜNİTE İÇERİK Elektrot ve Elektrolit Yarı Hücre ve Hücre 1. 2 1. İÇERİK 1.2.1 Elektrot ve Elektrolit 1.2.2 Yarı Hücre ve Hücre Elektrotlar ve Elektrokimyasal Hücreler Bitkilerin fotosentez yapması, metallerin arıtılması, yakıt hücrelerinin görev yapması gibi

Detaylı

Paylaşılan elektron ya da elektronlar, her iki çekirdek etrafında dolanacaklar, iki çekirdek arasındaki bölgede daha uzun süre bulundukları için bu

Paylaşılan elektron ya da elektronlar, her iki çekirdek etrafında dolanacaklar, iki çekirdek arasındaki bölgede daha uzun süre bulundukları için bu 4.Kimyasal Bağlar Kimyasal Bağlar Aynı ya da farklı cins atomları bir arada tutan kuvvetlere kimyasal bağlar denir. Pek çok madde farklı element atomlarının birleşmesiyle meydana gelmiştir. İyonik bağ

Detaylı

MEMM4043 metallerin yeniden kazanımı

MEMM4043 metallerin yeniden kazanımı metallerin yeniden kazanımı 2016-2017 güz yy. Prof. Dr. Gökhan Orhan MF212 katot - + Cu + H 2+ SO 2-4 OH- Anot Reaksiyonu Cu - 2e - Cu 2+ E 0 = + 0,334 Anot Reaksiyonu 2H 2 O O 2 + 4H + + 4e - E 0 = 1,229-0,0591pH

Detaylı

Elektrokimya. KIM254 Analitik Kimya 2 - Dr.Erol ŞENER

Elektrokimya. KIM254 Analitik Kimya 2 - Dr.Erol ŞENER Elektrokimya Maddenin elektrik enerjisi ile etkileşimi sonucu ortaya çıkan kimyasal dönüşümler ile fiziksel değişiklikleri ve kimyasal enerjinin elektrik enerjisine çevrilmesini inceleyen bilimdalı elektrokimyadır.

Detaylı

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ MALZEME LABORATUARI II DERSİ AKIMLI VE AKIMSIZ KAPLAMALAR DENEY FÖYÜ

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ MALZEME LABORATUARI II DERSİ AKIMLI VE AKIMSIZ KAPLAMALAR DENEY FÖYÜ BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ MALZEME LABORATUARI II DERSİ AKIMLI VE AKIMSIZ KAPLAMALAR DENEY FÖYÜ Gelişen teknoloji ile beraber birçok endüstri alanında kullanılabilecek

Detaylı

KUARTZ KRİSTAL MİKROBALANS İLE DNA HİBRİDİZASYON TAYİNİ VE BAZI MADDELERİN DNA İLE ETKİLEŞİMİNİN BİYOSENSÖRLERLE ALGILANMASI

KUARTZ KRİSTAL MİKROBALANS İLE DNA HİBRİDİZASYON TAYİNİ VE BAZI MADDELERİN DNA İLE ETKİLEŞİMİNİN BİYOSENSÖRLERLE ALGILANMASI T. C. EGE ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ KUARTZ KRİSTAL MİKROBALANS İLE DNA HİBRİDİZASYON TAYİNİ VE BAZI MADDELERİN DNA İLE ETKİLEŞİMİNİN BİYOSENSÖRLERLE ALGILANMASI Analitik Kimya (Eczacılık)

Detaylı

Korozyon Hızı Ölçüm Metotları. Abdurrahman Asan

Korozyon Hızı Ölçüm Metotları. Abdurrahman Asan Korozyon Hızı Ölçüm Metotları Abdurrahman Asan 1 Giriş Son zamanlara değin, korozyon hızının ölçülmesi, başlıca ağırlık azalması yöntemine dayanıyordu. Bu yöntemle, korozyon hızının duyarlı olarak belirlenmesi

Detaylı

Günümüzde bilinen 117 element olmasına rağmen (92 tanesi doğada bulunur) bu elementler farklı sayıda ve şekilde birleşerek ve etkileşerek farklı

Günümüzde bilinen 117 element olmasına rağmen (92 tanesi doğada bulunur) bu elementler farklı sayıda ve şekilde birleşerek ve etkileşerek farklı Günümüzde bilinen 117 element olmasına rağmen (92 tanesi doğada bulunur) bu elementler farklı sayıda ve şekilde birleşerek ve etkileşerek farklı kimyasal özelliklere sahip milyonlarca yani madde yani bileşik

Detaylı

ELEKTROKĠMYASAL DNA SENSÖRÜ ĠÇĠN NANOMALZEMELERE DAYALI ELEKTROT MATERYALLERĠNĠN GELĠġTĠRĠLMESĠ VE UYGULAMALARI

ELEKTROKĠMYASAL DNA SENSÖRÜ ĠÇĠN NANOMALZEMELERE DAYALI ELEKTROT MATERYALLERĠNĠN GELĠġTĠRĠLMESĠ VE UYGULAMALARI T.C. ADNAN MENDERES ÜNĠVERSĠTESĠ FEN BĠLĠMLER ENSTĠTÜSÜ KĠMYA ANABĠLĠM DALI KĠM DR 2010 0001 ELEKTROKĠMYASAL DNA SENSÖRÜ ĠÇĠN NANOMALZEMELERE DAYALI ELEKTROT MATERYALLERĠNĠN GELĠġTĠRĠLMESĠ VE UYGULAMALARI

Detaylı

İletkenlik, maddenin elektrik akımını iletebilmesinin ölçüsüdür.

İletkenlik, maddenin elektrik akımını iletebilmesinin ölçüsüdür. İletkenlik, maddenin elektrik akımını iletebilmesinin ölçüsüdür. C= 1/R dir. Yani direncin tersidir. Birimi S.m -1 dir. (Siemens birimi Alman bilim insanı ve mucit Werner von Siemens e ithafen verilmiştir)

Detaylı

BİLEŞİKLER VE FORMÜLLERİ

BİLEŞİKLER VE FORMÜLLERİ BİLEŞİKLER VE FORMÜLLERİ Bileşikler : Günümüzde bilinen 117 element olmasına rağmen (92 tanesi doğada bulunur). Bu elementler farklı sayıda ve şekilde birleşerek ve etkileşerek farklı kimyasal özelliklere

Detaylı

KİMYA II DERS NOTLARI

KİMYA II DERS NOTLARI KİMYA II DERS NOTLARI Yrd. Doç. Dr. Atilla EVCİN Genel anlamda elektrokimya elektrik enerjisi üreten veya harcayan redoks reaksiyonlarını inceler. Elektrokimya pratikte büyük öneme sahip bir konudur. Piller,

Detaylı

Adsorpsiyon. Kimyasal Temel İşlemler

Adsorpsiyon. Kimyasal Temel İşlemler Adsorpsiyon Kimyasal Temel İşlemler Adsorpsiyon Adsorbsiyon, malzeme(lerin) derişiminin ara yüzeyde (katı yüzeyinde) yığın derişimine göre artışı şeklinde tanımlanabilir. Adsorpsiyon yüzeyde tutunma olarak

Detaylı

Korozyon tanımını hatırlayalım

Korozyon tanımını hatırlayalım 8..20 Korozyonun kimyasal ve elektrokimyasal oluşum mekanizması Korozyon tanımını hatırlayalım Korozyon tepkimeleri, çoğu metallerin termodinamik kararsızlığı sonucu (Au, Pt, Ir ve Pd gibi soy metaller

Detaylı

Soygazların bileşik oluşturamamasının sebebi bütün orbitallerinin dolu olmasındandır.

Soygazların bileşik oluşturamamasının sebebi bütün orbitallerinin dolu olmasındandır. KİMYASAL BAĞLAR Kimyasal bağ, moleküllerde atomları birarada tutan kuvvettir. Bir bağın oluşabilmesi için atomlar tek başına bulundukları zamankinden daha kararlı (az enerjiye sahip) olmalıdırlar. Genelleme

Detaylı

HAZIRLAYAN Mutlu ŞAHİN. Hacettepe Fen Bilgisi Öğretmenliği DENEY NO: 5 DENEYİN ADI: SUYUN ELEKTRİK ENERJİSİ İLE AYRIŞMASI

HAZIRLAYAN Mutlu ŞAHİN. Hacettepe Fen Bilgisi Öğretmenliği DENEY NO: 5 DENEYİN ADI: SUYUN ELEKTRİK ENERJİSİ İLE AYRIŞMASI HAZIRLAYAN Mutlu ŞAHİN Hacettepe Fen Bilgisi Öğretmenliği DENEY NO: 5 DENEYİN ADI: SUYUN ELEKTRİK ENERJİSİ İLE AYRIŞMASI DENEYİN AMACI: ELEKTRİK ENERJİSİNİ KULLANARAK SUYU KENDİSİNİ OLUŞTURAN SAF MADDELERİNE

Detaylı

Elektrot potansiyelleri mutlak olarak ölçülemez ancak referans elektrodun potansiyeli ile karşılaştırılarak bulunabilir. Potansiyometrik ölçümlerde

Elektrot potansiyelleri mutlak olarak ölçülemez ancak referans elektrodun potansiyeli ile karşılaştırılarak bulunabilir. Potansiyometrik ölçümlerde POTANSİYOMETRİ Elektrokimyasal hücreler; redoks reaksiyonlarının oluştuğu hücrelerdir. Bu hücrelerde potansiyel oluşması için redoks reaksiyonlarına yani elektron aktarımına gereksinim vardır. Potansiyel

Detaylı

Şekil 1. 1. Elektroanalitik tekniklerin sınıflandırılması

Şekil 1. 1. Elektroanalitik tekniklerin sınıflandırılması 1 1. GİRİŞ Analitik Kimya; fen ve tıbbın bütün alanlarında yararlı olan birçok güçlü fikir ve yöntemlerden oluşan bir ölçme bilimidir. Teknolojideki gelişmeler analitik tayin ve kontrol yöntemlerinin gelişimine

Detaylı

MAKRO-MEZO-MİKRO. Deney Yöntemleri. MİKRO Deneyler Zeta Potansiyel Partikül Boyutu. MEZO Deneyler Reolojik Ölçümler Reometre (dinamik) Roww Hücresi

MAKRO-MEZO-MİKRO. Deney Yöntemleri. MİKRO Deneyler Zeta Potansiyel Partikül Boyutu. MEZO Deneyler Reolojik Ölçümler Reometre (dinamik) Roww Hücresi Kolloidler Bir maddenin kendisi için çözücü olmayan bir ortamda 10-5 -10-7 cm boyutlarında dağılmasıyla oluşan çözeltiye kolloidal çözelti denir. Çimento, su, agrega ve bu sistemin dispersiyonuna etki

Detaylı

2008 2009 Ö RET M YILI FEN BÖLÜMÜ YARI MA PROJES

2008 2009 Ö RET M YILI FEN BÖLÜMÜ YARI MA PROJES 2008 2009 Ö RET M YILI FEN BÖLÜMÜ YARI MA PROJES LAÇ TA IMA S STEMLER N N GEL T R LMES NE YÖNEL K ELEKTROK MYASAL UYGULAMALAR Proje Dalı: Kimya Proje Danı manı: Binnur ORAL (AKINER ) Proje Ö rencileri:

Detaylı

Sıcaklık (Temperature):

Sıcaklık (Temperature): Sıcaklık (Temperature): Sıcaklık tanım olarak bir maddenin yapısındaki molekül veya atomların ortalama kinetik enerjilerinin ölçüm değeridir. Sıcaklık t veya T ile gösterilir. Termometre kullanılarak ölçülür.

Detaylı

Örnek : 3- Bileşiklerin Özellikleri :

Örnek : 3- Bileşiklerin Özellikleri : Bileşikler : Günümüzde bilinen 117 element olmasına rağmen (92 tanesi doğada bulunur) bu elementler farklı sayıda ve şekilde birleşerek ve etkileşerek farklı kimyasal özelliklere sahip milyonlarca yani

Detaylı

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları 1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları Sol üstte yüzey seftleştirme işlemi uygulanmış bir çelik

Detaylı

Enerji iş yapabilme kapasitesidir. Kimyacı işi bir süreçten kaynaklanan enerji deyişimi olarak tanımlar.

Enerji iş yapabilme kapasitesidir. Kimyacı işi bir süreçten kaynaklanan enerji deyişimi olarak tanımlar. Kinetik ve Potansiyel Enerji Enerji iş yapabilme kapasitesidir. Kimyacı işi bir süreçten kaynaklanan enerji deyişimi olarak tanımlar. Işıma veya Güneş Enerjisi Isı Enerjisi Kimyasal Enerji Nükleer Enerji

Detaylı

KOROZYONUN ELEKTROKİMYASAL PRENSİPLERİ

KOROZYONUN ELEKTROKİMYASAL PRENSİPLERİ KOROZYONUN ELEKTROKİMYASAL PRENSİPLERİ Bir malzemenin kimyasal bileşimi ve fiziksel bütünlüğü korozif bir ortam içerisinde değişir. Malzemeler; Korozif bir sıvı ile çözünebilir, Yüksek sıcaklıklarda bozunabilir,

Detaylı

ELEKTROKİMYA II. www.kimyahocam.com

ELEKTROKİMYA II. www.kimyahocam.com ELEKTROKİMYA II ELEKTROKİMYASAL PİLLER Kendiliğinden gerçekleşen redoks tepkimelerinde elektron alışverişinden yararlanılarak, kimyasal bağ enerjisi elektrik enerjisine dönüştürülebilir. Kimyasal enerjiyi,

Detaylı

KOROZYON. Teorik Bilgi

KOROZYON. Teorik Bilgi KOROZYON Korozyon, metalik malzemelerin içinde bulundukları ortamla reaksiyona girmeleri sonucu, dışardan enerji vermeye gerek olmadan, doğal olarak meydan gelen olaydır. Metallerin büyük bir kısmı su

Detaylı

YENİ BİR İLETKEN POLİMER: POLİ(3,8 DİAMİNOBENZO[c]SİNNOLİN) ELEKTROKİMYASAL ÜRETİMİ VE ELEKTROKROMİK ÖZELLİKLERİNİN İNCELENMESİ

YENİ BİR İLETKEN POLİMER: POLİ(3,8 DİAMİNOBENZO[c]SİNNOLİN) ELEKTROKİMYASAL ÜRETİMİ VE ELEKTROKROMİK ÖZELLİKLERİNİN İNCELENMESİ YENİ BİR İLETKEN POLİMER: POLİ(3,8 DİAMİNOBENZO[c]SİNNOLİN) ELEKTROKİMYASAL ÜRETİMİ VE ELEKTROKROMİK ÖZELLİKLERİNİN İNCELENMESİ Eda AKGÜL a *, Ahmet Ferat ÜZDÜRMEZ b, Handan GÜLCE a, Ahmet GÜLCE a, Emine

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ LABORATUVARI -II DENEY FÖYÜ DENEY ADI KÜTLE TRANSFERİ DERSİN ÖĞRETİM ÜYESİ DENEYİ YAPTIRAN ÖĞRETİM ELEMANI

Detaylı

ATOM HAREKETLERİ ve ATOMSAL YAYINIM

ATOM HAREKETLERİ ve ATOMSAL YAYINIM ATOM HAREKETLERİ ve ATOMSAL YAYINIM 1. Giriş Malzemelerde üretim ve uygulama sırasında görülen katılaşma, çökelme, yeniden kristalleşme, tane büyümesi gibi olaylar ile kaynak, lehim, sementasyon gibi işlemler

Detaylı

T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BAZI SEFALOSPORİN GRUBU ANTİBİYOTİKLERİN ELEKTROKİMYASAL KARAKTERİZASYONU VE VOLTAMETRİK TAYİNLERİ Seher İPEKÇİ Danışman Doç. Dr. Sabriye PERÇİN

Detaylı

Fiziksel özellikleri her yerde aynı olan (homojen) karışımlara çözelti denir. Bir çözeltiyi oluşturan her bir maddeye çözeltinin bileşenleri denir.

Fiziksel özellikleri her yerde aynı olan (homojen) karışımlara çözelti denir. Bir çözeltiyi oluşturan her bir maddeye çözeltinin bileşenleri denir. GENEL KİMYA 1 LABORATUARI ÇALIŞMA NOTLARI DENEY: 8 ÇÖZELTİLER Dr. Bahadır KESKİN, 2011 @ YTÜ Fiziksel özellikleri her yerde aynı olan (homojen) karışımlara çözelti denir. Bir çözeltiyi oluşturan her bir

Detaylı

BMM307-H02. Yrd.Doç.Dr. Ziynet PAMUK

BMM307-H02. Yrd.Doç.Dr. Ziynet PAMUK BMM307-H02 Yrd.Doç.Dr. Ziynet PAMUK ziynetpamuk@gmail.com 1 BİYOELEKTRİK NEDİR? Biyoelektrik, canlıların üretmiş olduğu elektriktir. Ancak bu derste anlatılacak olan insan vücudundan elektrotlar vasıtasıyla

Detaylı

4. ELEKTROLİZ. Elektroliz kabı (beher), bakır elektrotlar, bakır sülfat çözeltisi, ampermetre, akım kaynağı, terazi (miligram duyarlıklı), kronometre.

4. ELEKTROLİZ. Elektroliz kabı (beher), bakır elektrotlar, bakır sülfat çözeltisi, ampermetre, akım kaynağı, terazi (miligram duyarlıklı), kronometre. 4. ELEKTROLİZ AMAÇLAR 1. Sıvı içinde elektrik akımının iletilmesini öğrenmek. 2. Bir elektroliz hücresi kullanarak bakırın elektro kimyasal eşdeğerinin bulunmasını öğrenmek. 3. Faraday kanunlarını öğrenerek

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ ECZACILIK FAKÜLTESİ. Hazırlayan Fikret KARABUDAK. Danışman Yrd. Doç. Dr. Vedat YILMAZ

T.C. ERCİYES ÜNİVERSİTESİ ECZACILIK FAKÜLTESİ. Hazırlayan Fikret KARABUDAK. Danışman Yrd. Doç. Dr. Vedat YILMAZ 3 T.C. ERCİYES ÜNİVERSİTESİ ECZACILIK FAKÜLTESİ VOLTAMETRİK YÖNTEMLER VE UYGULAMALARI Hazırlayan Fikret KARABUDAK Danışman Yrd. Doç. Dr. Vedat YILMAZ Analitik Kimya Anabilim Dalı Bitirme Tezi Mayıs 2013

Detaylı

GENEL KİMYA. 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar

GENEL KİMYA. 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar GENEL KİMYA 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar Kimyasal Türler Doğada bulunan bütün maddeler tanecikli yapıdadır. Maddenin özelliğini gösteren küçük yapı

Detaylı

Yrd. Doç. Dr. H. Hasan YOLCU. hasanyolcu.wordpress.com

Yrd. Doç. Dr. H. Hasan YOLCU. hasanyolcu.wordpress.com Yrd. Doç. Dr. H. Hasan YOLCU hasanyolcu.wordpress.com En az iki atomun belli bir düzenlemeyle kimyasal bağ oluşturmak suretiyle bir araya gelmesidir. Aynı atomda olabilir farklı atomlarda olabilir. H 2,

Detaylı

Nitrik Oksit Sentaz ve Nitrik Oksit Ölçüm Yöntemleri

Nitrik Oksit Sentaz ve Nitrik Oksit Ölçüm Yöntemleri Nitrik Oksit Sentaz ve Nitrik Oksit Ölçüm Yöntemleri Nitrik Oksit Sentaz ve Nitrik Oksit Ölçüm Yöntemlerine Giriş Doç. Dr. Bahar Tunçtan ME.Ü. Eczacılık Fakültesi Farmakoloji Ab.D. ME.Ü. Tıp Fakültesi

Detaylı

Nötr (yüksüz) bir için, çekirdekte kaç proton varsa çekirdeğin etrafındaki yörüngelerde de o kadar elektron dolaşır.

Nötr (yüksüz) bir için, çekirdekte kaç proton varsa çekirdeğin etrafındaki yörüngelerde de o kadar elektron dolaşır. ATOM ve YAPISI Elementin özelliğini taşıyan en küçük parçasına denir. Atom Numarası Bir elementin unda bulunan proton sayısıdır. Protonlar (+) yüklü olduklarından pozitif yük sayısı ya da çekirdek yükü

Detaylı

HAZIRLAYAN Mutlu ġahġn. Hacettepe Fen Bilgisi Öğretmenliği DENEYĠN AMACI: ELEKTROLĠZ OLAYININ ÖĞRENĠLMESĠ VE BĠR METAL PARÇASININ BAKIR ĠLE KAPLANMASI

HAZIRLAYAN Mutlu ġahġn. Hacettepe Fen Bilgisi Öğretmenliği DENEYĠN AMACI: ELEKTROLĠZ OLAYININ ÖĞRENĠLMESĠ VE BĠR METAL PARÇASININ BAKIR ĠLE KAPLANMASI HAZIRLAYAN Mutlu ġahġn Hacettepe Fen Bilgisi Öğretmenliği DENEY NO: 7 DENEYĠN ADI: ELEKTROLĠZ ĠLE BAKIR KAPLAMA DENEYĠN AMACI: ELEKTROLĠZ OLAYININ ÖĞRENĠLMESĠ VE BĠR METAL PARÇASININ BAKIR ĠLE KAPLANMASI

Detaylı

Her madde atomlardan oluşur

Her madde atomlardan oluşur 2 Yaşamın kimyası Figure 2.1 Helyum Atomu Çekirdek Her madde atomlardan oluşur 2.1 Atom yapısı - madde özelliği Elektron göz ardı edilebilir kütle; eksi yük Çekirdek: Protonlar kütlesi var; artı yük Nötronlar

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-2 KİMYA TESTİ 25 HAZİRAN 2016 CUMARTESİ Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

GENEL KİMYA. 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar

GENEL KİMYA. 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar GENEL KİMYA 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar Kimyasal Türler Doğada bulunan bütün maddeler tanecikli yapıdadır. Maddenin özelliğini gösteren küçük yapı

Detaylı

Üçüncü Tek Saatlik Sınav 5.111

Üçüncü Tek Saatlik Sınav 5.111 Sayfa 1 /10 Üçüncü Tek Saatlik Sınav 5.111 İsminizi aşağıya yazınız. Sınavda kitaplarınız kapalı olacaktır. 6 problemi de çözmelisiniz. Bir problemin bütün şıklarını baştan sona dikkatli bir şekilde okuyunuz.

Detaylı

Biochemistry Chapter 4: Biomolecules. Hikmet Geçkil, Professor Department of Molecular Biology and Genetics Inonu University

Biochemistry Chapter 4: Biomolecules. Hikmet Geçkil, Professor Department of Molecular Biology and Genetics Inonu University Biochemistry Chapter 4: Biomolecules, Professor Department of Molecular Biology and Genetics Inonu University Biochemistry/Hikmet Geckil Chapter 4: Biomolecules 2 BİYOMOLEKÜLLER Bilim adamları hücreyi

Detaylı

PH DEĞERİNİN TAYİNİ 1. GENEL BİLGİLER YTÜ ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ ÇEVRE KİMYASI I LABORATUVARI

PH DEĞERİNİN TAYİNİ 1. GENEL BİLGİLER YTÜ ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ ÇEVRE KİMYASI I LABORATUVARI 1. GENEL BİLGİLER PH DEĞERİNİN TAYİNİ ph bir çözeltinin asitlik özelliğinin göstergesi olup, hidrojen iyonunun aktivitesinin eksi logaritmasına ( log [H + ]) eşittir. Çevre Mühendisliği uygulamalarında

Detaylı

Genel Kimya Prensipleri ve Modern Uygulamaları Petrucci Harwood Herring 8. Baskı. Bölüm 4: Kimyasal Tepkimeler

Genel Kimya Prensipleri ve Modern Uygulamaları Petrucci Harwood Herring 8. Baskı. Bölüm 4: Kimyasal Tepkimeler Genel Kimya Prensipleri ve Modern Uygulamaları Petrucci Harwood Herring 8. Baskı Bölüm 4: Kimyasal Tepkimeler İçindekiler 4-1 Kimyasal Tepkimeler ve Kimyasal Eşitlikler 4-2 Kimyasal Eşitlik ve Stokiyometri

Detaylı

5) Çözünürlük(Xg/100gsu)

5) Çözünürlük(Xg/100gsu) 1) I. Havanın sıvılaştırılması II. abrika bacasından çıkan SO 3 gazının H 2 O ile birleşmesi III. Na metalinin suda çözünmesi Yukardaki olaylardan hangilerinde kimyasal değişme gerçekleşir? 4) Kütle 1

Detaylı

FZM 220. Malzeme Bilimine Giriş

FZM 220. Malzeme Bilimine Giriş FZM 220 Yapı Karakterizasyon Özellikler İşleme Performans Prof. Dr. İlker DİNÇER Fakültesi, Fizik Mühendisliği Bölümü 1 Atomsal Yapı ve Atomlararası Bağ1 Ders Hakkında FZM 220 Dersinin Amacı Bu dersin

Detaylı

PERİYODİK CETVEL-ÖSS DE ÇIKMIŞ SORULAR

PERİYODİK CETVEL-ÖSS DE ÇIKMIŞ SORULAR PERİODİK CETVEL-ÖSS DE ÇIKMIŞ SORULAR 1. Bir elementin periyodik cetveldeki yeri aşağıdakilerden hangisi ile belirlenir? A) Atom ağırlığı B) Değerliği C) Atom numarası D) Kimyasal özellikleri E) Fiziksel

Detaylı

KOROZYON DERS NOTU. Doç. Dr. A. Fatih YETİM 2015

KOROZYON DERS NOTU. Doç. Dr. A. Fatih YETİM 2015 KOROZYON DERS NOTU Doç. Dr. A. Fatih YETİM 2015 v Korozyon nedir? v Korozyon nasıl oluşur? v Korozyon çeşitleri nelerdir? v Korozyona sebep olan etkenler nelerdir? v Korozyon nasıl önlenebilir? Korozyon

Detaylı

Genel Kimya. Bölüm 7: ÇÖZELTİLER VE ÇÖZÜNÜRLÜK. Yrd. Doç. Dr. Mustafa SERTÇELİK Kafkas Üniversitesi Kimya Mühendisliği Bölümü

Genel Kimya. Bölüm 7: ÇÖZELTİLER VE ÇÖZÜNÜRLÜK. Yrd. Doç. Dr. Mustafa SERTÇELİK Kafkas Üniversitesi Kimya Mühendisliği Bölümü Genel Kimya Bölüm 7: ÇÖZELTİLER VE ÇÖZÜNÜRLÜK Yrd. Doç. Dr. Mustafa SERTÇELİK Kafkas Üniversitesi Kimya Mühendisliği Bölümü ÇÖZELTİ VE TÜRLERİ Eğer bir madde diğer bir madde içinde molekül, atom veya iyonları

Detaylı

KARE DALGA VOLTAMETRİSİ VE UYGULAMALARI

KARE DALGA VOLTAMETRİSİ VE UYGULAMALARI TÜRKİYE CUMHURİYETİ ANKARA ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ KARE DALGA VOLTAMETRİSİ VE UYGULAMALARI Emre AYAZLI ANALİTİK KİMYA ANABİLİM DALI TEZSİZ YÜKSEK LİSANS DÖNEM PROJESİ DANIŞMAN Doç. Dr.

Detaylı

Öğretim Üyeleri İçin Ön Söz Öğrenciler İçin Ön Söz Teşekkürler Yazar Hakkında Çevirenler Çeviri Editöründen

Öğretim Üyeleri İçin Ön Söz Öğrenciler İçin Ön Söz Teşekkürler Yazar Hakkında Çevirenler Çeviri Editöründen Öğretim Üyeleri İçin Ön Söz Öğrenciler İçin Ön Söz Teşekkürler Yazar Hakkında Çevirenler Çeviri Editöründen ix xiii xv xvii xix xxi 1. Çevre Kimyasına Giriş 3 1.1. Çevre Kimyasına Genel Bakış ve Önemi

Detaylı

ELEMENT VE BİLEŞİKLER

ELEMENT VE BİLEŞİKLER ELEMENT VE BİLEŞİKLER 1- Elementler ve Elementlerin Özellikleri: a) Elementler: Aynı cins atomlardan oluşan, fiziksel ya da kimyasal yollarla kendinden daha basit ve farklı maddelere ayrılamayan saf maddelere

Detaylı

Hücrelerde gerçekleşen yapım, yıkım ve dönüşüm olaylarının bütününe metabolizma denir.

Hücrelerde gerçekleşen yapım, yıkım ve dönüşüm olaylarının bütününe metabolizma denir. METABOLİZMA ve ENZİMLER METABOLİZMA Hücrelerde gerçekleşen yapım, yıkım ve dönüşüm olaylarının bütününe metabolizma denir. A. ÖZÜMLEME (ANABOLİZMA) Metabolizmanın yapım reaksiyonlarıdır. Bu tür olaylara

Detaylı

Akım ve Direnç. Bölüm 27. Elektrik Akımı Direnç ve Ohm Kanunu Direnç ve Sıcaklık Elektrik Enerjisi ve Güç

Akım ve Direnç. Bölüm 27. Elektrik Akımı Direnç ve Ohm Kanunu Direnç ve Sıcaklık Elektrik Enerjisi ve Güç Bölüm 27 Akım ve Direnç Elektrik Akımı Direnç ve Ohm Kanunu Direnç ve Sıcaklık Elektrik Enerjisi ve Güç Öğr. Gör. Dr. Mehmet Tarakçı http://kisi.deu.edu.tr/mehmet.tarakci/ Elektrik Akımı Elektrik yüklerinin

Detaylı

KOROZYONUN ÖNEMİ. Korozyon, özellikle metallerde büyük ekonomik kayıplara sebep olur.

KOROZYONUN ÖNEMİ. Korozyon, özellikle metallerde büyük ekonomik kayıplara sebep olur. KOROZYON KOROZYON VE KORUNMA KOROZYON NEDİR? Metallerin bulundukları ortam ile yaptıkları kimyasal veya elektrokimyasal reaksiyonları sonucu meydana gelen malzeme bozunumuna veya hasarına korozyon adı

Detaylı

PERİYODİK CETVEL

PERİYODİK CETVEL BÖLÜM4 W Periyodik cetvel, elementlerin atom numaraları esas alınarak düzenlenmiştir. Bu düzenlemede, kimyasal özellikleri benzer olan (değerlik elektron sayıları aynı) elementler aynı düşey sütunda yer

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 Elektron Kütlesi 9,11x10-31 kg Proton Kütlesi Nötron Kütlesi 1,67x10-27 kg Bir kimyasal elementin atom numarası (Z) çekirdeğindeki

Detaylı

Serüveni 3. ÜNİTE KİMYASAL TÜRLER ARASI ETKİLEŞİM GÜÇLÜ ETKİLEŞİM. o İYONİK BAĞ o KOVALENT BAĞ o METALİK BAĞ

Serüveni 3. ÜNİTE KİMYASAL TÜRLER ARASI ETKİLEŞİM GÜÇLÜ ETKİLEŞİM. o İYONİK BAĞ o KOVALENT BAĞ o METALİK BAĞ Serüveni 3. ÜNİTE KİMYASAL TÜRLER ARASI ETKİLEŞİM GÜÇLÜ ETKİLEŞİM o İYONİK BAĞ o KOVALENT BAĞ o METALİK BAĞ KİMYASAL TÜR 1. İYONİK BAĞ - - Ametal.- Kök Kök Kök (+) ve (-) yüklü iyonların çekim kuvvetidir..halde

Detaylı

Atomlar ve Moleküller

Atomlar ve Moleküller Atomlar ve Moleküller Madde, uzayda yer işgal eden ve kütlesi olan herşeydir. Element, kimyasal tepkimelerle başka bileşiklere parçalanamayan maddedir. -Doğada 92 tane element bulunmaktadır. Bileşik, belli

Detaylı

BİYOLOJİK MOLEKÜLLERDEKİ

BİYOLOJİK MOLEKÜLLERDEKİ BİYOLOJİK MOLEKÜLLERDEKİ KİMYASALBAĞLAR BAĞLAR KİMYASAL VE HÜCRESEL REAKSİYONLAR Yrd. Doç.Dr. Funda BULMUŞ Atomun Yapısı Maddenin en küçük yapı taşı olan atom elektron, proton ve nötrondan oluşmuştur.

Detaylı

Atomlar birleştiği zaman elektron dağılımındaki değişmelerin bir sonucu olarak kimyasal bağlar meydana gelir. Üç çeşit temel bağ vardır:

Atomlar birleştiği zaman elektron dağılımındaki değişmelerin bir sonucu olarak kimyasal bağlar meydana gelir. Üç çeşit temel bağ vardır: Atomlar birleştiği zaman elektron dağılımındaki değişmelerin bir sonucu olarak kimyasal bağlar meydana gelir. Üç çeşit temel bağ vardır: İyonik bağlar, elektronlar bir atomdan diğerine aktarıldığı zaman

Detaylı

KİMYASAL DENGE. AMAÇ Bu deneyin amacı öğrencilerin reaksiyon denge sabitini,k, deneysel olarak bulmalarıdır.

KİMYASAL DENGE. AMAÇ Bu deneyin amacı öğrencilerin reaksiyon denge sabitini,k, deneysel olarak bulmalarıdır. KİMYASAL DENGE AMAÇ Bu deneyin amacı öğrencilerin reaksiyon denge sabitini,k, deneysel olarak bulmalarıdır. TEORİ Bir kimyasal tepkimenin yönü bazı reaksiyonlar için tek bazıları için ise çift yönlüdür.

Detaylı

Burada a, b, c ve d katsayılar olup genelde birer tamsayıdır. Benzer şekilde 25 o C de hidrojen ve oksijen gazlarından suyun oluşumu; H 2 O (s)

Burada a, b, c ve d katsayılar olup genelde birer tamsayıdır. Benzer şekilde 25 o C de hidrojen ve oksijen gazlarından suyun oluşumu; H 2 O (s) 1 Kimyasal Tepkimeler Kimyasal olaylar elementlerin birbirleriyle etkileşip elektron alışverişi yapmaları sonucu oluşan olaylardır. Bu olaylar neticesinde bir bileşikteki atomların sayısı, dizilişi, bağ

Detaylı

FARMASÖTİK TEKNOLOJİ I «ÇÖZELTİLER»

FARMASÖTİK TEKNOLOJİ I «ÇÖZELTİLER» FARMASÖTİK TEKNOLOJİ I «ÇÖZELTİLER» Uygun bir çözücü içerisinde bir ya da birden fazla maddenin çözündüğü veya moleküler düzeyde disperse olduğu tektür (homojen: her tarafta aynı oranda çözünmüş veya dağılmış

Detaylı

10. Sınıf Kimya Konuları KİMYANIN TEMEL KANUNLARI VE TEPKİME TÜRLERİ Kimyanın Temel Kanunları Kütlenin korunumu, sabit oranlar ve katlı oranlar

10. Sınıf Kimya Konuları KİMYANIN TEMEL KANUNLARI VE TEPKİME TÜRLERİ Kimyanın Temel Kanunları Kütlenin korunumu, sabit oranlar ve katlı oranlar 10. Sınıf Kimya Konuları KİMYANIN TEMEL KANUNLARI VE TEPKİME TÜRLERİ Kimyanın Temel Kanunları Kütlenin korunumu, sabit oranlar ve katlı oranlar kanunları Demir (II) sülfür bileşiğinin elde edilmesi Kimyasal

Detaylı

Hidroklorik asit ve sodyum hidroksitin reaksiyonundan yemek tuzu ve su meydana gelir. Bu kimyasal olayın denklemi

Hidroklorik asit ve sodyum hidroksitin reaksiyonundan yemek tuzu ve su meydana gelir. Bu kimyasal olayın denklemi KİMYASAL DENKLEMLER İki ya da daha fazla maddenin birbirleri ile etkileşerek kendi özelliklerini kaybedip yeni özelliklerde bir takım ürünler meydana getirmesine kimyasal olay, bunların formüllerle gösterilmesine

Detaylı

3.1 ATOM KÜTLELERİ... 75 3.2 MOL VE MOLEKÜL KAVRAMLARI... 77 3.2.1 Mol Hesapları... 79 SORULAR 3... 84

3.1 ATOM KÜTLELERİ... 75 3.2 MOL VE MOLEKÜL KAVRAMLARI... 77 3.2.1 Mol Hesapları... 79 SORULAR 3... 84 v İçindekiler KİMYA VE MADDE... 1 1.1 KİMYA... 1 1.2 BİRİM SİSTEMİ... 2 1.2.1 SI Uluslararası Birim Sistemi... 2 1.2.2 SI Birimleri Dışında Kalan Birimlerin Kullanılması... 3 1.2.3 Doğal Birimler... 4

Detaylı

5.111 Ders Özeti #12. Konular: I. Oktet kuralından sapmalar

5.111 Ders Özeti #12. Konular: I. Oktet kuralından sapmalar 5.111 Ders Özeti #12 Bugün için okuma: Bölüm 2.9 (3. Baskıda 2.10), Bölüm 2.10 (3. Baskıda 2.11), Bölüm 2.11 (3. Baskıda 2.12), Bölüm 2.3 (3. Baskıda 2.1), Bölüm 2.12 (3. Baskıda 2.13). Ders #13 için okuma:

Detaylı

İYON TEPKİMELERİ. Prof. Dr. Mustafa DEMİR. (Kimyasal tepkimelerin eşitlenmesi) 03-İYON TEPKİMELERİ-KİMYASAL TEPKİMELERİN EŞİTLENMESİ 1 M.

İYON TEPKİMELERİ. Prof. Dr. Mustafa DEMİR. (Kimyasal tepkimelerin eşitlenmesi) 03-İYON TEPKİMELERİ-KİMYASAL TEPKİMELERİN EŞİTLENMESİ 1 M. İYN TEPKİMELERİ (Kimyasal tepkimelerin eşitlenmesi) Prof. Dr. Mustafa DEMİR 0İYN TEPKİMELERİKİMYASAL TEPKİMELERİN EŞİTLENMESİ 1 Bir kimyasal madde ısı, elektrik veya çözücü gibi çeşitli fiziksel veya kimyasal

Detaylı

KANTİTATİF YAPI-ETKİ İLİŞKİLERİ ANALİZİNDE KULLANILAN FİZİKOKİMYASAL PARAMETRELER (QSAR PARAMETRELERİ)

KANTİTATİF YAPI-ETKİ İLİŞKİLERİ ANALİZİNDE KULLANILAN FİZİKOKİMYASAL PARAMETRELER (QSAR PARAMETRELERİ) KANTİTATİF YAPI-ETKİ İLİŞKİLERİ ANALİZİNDE KULLANILAN FİZİKOKİMYASAL PARAMETRELER (QSAR PARAMETRELERİ) -YALÇIN Farmasötik Kimya Anabilim Dalı 2017 QSAR nedir, ne için ve nerede kullanılır? Kemometriklerin

Detaylı

K213 ANALİTİK KİMYA I

K213 ANALİTİK KİMYA I K213 ANALİTİK KİMYA I Prof. Dr. Mustafa DEMİR 2008-2009 Eğitim Öğretim yılı Yaz OKULU M.DEMİR(ADU-AYDIN) 01-TEMEL KAVRAMLAR 1 Ders Programı Perşembe : 08.15-12.00 Cuma : 08.15-12.00 M.DEMİR(ADU-AYDIN)

Detaylı

ELEKTROLİTİK TOZ ÜRETİM TEKNİKLERİ. Prof.Dr.Muzaffer ZEREN

ELEKTROLİTİK TOZ ÜRETİM TEKNİKLERİ. Prof.Dr.Muzaffer ZEREN Prof.Dr.Muzaffer ZEREN Bir çok metal (yaklaşık 60) elektroliz ile toz haline getirilebilir. Elektroliz kapalı devre çalışan ve çevre kirliliğine duyarlı bir yöntemdir. Kurulum maliyeti ve uygulama maliyeti

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Atom, birkaç türü birleştiğinde çeşitli molekülleri, bir tek türü ise bir kimyasal öğeyi oluşturan parçacıktır. Atom, elementlerin özelliklerini taşıyan en küçük yapı birimi olup çekirdekteki

Detaylı

ELEKTROKOAGÜLASYON İLE SULU ÇÖZELTİLERDEN BOYAR MADDELERİN GİDERİLMESİ

ELEKTROKOAGÜLASYON İLE SULU ÇÖZELTİLERDEN BOYAR MADDELERİN GİDERİLMESİ Güncelleme: Eylül 2016 ELEKTROKOAGÜLASYON İLE SULU ÇÖZELTİLERDEN BOYAR MADDELERİN GİDERİLMESİ DENEYİN AMACI: Sentetik olarak hazırlanmış bir boya çözeltisinden faydalanılarak elektrokoagülasyon işleminin

Detaylı

Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası

Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası Sıcaklık, bir gaz molekülünün kütle merkezi hareketinin ortalama kinetic enerjisinin bir ölçüsüdür. Sıcaklık,

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ 6-(FERROSENİL)HEGZANTİYOL ün ALTIN ELEKTROT YÜZEYİNDEKİ ELEKTROKİMYASAL ETKİSİNİN ve ÖZELLİKLERİNİN İNCELENMESİ Tuğçe GÖVER YÜKSEK LİSANS TEZİ Kimya Anabilim

Detaylı

Element ve Bileşikler

Element ve Bileşikler Element ve Bileşikler Aynı cins atomlardan oluşan, fiziksel ya da kimyasal yollarla kendinden daha basit ve farklı maddelere ayrılamayan saf maddelere element denir. Bir elementi oluşturan bütün atomların

Detaylı

STOKİYOMETRİ. Kimyasal Tepkimelerde Kütle İlişkisi

STOKİYOMETRİ. Kimyasal Tepkimelerde Kütle İlişkisi STOKİYOMETRİ Kimyasal Tepkimelerde Kütle İlişkisi Sülfür oksijen içerisinde yanarak kükürt dioksit oluşturur. Modeller elementel sülfürü (S8), oksijeni ve kükürt dioksit moleküllerini göstermektedir. Her

Detaylı

12-B. 31. I. 4p II. 5d III. 6s

12-B. 31. I. 4p II. 5d III. 6s -B.. 4p. 5d. 6s Baş kuantum sayısı n, açısal kuantum sayısı olmak üzere yukarıda verilen orbitallerin enerjilerinin karşılaştırılması hangisinde doğru verilmiştir? A) == B) >> C) >> D) >> E) >> ÖLÇME,

Detaylı

BİYOKİMYAYA GİRİŞ: ATOM, MOLEKÜL, ORGANİK BİLEŞİKLER

BİYOKİMYAYA GİRİŞ: ATOM, MOLEKÜL, ORGANİK BİLEŞİKLER BİYOKİMYAYA GİRİŞ: ATOM, MOLEKÜL, ORGANİK BİLEŞİKLER Biyokimyanın tanımı yaşamın temel kimyası ile ilgilenen bilim dalı (Bios, Yunancada yaşam demektir.) canlı sistemin yapısını ve fonksiyonlarını kimyasal

Detaylı

Yrd.Doç.Dr. Emre YALAMAÇ. Yrd.Doç.Dr. Emre YALAMAÇ İÇERİK

Yrd.Doç.Dr. Emre YALAMAÇ. Yrd.Doç.Dr. Emre YALAMAÇ İÇERİK İÇERİK Elementlere, Bileşiklere ve Karışımlara atomik boyutta bakış Dalton Atom Modeli Atom Fiziğinde Buluşlar - Elektronların Keşfi - Atom Çekirdeği Keşfi Günümüz Atom Modeli Kimyasal Elementler Periyodik

Detaylı

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu Akım ve Direnç Elektriksel olaylarla ilgili buraya kadar yaptığımız tartışmalar durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik yüklerinin hareket halinde olduğu durumları inceleyeceğiz.

Detaylı

DERSĐN SORUMLUSU : PROF.DR ĐNCĐ MORGĐL

DERSĐN SORUMLUSU : PROF.DR ĐNCĐ MORGĐL DERSĐN SORUMLUSU : PROF.DR ĐNCĐ MORGĐL HAZIRLAYAN : HALE ÜNAL KĐMYASAL REAKSĐYONLARA GĐRĐŞ -Değişmeler ve Tepkime Türleri- Yeryüzünde bulunan tüm maddeler değişim ve etkileşim içerisinde bulunur. Maddelerdeki

Detaylı

POTANSİYEL - ph diyagramları

POTANSİYEL - ph diyagramları POTANSİYEL - ph diyagramları Metallerin çoğu su ve hava gibi çevresel şartlar altında korozyon eğilimi gösterirler. Çevreleri ile beraber bu metaller enerji vererek, oksit veya hidroksitler şeklinde kimyasal

Detaylı