Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi
|
|
|
- Süleiman Dede
- 9 yıl önce
- İzleme sayısı:
Transkript
1 Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi 1
2 Ön İşleme-Radyometrik Düzeltme Atmosferik Düzeltme Atmosferik etkilerin giderilmesinde kullanılan radyometrik düzeltme üç farklı şekilde yapılmaktadır: 1. Uydu algılayıcısı, atmosfer ve hedef arasındaki ilişkiyi ve etkileşimleri modelleyen fiziksel metotlar kullanılır. Atmosferik düzeltmelerin fiziksel olarak modellendiği bu yaklaşım en sağlam ve tutarlı ancak en zor yaklaşımdır. En yaygın kullanılan modeller 5S, 6S, LOWTRAN, MODTRAN, FLAASH, ATCOR2 ve ATCOR3 modelleridir. Bu simülasyonlar meteorolojik, mevsimsel ve coğrafik değişkenleri girdi olarak alırlar. Pratikte bu değişkenler için yeterli zamansal ve mekânsal çözünürlükte değerler elde edilemez ve özellikle atmosferik aerosollerin dağılımının tahmini zordur. Bu yaklaşımlarda Güneş birim ışınırlığı, Güneş ile Dünya arasındaki uzaklığın değişimine bağlı olarak normalize edilir.
3 2. Atmosferik düzeltmeler, yansıtımı bilinen doğal veya yapay yeryüzü hedeflerine dayalı olarak yapılır. Yansıtım özellikleri çok iyi bilinen, yeterli çözünürlüğe sahip ve görüntü alanına iyi dağılmış hedef objeleri atmosferik koşulların konumdan konuma olan değişimlerinin belirlenmesinde etkin olarak kullanılabilir 3
4 Ön İşleme-Radyometrik Düzeltme Atmosferik Düzeltme 3. En kolay ve en yaygın kullanılan atmosferik düzeltme yöntemi koyu piksel çıkartımı yöntemidir. Bu yöntemde herhangi bir spektral bant için bir minimum parlaklık değeri (DN) belirlenir ve bu değere göre görüntü histogramı ötelenir. Yani belirlenen değer görüntüdeki bütün piksellerin yansıtım değerlerinden çıkartılır. Bu yöntemde ilgili spektral bant için bazı piksellerin sıfır yansıtım değerine sahip olması gerekliliği kabul edilir. Böylece bu pikseller için ölçülen ışınırlığın (Lp) atmosferik saçılma sonucu oluştuğu ve konumdan konuma değişmediği kabulü yapılır. Genellikle optik veriler için gölge alanlar ve kızıl ötesi bantlar için temiz derin su kütleleri hedef olarak seçilir. Ancak bu yöntem oldukça kaba bir yaklaşımdır ve daha çok pratik amaçlar için kolay ve uygulanabilir bir yöntemdir.
5 GÖRÜNTÜ KARAKTERİSTİKLERİ Histogram 3 bitlik 4 bantlı yapay bir dijital uydu görüntüsünde, Bant 1 in frekans dağılımı ve histogram grafiği
6 Sayısal Görüntü İstatistiksel Parametreleri Kovaryans, Korelasyon Katsayısı ij = ji ve ij = ji dolayısıyla bu matrisler simetriktir. Kovaryans matrisinde köşegen üzerindeki sayılar ilgili bantların varyans değerlerine karşılık gelmektedir. Korelasyon matrisinde de köşegen üzerindeki değerler bantların kendileriyle olan ilişkilerini gösterir. Korelasyon, birbirinden bağımsız iki değişken için sıfır ve birbiriyle aynı olan değişkenler için birdir. Negatif değerler ilişkinin ters yönlü olduğunu gösterir. Değişkenler arasındaki ilişki lineer değilse, korelasyon ayırt edici istatistiksel bir özellik olamaz.
7 Görüntü Zenginleştirme Görüntü zenginleştirmede amaç; Görsel analiz için görüntülerin algılanabilirliğini veya yorumlanabilirliğini arttırmak ve/veya diğer otomatik görüntü işleme tekniklerine daha iyi girdi görüntüsü sağlamaktır. Bu amaca yönelik olarak Spektral Mekânsal dönüşümler kullanılmaktadır.
8 Görüntü Zenginleştirme Spektral Dönüşümler Spektral dönüşümler, görüntünün spektral bilgi içeriğini değiştirirler. Ancak, Bu değişimde görüntüye yeni bir bilgi eklenmez sadece mevcut bilgi daha yararlı olacak şekilde farklı bir yapıda sunulur. Bu bağlamda her bir spektral dönüşüm farklı bir özellik uzayı oluşturur.
9 Görüntü Zenginleştirme Spektral Dönüşümler Özellik uzayı, sınıflandırma gibi üst seviye dijital görüntü analizlerinin etkin bir şekilde yapılabilmesi için kullanılan görüntüye ait her türlü bilgidir. Buna göre, orijinal piksel parlaklık değerleri de, dönüşümle elde edilen farklı nicelikler de hepsi birer özelliktir. Spektral dönüşümler aşağıdaki 3 temel başlıkta incelenebilir Kontrast zenginleştirme Aritmetik bant işlemleri Ana bileşen dönüşümü
10 Spektral Dönüşümler Kontrast Artırımı İnsan beyni objelerin mekânsal özelliklerini yorumlamada ve detayları tespit etmede mükemmel performans gösterir. Mekânsal birçok detay spektral karakteristiklerin niceliksel karşılıgı olan radyometrik özelliklerine göre fark edilir. Radyometrik verideki çok küçük farklar bile anlamlı detaylara karşılık gelebilir.
11 Spektral Dönüşümler Kontrast Artırımı Ancak, İnsan gözü radyometrik anlamda farklı gri tonu ve yaklaşık 100 farklı rengi birbirinden ayırt edebilir. Kontrast zenginleştirme yöntemleri, görüntüdeki değişik özellikler arasındaki parlaklık değerlerine dayalı ayırt edilebilirliği arttırmak için kullanılır. Kontrast zenginleştirme, temelde görüntü histogramının değiştirilmesi işlemidir. Bu yaklaşımla görüntünün mevcut yansıtım değer aralığı olası bütün dinamik aralığa yayılır.
12 Spektral Dönüşümler Kontrast Artırımı Görüntünün kontrastını geliştirmek için kullanılan en yaygın teknikler; Doğrusal/Lineer kontrast artırımı ve Doğrusal olmayan Histogram eşitleme Normal (Gauss) yayma metodu da kontrast zenginleştirmesinde tercih edilen diğer yöntemlerden biridir.
13 Spektral Dönüşümler Kontrast Artırımı (Minimum-Maximam Linear Contrast Stretch) Lineer Kontrast Artırımı: En basit kontrast zenginleştirme yöntemidir. Histogramdan orijinal görüntünün minimum ve maksimum degerleri belirlenir ve bu aralık dinamik aralığın tamamına yayılacak şekilde aşağıdaki eşitlik kullanılarak dönüştürülür.
14 Spektral Dönüşümler Kontrast Artırımı Lineer Kontrast Artırımı
15 15
16 60, 80 ve 200 DN değerlerinin Lineer kontrast artırımı sonrasındaki çıktı değerleri nedir? (0, 255) 60 [(60-40)/(200-40)]x255=32 80 [(80-40)/(200-40)]x255= [(200-40)/(200-40)] x255=255 16
17 Yüzde aralığı Percentage Linear Contrast Stretch Histogram ortalamasının belirli bir yüzdesi içinde yer alan pikseller için tanımlı min. ve mak. değerlerini kullanır Ortalamadan itibaren standart sapma kullanılarak min. ve mak. değerlere kadar olan kısımlar hariç tutulur 17
18 18
19 19
20 Parça parça lineer kontrast germe Piecewise Linear Contrast Stretch Histogramı normal dağılımlı olmayan (bimodal, trimodal..) görüntüler için kullanılır Küçük min-mak yayma serisi oluşturulur 20
21 Lillesand, Kiefer and Chıpman, Remote Sensing and Image Interpretation 21
22 Lillesand, Kiefer and Chıpman, Remote Sensing and Image Interpretation 22
23 Spektral Dönüşümler Kontrast Artırımı - Histogram Eşitleme: Bu yöntemde amaç, çıktı görüntü histogramının eşdağılımda (uniform) olmasını yani her bir parlaklık seviyesi için yaklaşık aynı sayıda piksel bulunmasını amaçlar. Görüntü parlaklık değerleri ayrık değerler olduğu için eşitleme işlemi sırasında herhangi bir parlaklık seviyesine çok fazla sayıda piksel girebilir. Ancak histogram, yansıtım değerlerinin mekânsal konumuyla ilgili bilgi içermediğinden, bu seviyedeki pikselleri birbirinden ayırt etmek imkânsızdır. Diğer bir deyişle birçok piksel birkaç parlaklık seviyesinde toplanabilir. Genelde çok nadiren tamamen uniform bir sonuç histogramı elde edilir.
24 Dijital verinin depolanması ve/veya iletilmesi için ortalama kaç bit e ihtiyaç duyulacağını ifade eder. Dijital bir görüntüye uygulandığında, görüntüdeki dokuyu (parlaklık değeri değişim karakteristiği) karakterize etmek için kullanılabilecek bir istatistikse rastlantısallık ölçüsüdür.
25 Histogramı verilen 0-9 gri değer aralıklı 60x60 lık bir görüntüyü ele alalım: 25
26 1.Görüntüye ait histogramda her bir sütunda tekrarlanan piksel sayısının görüntüdeki yüzdesi hesaplanır. 26
27 2. Birikimli yüzde oranları hesaplanır. 27
28 3. Gri değer aralıklarına ait oranlar hesaplanır. Örnekteki görüntüde gri değer aralığı 10 dur. Buna ilişkin oranlar ise: T 0 0/9= 0.00 T 1 1/9= 0.11 T 2 2/9= 0.22 T 3 3/9= 0.33 T 4 4/9= 0.44 T 5 5/9= 0.56 T 6 6/9= 0.67 T 7 7/9= 0.78 T 8 8/9= 0.89 T 9 9/9=
29 4.Birikimli yüzde oranları ile gri değer aralıklarına ait oranlar karşılaştırılır. 29
30 30
31 31
32 Lineer kontrast germe Histogram eşleme 32
33 Spektral Dönüşümler Kontrast Artırımı Normal (Gauss) Yayma: Bu yöntemin histogram eşitleme yönteminde uygulanan işlemlerden tek farkı hedef histogramının eşdağılımlı olması yerine Normal (Gauss) dağılım eğrisine benzer şekilde oluşturulmasıdır. Dolayısıyla her bir parlaklık değeri için hedef frekans değerleri Gauss (Normal) Olasılık Yoğunluk fonksiyonuna göre hesaplanacak yüzde değerleri kullanılarak elde edilir. Olasılıklar, 0 ortalamalı ve 1 standart sapmalı Standart Normal dağılıma göre hesaplanır.
34 Spektral Dönüşümler Kontrast Artırımı =2.5 =5.0 =50 =150 Normalizasyon Normalizasyon x- Z= X=x1, x2, xn =1 y- Z= y=y1, y2, nn =0
35 Spektral Dönüşümler Kontrast Artırımı
36 36
37 37
38 38
39 39
40 40
41 Orijinal görüntü Görüntü eşleme Lineer kontrast Gauss kontrast 41
42 Spektral Dönüşümler Aritmetik Bant İşlemleri Tek veya farklı kaynaklardan gelen görüntü bantlarının, uygun matematiksel yöntemlerle yeni bir özellik uzayına dönüştürülmesi işlemidir. En temel dönüşüm yöntemleri basit aritmetik işlemleri ve bant oranlamasıdır
43 Spektral Dönüşümler Aritmetik Bant İşlemleri Örneğin 2 farklı görüntüdeki piksellerin birbirinden çıkartma işlemi değişim özelliklerinin vurgulanması için sıklıkla kullanılan basit bir aritmetik işlem yöntemdir.
44 Spektral Dönüşümler Bant Oranlama Aynı yüzeye ait parlaklık değerleri topoğrafik eğim, gölge, atmosferik değişim yada mevsimsel değişimden dolayı farklı olabilmektedir Bant oranlama bu etkilerin azaltılması için kullanılır, ayrıca toprak ve bitkinin birbirinden ayrılmasını sağlar P i, j, oran P P i, j, k i, j, l - Pi,j,k orijinal görüntünün k bandıdaki parlaklık değeri - Pi,j,l orijinal görüntünün l bandıdaki parlaklık değeri -Pi,j,oran çıktı görüntünün parlaklık değeri 44
45 Spektral Dönüşümler Bant Oranlama Diğer bir basit yaklaşım bant oranlamasıdır. Bu yaklaşımla spektral yansıtım eğrisinin eğimlerindeki değişkenlik vurgulanır. Normalde bu değişimler bantlar bağımsız ele alındığında görülemezler. Oranlama yaklaşımı ayrıca topoğrafik etkenlere bağlı olarak oluşan aydınlanma farklılıklarını da azaltır. Birçok oran uygulaması içinde en yaygın kullanılan bant oranlaması, bitki örtüsü indeksidir (VI);
46 Spektral Dönüşümler Bant Oranlama Bu oranın hesaplanabilmesi, algılayıcıdan bağımsız olarak ilgili spektral bölgelerde algılamanın (ölçmenin) yapılmasına bağlıdır. Paydanın sıfır olması problemine karşı geliştirilen Normalize Edilmiş Bitki Örtüsü indeksi (NDVI) uygulamada daha yaygın olarak kullanılmaktadır: Bu yaklaşım matematiksel olarak daha tutarlıdır. Normalize edilmiş oran değerleri [-1, +1] aralığındadır.
47 Tarım alanına ait Doğal renkli (Red-Green-Blue), yapay/yanlış renkli (NIR-Red- Green) ve NDVI görüntüsü, kuzey-batı Peloponese, Greece, LANDSAT TM. 47
48 48
49 NOAA AVHRR Nisan Aralik
50 50
51 Landsat uydusu için indeksler Bitki indeksi: NIR/Red Demir oksit: Red/Blue Kil mineralleri: SWIR1/SWIR2 (5/7) Demirli mineraller: SWIR1/NIR Bitkiler NIR bantta yüksek yansıtım gösterirken görünür bölgede enerji yutulur Bitki strese girdiğinde görünür bölgede yutulma azalırken NIR bantta yutulma artar 51
52 52
53 Tek band (Mavi) yüzeyin farklı aydınlanmasından dolayı güçlü topografya sunar 53
54 band3/band2 Aydınlanma etkisi azalır ve farklı kaya türleri açığa çıkar 54
55 5/2 demir oksit 7/4 hydroxyls 55
56 3/2, 5/2, 7/4, RGB 56
57 57
58 58
Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi
Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Ön İşleme-Radyometrik Düzeltme Atmosferik Düzeltme Atmosferik etkilerin giderilmesinde kullanılan radyometrik
Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi
Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2016-2017 Öğretim Yılı Bahar Dönemi 1 Geçen ders Mekansal/Konumsal/Geometrik(Spatial resolution) Radyometrik Spektral Zamansal 2 Dijital /Sayısal
Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi
Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Yüksek ve düşük spektral çözünürlüğe sahip dijital görüntülerdeki temel avantaj ve dezavantajlar aşağıda
Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) Öğretim Yılı Güz Dönemi
Uzaktan Algılama (JDF439) Görüntü İyileştirme, Geometrik Düzeltme Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) 2016-2017 Öğretim Yılı Güz Dönemi 1 Görüntü Zenginleştirme Görüntü zenginleştirmede amaç; Görsel
1. Değişik yeryüzü kabuk tiplerinin spektral yansıtma eğrilerinin durumu oranlama ile ortaya çıkarılabilmektedir.
ORAN GÖRÜNTÜLERİ Oran Görüntüsü Oran görüntülerini değişik şekillerde tanımlamak mümkündür; Bir görüntünün belirli bandındaki piksel parlaklık değerleri ile bunlara karşılık gelen ikinci bir banddaki piksel
Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) Öğretim Yılı Güz Dönemi
Uzaktan Algılama (JDF439) Hiperspektral ve termal bantlı uydular Ön-işlem adımları Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) 2016-2017 Öğretim Yılı Güz Dönemi 1 Termal (Isıl) Uzaktan Algılama Termal ışımanın
Görüntü İyileştirme Teknikleri. Hafta-8
Görüntü İyileştirme Teknikleri Hafta-8 1 Spektral İyileştirme PCA (Principal Component Analysis) Dönüşümü. Türkçesi Ana Bileşenler Dönüşümü Decorrelation Germe Tasseled Cap RGB den IHS ye dönüşüm IHS den
Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi
Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2015-2016 Öğretim Yılı Bahar Dönemi 1 Piksel / dpi Piksel en küçük anlamlı birim dpi = dot per inch/ 1 inch teki nokta sayısı 1 inch =25.4 mm
Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi
Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Piksel / dpi Piksel en küçük anlamlı birim dpi = dot per inch/ 1 inch teki nokta sayısı 1 inch =25.4 mm
Uzaktan Algılama Uygulamaları
Aksaray Üniversitesi Uzaktan Algılama Uygulamaları Doç.Dr. Semih EKERCİN Harita Mühendisliği Bölümü [email protected] 2010-2011 Bahar Yarıyılı Uzaktan Algılama Uygulamaları GÖRÜNTÜ İŞLEME TEKNİKLERİ
UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA
UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında ucuz ve hızlı sonuç alınabilen uzaktan algılama tekniğinin, yenilenebilir
Uzaktan Algılama Teknolojileri
Uzaktan Algılama Teknolojileri Ders 8 Multispektral Görüntüleme ve Uygulamaları Alp Ertürk [email protected] Multispektral Görüntüleme Her piksel için birkaç adet spektral kanalda ölçüm değeri
MOD419 Görüntü İşleme
MOD419 Görüntü İşleme Ders Kitabı: Digital Image Processing by Gonzalez and Woods Puanlama: %30 Lab. %20 Vize %10 Quizes %40 Final %60 devam mecburiyeti Görüntü İşleme ye Giriş Görüntü İşleme Nedir? Özellikle
Dijital Görüntü İşleme ve İyileştirme
Dijital Görüntü İşleme ve İyileştirme Ortalama ve Standart Sapma: Görüntüdeki ri değerlerin, ortalaması ve standart sapması olarak ifade edilir. Ortalama tüm örüntüye ait parlaklığı ifade ederken, standart
Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi
Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Görüntü Zenginleştirme Spektral Dönüşümler Spektral dönüşümler Kontrast zenginleştirme Doğrusal/Lineer
TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun.
Doç.Dr.Mehmet MISIR-2013 TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında
Uzaktan Algılama Verisi
Uzaktan Algılama (2) Yrd. Doç. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Uzaktan Algılama Verisi Raster Veri Formatı 1 Uzaktan Algılama Verisi http://www.tankonyvtar.hu/hu/tartalom/tamop425/0027_dai6/ch01s03.html
Görüntü İyileştirme Teknikleri. Hafta-6
Görüntü İyileştirme Teknikleri Hafta-6 Doç. Dr. Oğuz Güngör Karadeniz Teknik Üniversitesi Harita Mühendisliği Bölümü 6080 Trabzon [email protected] İndisler Görüntü İyileştirme Teknikleri Radyometrik
Digital Görüntü Temelleri Görüntü Oluşumu
Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 25 Ekim
Yrd. Doç. Dr. Aycan M. MARANGOZ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ FOTOGRAMETRİ ANABİLİM DALI SUNULARI JDF435 UZAKTAN ALGILAMA DERSİ NOTLARI
UZAKTAN ALGILAMA Sayısal Görüntü ve Özellikleri GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ FOTOGRAMETRİ ANABİLİM DALI SUNULARI JDF435 UZAKTAN ALGILAMA DERSİ NOTLARI http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz
Uzaktan Algılama (3) Yrd. Doç. Dr. Özgür ZEYDAN Renk Teorileri
Uzaktan Algılama (3) Yrd. Doç. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri Eklemeli renk teorisi Çıkarmalı renk teorisi 1 RGB (Red Green - Blue) Kavramı Red Green - Blue RGB-Mixer
ULUSAL COĞRAFİ BILGİ SISTEMLERİ KONGRESİ 30 Ekim 02 Kasım 2007, KTÜ, Trabzon
ULUSAL COĞRAFİ BILGİ SISTEMLERİ KONGRESİ 30 Ekim 02 Kasım 2007, KTÜ, Trabzon Uydu Verilerinin Farklı Yöntemlerle Karılması ve Sonuçların Karşılaştırılması Öğr. Gör. Bora UĞURLU Prof. Dr. Hülya YILDIRIM
Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi
Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2015-2016 Öğretim Yılı Bahar Dönemi 1 A- Enerji Kaynağı / Aydınlatma B- Işıma ve atmosfer C- Hedef nesneyle etkileşim D- Nesneden yansıyan /
TÜRKİYE NİN BİTKİ ÖRTÜSÜ DEĞİŞİMİNİN NOAA UYDU VERİLERİ İLE BELİRLENMESİ*
TÜRKİYE NİN BİTKİ ÖRTÜSÜ DEĞİŞİMİNİN NOAA UYDU VERİLERİ İLE BELİRLENMESİ* Determination the Variation of The Vegetation in Turkey by Using NOAA Satellite Data* Songül GÜNDEŞ Fizik Anabilim Dalı Vedat PEŞTEMALCI
UZAKTAN ALGILAMA- UYGULAMA ALANLARI
UZAKTAN ALGILAMA- UYGULAMA ALANLARI Doç. Dr. Nebiye Musaoğlu [email protected] İTÜ İnşaat Fakültesi Jeodezi ve Fotogrametri Mühendisliği Bölümü Uzaktan Algılama Anabilim Dalı UZAKTAN ALGILAMA-TANIM
DİJİTAL UYDU GÖRÜNTÜSÜ Raster Veri
DİJİTAL UYDU GÖRÜNTÜSÜ Raster Veri DİJİTAL UYDU GÖRÜNTÜSÜ Görüntü boyutu Dijital bir görüntü, elemanları, uzaydaki x,y konumlarına karşılık gelen noktaları n f(x,y) parlaklık değerlerini içeren bir matristir.
Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri
Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri Eklemeli renk teorisi Çıkarmalı renk teorisi 1 RGB (Red Green - Blue) Kavramı Red Green - Blue RGB-Mixer
Uzaktan Algılama ve Teknolojik Gelişmeler
Uzaktan Algılama ve Teknolojik Gelişmeler 1 Uzaktan Algılama Nedir? Uzaktan Algılama Prensipleri Uydu Görüntülerinin Özellikleri ERDAS IMAGINE yazılımının sağladığı imkanlar 2 Uzaktan Algılama Fiziksel
GÖRÜNTÜ ANALİZİ. Doç. Dr. Füsun Balık ŞANLI
GÖRÜNTÜ ANALİZİ Doç. Dr. Füsun Balık ŞANLI 2014-2015 Ders Düzeni Ders Uygulama Ödev? Sınavlar Sınavlar 1. Ara Sınav 2. Ara Sınav Yıl Sonu Sınavı Yaralanılan Kaynaklar GÖRÜNTÜ İSLEME,TEKNOLOJİLER VE UYGULAMALARI
Dijital (Sayısal) Fotogrametri
Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak
Uzaktan algılamada uydu görüntülerine uygulanan işlemler
Uzaktan algılamada uydu görüntülerine uygulanan işlemler Uzaktan algılama görüntülerine uygulanan işlemler genel olarak; 1. Görüntü ön işleme (Düzeltme) 2. Görüntü İşleme olarak ele alınabilir. GÖRÜNTÜ
Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) Öğretim Yılı Güz Dönemi
Uzaktan Algılama (JDF439) Çözünürlük kavramı Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) 2016-2017 Öğretim Yılı Güz Dönemi 1 YANSIMA Doğada her nesne farklı yansıma özelliklerine sahiptir 2 Sağlıklı bitki örtüsünün
Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003
Görüntü İşleme K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 İçerik Görüntü İşleme Nedir? Görüntü Tanımlamaları Görüntü Operasyonları Görüntü İşleme
Digital Görüntü Temelleri Görüntü Oluşumu
Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 06 Kasım
Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi
Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2016-2017 Öğretim Yılı Bahar Dönemi 1 Ana bileşenler dönüşümü 2 Yöntem, minimum korelasyonlu bilgileri sıkıştırarak veri grubu hakkında maksimum
COĞRAFİ BİLGİ SİSTEMLERİ VE UZAKTAN ALGILAMA
Coğrafi Bilgi Sistemleri ve Uzaktan Algılama Taşınmaz Değerleme ve Geliştirme Tezsiz Yüksek Lisans Programı COĞRAFİ BİLGİ SİSTEMLERİ VE UZAKTAN ALGILAMA 1 Coğrafi Bilgi Sistemleri ve Uzaktan Algılama İçindekiler
Dijital Görüntü İşleme Teknikleri
Teknikleri Ders Notları, 2013 Doç. Dr. Fevzi Karslı Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 08 Ekim 2013 Salı 1 Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, temel kavramlar, kaynaklar.
Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur.
Görüntü İşleme Görüntü işleme, dijital bir resim haline getirilmiş olan gerçek yaşamdaki görüntülerin bir girdi resim olarak işlenerek, o resmin özelliklerinin ve görüntüsünün değiştirilmesidir. Resimler
Emrah Kurtoğlu Gamze Dinçar Liva Gizem Göze Ali Kadir Ulu
1302120002 1302130068 1302150039 1302150049 Emrah Kurtoğlu Gamze Dinçar Liva Gizem Göze Ali Kadir Ulu 17.10.2016 SPEKTRAL İMGELER Bir malzeme için yansıyan, yutulan veya iletilen ışınım miktarları dalga
Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.
4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans
Görüntü İyileştirme Teknikleri. Hafta-6
Görüntü İyileştirme Teknikleri Hafta-6 Doç. Dr. Oğuz Güngör Karadeniz Teknik Üniversitesi Harita Mühendisliği Bölümü 618 Trabzon [email protected] 1 İndisler Görüntü İyileştirme Teknikleri Radyometrik
GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ
GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ GÖRÜNTÜ ALGILAMA Üç temel zar ile kaplıdır. 1- Dış Zar(kornea ve Sklera) 2- Koroid 3- Retina GÖRÜNTÜ ALGILAMA ---Dış Zar İki kısımdan oluşur. Kornea ve
ORM 7420 ORMAN KAYNAKLARININ PLANLANMASINDA UYGU GÖRÜNTÜLERİNİN KULLANILMASI
ORM 7420 ORMAN KAYNAKLARININ PLANLANMASINDA UYGU GÖRÜNTÜLERİNİN KULLANILMASI Yrd. Doç. Dr. Uzay KARAHALİL III. Hafta (Uyduların Detay Tanıtımı Sunum Akışı Doğal Kaynak İzleyen Uygular Hangileri Uyduların
Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi
Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Ana bileşenler dönüşümü 2 Yöntem, minimum korelasyonlu bilgileri sıkıştırarak veri grubu hakkında maksimum
Tarımsal Meteorolojik Simülasyon Yöntemleri ve Uzaktan Algılama ile Ürün Verim Tahminleri ve Rekolte İzleme
Tarımsal Meteorolojik Simülasyon Yöntemleri ve Uzaktan Algılama ile Ürün Verim Tahminleri ve Rekolte İzleme Twente Universitesi ITC Fakultesi, Enschede, Hollanda - 2013 Dr. Ediz ÜNAL Tarla Bitkileri Merkez
Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi
Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Dijital görüntü işlemede temel kavramlar Sayısal Görüntü İşleme; bilgisayar yardımı ile raster verilerin
ORM 7420 USING SATELLITE IMAGES IN FOREST RESOURCE PLANNING
ORM 7420 USING SATELLITE IMAGES IN FOREST RESOURCE PLANNING Asst. Prof. Dr. Uzay KARAHALİL Week IV NEDEN UYDU GÖRÜNTÜLERİ KULLANIRIZ? Sayısaldır (Dijital), - taramaya gerek yoktur Hızlıdır Uçuş planı,
Dijital (Sayısal) Fotogrametri
Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak
İçerik. Giriş 1/23/13. Giriş Problem Tanımı Tez Çalışmasının Amacı Metodoloji Zaman Çizelgesi. Doktora Tez Önerisi
İsmail ÇÖLKESEN 501102602 Doktora Tez Önerisi Tez Danışmanı : Prof.Dr. Tahsin YOMRALIOĞLU İTÜ Geoma*k Mühendisliği İçerik Giriş Tez Çalışmasının Amacı Zaman Çizelgesi 1 of 25 Giriş Yeryüzü ile ilgili yapılan
İstatistik ve Olasılık
İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel
JDF821 UZAKTAN ALGILAMA GÖRÜNTÜLERİNDEN DETAY ÇIKARIMI
JDF821 UZAKTAN ALGILAMA GÖRÜNTÜLERİNDEN DETAY ÇIKARIMI Sunu1 Yrd. Doç. Dr. Aycan M. MARANGOZ FOTOGRAMETRİ ANABİLİM DALI SUNULARI http://jeodezi.beun.edu.tr/marangoz 2012-2013 Öğretim Yılı Bahar Dönemi
Bölüm 4 Yoğunluk Dönüşümleri ve Histogram İşleme
BLM429 Görüntü İşlemeye Giriş Bölüm 4 Yoğunluk Dönüşümleri ve Histogram İşleme Dr. Öğr. Üyesi Caner ÖZCAN It makes all the difference whether one sees darkness through the light or brightness through the
Bilgisayarla Fotogrametrik Görme
Bilgisayarla Fotogrametrik Görme Dijital Görüntü ve Özellikleri Yrd. Doç. Dr. Mustafa DİHKAN 1 Dijital görüntü ve özellikleri Siyah-beyaz resimler için değer elemanları 0-255 arasındadır. 256 farklı durum
Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü
Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu
Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5
Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın
TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ
TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ 1 İstatistik İstatistik, belirsizliğin veya eksik bilginin söz konusu olduğu durumlarda çıkarımlar yapmak ve karar vermek için sayısal verilerin
Dijital (Sayısal) Fotogrametri
Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak
Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) Öğretim Yılı Güz Dönemi
Uzaktan Algılama (JDF439) Hiperspektral ve termal bantlı uydular Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) 2016-2017 Öğretim Yılı Güz Dönemi 1 3 4 5 SPOT 6 6 Geçen ders: Mikrodalga algılama sistemleri Gündüz
Elektromanyetik Radyasyon (Enerji) Nedir?
Elektromanyetik Radyasyon (Enerji) Nedir? Atomlardan çeşitli şekillerde ortaya çıkan enerji türleri ve bunların yayılma şekilleri "elektromagnetik radyasyon" olarak adlandırılır. İçinde X ve γ ışınlarının
Uzaktan Algılama Teknolojileri
Uzaktan Algılama Teknolojileri Ders 3 Uzaktan Algılama Temelleri Alp Ertürk [email protected] Elektromanyetik Spektrum Elektromanyetik Spektrum Görünür Işık (Visible Light) Mavi: (400 500 nm) Yeşil:
İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37
İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar
Bilgisayarla Görüye Giriş
Bilgisayarla Görüye Giriş Ders 7 SIFT ve Öznitelik Eşleme Alp Ertürk [email protected] Panorama Oluşturma Görüntü mozaikleme, panorama oluşturma gibi tüm uygulamalar için öncelikle ilgili görüntülerin
Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız.
.4. Merkezi Eğilim ve Dağılım Ölçüleri Merkezi eğilim ölçüleri kitleye ilişkin bir değişkenin bütün farklı değerlerinin çevresinde toplandığı merkezi bir değeri gösterirler. Dağılım ölçüleri ise değişkenin
FOTOYORUMLAMA UZAKTAN ALGILAMA
FOTOYORUMLAMA VE UZAKTAN ALGILAMA (Photointerpretation and Remote Sensing) 1 Görüntü özellikleri Uzaktan algılamada platformlar Uydu yörüngeleri Şerit genişliği, yeniden ziyaret periyodu 2 Görüntünün özellikleri:
Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi
Dijital Görüntü İşleme (GEO/JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2017-2018 Öğretim Yılı Bahar Dönemi 1 İletişim bilgileri [email protected] 0 372 291 2565 http://geomatik.beun.edu.tr/abdikan/ Öğrenci
İSTATİSTİK MHN3120 Malzeme Mühendisliği
İSTATİSTİK MHN3120 Malzeme Mühendisliği CBÜ - Malzeme Mühendisliği Bölümü Ofis: Mühendislik Fakültesi A Blok Ofis no:311 Tel: 0 236 2012404 E-posta :[email protected] YARDIMCI KAYNAKLAR Mühendiler
İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR
İÇİNDEKİLER ÖNSÖZ III Bölüm 1 KÜMELER 11 1.1. Küme 12 1.2. Kümelerin Gösterimi 13 1.3. Boş Küme 13 1.4. Denk Küme 13 1.5. Eşit Kümeler 13 1.6. Alt Küme 13 1.7. Alt Küme Sayısı 14 1.8. Öz Alt Küme 16 1.9.
Uzaktan Algılama Teknolojileri
Uzaktan Algılama Teknolojileri Ders 11 Hiperspektral Görüntülerde Kümeleme ve Sınıflandırma Alp Ertürk [email protected] Sınıflandırma Sınıflandırma işleminin amacı, her piksel vektörüne bir ve
TEMEL GÖRÜNTÜ BİLGİSİ
TEMEL GÖRÜNTÜ BİLGİSİ FOTOĞRAF/GÖRÜNTÜ KAVRAMI VE ÖZELLİKLERİ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF345 TEMEL GÖRÜNTÜ BİLGİSİ DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz/ İÇERİK
Görüntü Segmentasyonu (Bölütleme)
Görüntü Segmentasyonu (Bölütleme) Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. 20 Aralık 2014 Cumartesi 1 Görüntü Segmentasyonu 20 Aralık 2014 Cumartesi 2 Gestalt kanunları Görüntü
TEMEL GRAFİK TASARIM AÇIK-KOYU, IŞIK-GÖLGE
TEMEL GRAFİK TASARIM AÇIK-KOYU, IŞIK-GÖLGE Öğr. Gör. Ruhsar KAVASOĞLU 23.10.2014 1 Işık-Gölge Işığın nesneler, objeler ve cisimler üzerinde yayılırken oluşturduğu açık orta-koyu ton (degrade) değerlerine
13. Olasılık Dağılımlar
13. Olasılık Dağılımlar Mühendislik alanında karşılaşılan fiziksel yada fiziksel olmayan rasgele değişken büyüklüklerin olasılık dağılımları için model alınabilecek çok sayıda sürekli ve kesikli fonksiyon
Mühendislikte İstatistik Yöntemler
.0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0
Uzaktan Algılama Teknolojileri
Uzaktan Algılama Teknolojileri Ders 4 Pasif - Aktif Alıcılar, Çözünürlük ve Spektral İmza Kavramları Alp Ertürk [email protected] Pasif Aktif Alıcılar Pasif alıcılar fiziksel ortamdaki bilgileri
OLASILIK ve KURAMSAL DAĞILIMLAR
OLASILIK ve KURAMSAL DAĞILIMLAR Kuramsal Dağılımlar İstatistiksel çözümlemelerde; değişkenlerimizin dağılma özellikleri, çözümleme yönteminin seçimi ve sonuçlarının yorumlanmasında önemlidir. Dağılma özelliklerine
Dr. Öğt. Üyesi Saygın ABDİKAN Öğretim Yılı Bahar Dönemi
Dijital Görüntü İşleme (GEO/JDF338) Dr. Öğt. Üyesi Saygın ABDİKAN 2017-2018 Öğretim Yılı Bahar Dönemi 1 Dersin Kaynakları 1. Rafael C. Gonzales, Richard E. Woods, Digital image processing, New Jersey:
JEODEZİK VERİLERİN İSTATİSTİK ANALİZİ. Prof. Dr. Mualla YALÇINKAYA
JEODEZİK VERİLERİN İSTATİSTİK ANALİZİ Prof. Dr. Mualla YALÇINKAYA Karadeniz Teknik Üniversitesi, Harita Mühendisliği Bölümü Trabzon, 2018 VERİLERİN İRDELENMESİ Örnek: İki nokta arasındaki uzunluk 80 kere
UYDU VERİLERİ İLE VERİ ENTEGRASYONU VE YÖNTEMLERİ
660 [1016] UYDU VERİLERİ İLE VERİ ENTEGRASYONU VE YÖNTEMLERİ Sakine KANDİL 1, H.Gonca COŞKUN 2 ÖZET 1 Müh., İstanbul Teknik Üniversitesi, Geomatik Mühendisliği Bölümü, 34469, Maslak, İstanbul, [email protected]
İSTATİSTİK DERS NOTLARI
Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü [email protected] İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN Hidrolik Anabilim Dalı Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü Bölüm
BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ
1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma
ArcGIS ile Tarımsal Uygulamalar Eğitimi
ArcGIS ile Tarımsal Uygulamalar Eğitimi Kursun Süresi: 5 Gün 30 Saat http://facebook.com/esriturkey https://twitter.com/esriturkiye [email protected] ArcGIS ile Tarımsal Uygulamalar Eğitimi Genel
Uzaktan Algılama Teknolojisi. Doç. Dr. Taşkın Kavzoğlu Gebze Yüksek Teknoloji Enstitüsü Gebze, Kocaeli
Uzaktan Algılama Teknolojisi Doç. Dr. Taşkın Kavzoğlu Gebze Yüksek Teknoloji Enstitüsü Gebze, Kocaeli SPOT görüntüsü (Roma) 16-Aralık-2005 Source: earth.eas.int Uzaktan Algılama Dünya yüzeyinin gözlenmesi
Matris Cebiriyle Çoklu Regresyon Modeli
Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β
KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN
KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin
Ö. Kayman *, F. Sunar *
SPEKTRAL İNDEKSLERİN LANDSAT TM UYDU VERİLERİ KULLANILARAK ARAZİ ÖRTÜSÜ/KULLANIMI SINIFLANDIRMASINA ETKİSİ: İSTANBUL, BEYLİKDÜZÜ İLÇESİ, ARAZİ KULLANIMI DEĞİŞİMİ Ö. Kayman *, F. Sunar * * İstanbul Teknik
İçindekiler. Ön Söz... xiii
İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1
DAĞILMA YADA DEĞİ KENLİK ÖLÇÜLERİ (MEASURE OF DISPERSION) Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ
DAĞILMA YADA DEĞİ KENLİK ÖLÇÜLERİ (MEASURE OF DISPERSION) 1 AMAÇ... Mevcut veri seti için bulunan merkezi eğilim ölçüsünün yorumlamak Birden fazla veri seti için dağılımlar arası kıyaslama yapabilmek amaçlarıyla
Muğla, Türkiye mermer üretiminde önemli bir yere sahiptir. Muğla da 2008 yılı rakamlarına göre 119 ruhsatlı mermer sahası bulunmaktadır.
Muğla, Türkiye mermer üretiminde önemli bir yere sahiptir. Muğla da 2008 yılı rakamlarına göre 119 ruhsatlı mermer sahası bulunmaktadır. İldeki madencilik faaliyetlerinin yapıldığı alanların çoğu orman
UZAKTAN ALGILAMA* Doç.Dr.Hulusi KARGI Pamukkale Üniversitesi, Jeoloji Müh. Bölümü - Denizli
UZAKTAN ALGILAMA* Doç.Dr.Hulusi KARGI Pamukkale Üniversitesi, Jeoloji Müh. Bölümü - Denizli *Bu sunudaki görüntülerin bir kõsmõ Rob Wright ve MTA dan alõnmõştõr. Giriş! Maden aramalarõnda ve jeolojik yapõlarõn
Merkezi Eğilim ve Dağılım Ölçüleri
Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki
VERİ KÜMELERİNİ BETİMLEME
BETİMLEYİCİ İSTATİSTİK VERİ KÜMELERİNİ BETİMLEME Bir amaç için derlenen verilerin tamamının olduğu, veri kümesindeki birimlerin sayısal değerlerinden faydalanarak açık ve net bir şekilde ilgilenilen özellik
İÇİNDEKİLER ÖN SÖZ...
İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN
UA Teknikleri Kullanılarak Taşkın Alanlarının Belirlenmesi ve Bölgesel Taşkın Frekans Analizinin Batı Karadeniz Bölgesinde Uygulanması
UA Teknikleri Kullanılarak Taşkın Alanlarının Belirlenmesi ve Bölgesel Taşkın Frekans Analizinin Batı Karadeniz Bölgesinde Uygulanması Prof. Dr. A. Ünal Şorman Orta Doğu Teknik Üniversitesi, Đnşaat Mühendisliği
Sevim Yasemin ÇİÇEKLİ 1, Coşkun ÖZKAN 2
1078 [1025] LANDSAT 8'İN ADANA SEYHAN BARAJ GÖLÜ KIYI ÇİZGİSİNİN AYLIK DEĞİŞİMİNİN BELİRLENMESİNDE KULLANILMASI Sevim Yasemin ÇİÇEKLİ 1, Coşkun ÖZKAN 2 1 Arş. Gör., Erciyes Üniversitesi, Harita Mühendisliği
3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI
ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6
BİYOİSTATİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH
BİYOİSTTİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. slı SUNER KRKÜLH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim D. Web: www.biyoistatistik.med.ege.edu.tr 1 OLSILIK Olasılık; Tablo
İSTATİSTİK I KISA ÖZET KOLAYAOF
DİKKATİNİZE: BURADA SADECE ÖZETİN İLK ÜNİTESİ SİZE ÖRNEK OLARAK GÖSTERİLMİŞTİR. ÖZETİN TAMAMININ KAÇ SAYFA OLDUĞUNU ÜNİTELERİ İÇİNDEKİLER BÖLÜMÜNDEN GÖREBİLİRSİNİZ. İSTATİSTİK I KISA ÖZET KOLAYAOF 2 Kolayaof.com
TANIMLAYICI İSTATİSTİKLER
TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin
FARKLI UYDU VERİ ÇAKIŞTIRMA TEKNİKLERİNİN ANALİZİ
FARKLI UYDU VERİ ÇAKIŞTIRMA TEKNİKLERİNİN ANALİZİ Özge KAYMAN 1, Filiz SUNAR 2, Derya MAKTAV 3 1 İstanbul Teknik Üniversitesi, Geomatik Mühendisliği Bölümü, 34469, Maslak, İstanbul. [email protected]
