Zeki Optimizasyon Teknikleri
|
|
|
- Esin Batuk
- 9 yıl önce
- İzleme sayısı:
Transkript
1 Zeki Optimizasyon Teknikleri (nt lgorithm) Doç.Dr. M. li kcayol 996 yılında Marco Dorigo tarafından ortaya atılmıştır. Temel olarak karıncaların yiyecek madde ile yuvaları arasındaki en kısa yolu bulmalarından esinlenilmiştir. Karınca algoritması genetik algoritma gibi popülasyon tabanlı yaklaşıma sahiptir. Karınca popülasyonu içindeki herbir karınca bir çözüm oluşturur ve daha sonra diğer karıncaların hareketini etkiler.
2 Engel d= F d= E d=0.5 D d= d= C d=
3 lgoritmanın çalışmasında kesikli (discrete) zaman (t) kullanılır. Her zaman aralığında her bir karınca bir birim yer değiştirir. Her yerdeğiştirmede birim feromen maddesi bırakır. aşlangıçta (t=0) hiçbir yolda (kenarda) feromen maddesi yoktur. D F E C 0.5 t= iken 6 karınca noktasında ve 6 karınca E noktasındadır. t=2 iken 8 karınca E noktasında 8 karınca noktasındadır. D noktasında 6 karınca vardır. Kenarlardan geçen karınca yoğunlukları ise FE=6, =6, C=6, CE=6, D=8, ED=8 olur. 6 karınca -F arasında 6 karınca F- arasında hareket ediyor. 3
4 Karınca algoritmaları sadece yol problemi çözümünde değil başka problemlerin çözümündede kullanılır. Sadece feromen maddesi çokluğuna ğ göre algoritma çalışırsa alt-optimal çözüme düşülür (lokal minimum). Global minimumu bulmak için yol seçiminde bazı olasılık seçimleri yapılır. Feromen birikmesi sınırsız ve sürekli değildir. Zamana bağlı olarak buharlaşma (yok olma) sözkonusudur ve her t zamanında belirli bir oranda azalır. (Yol problemi) Şehirler arasındaki en kısa yolu bulmak için her şehre bir karınca yerleştirilir. aşlangıç (t=0) için feromen miktarı tüm yollar için 0 olarak alınır. Her t+ zamanında her karınca yeni bir şehre hareket eder. Yeni şehrin belirlenmesinde bulunulan noktaya uzaklığı ile yoldaki feromen miktarına bağlı rastgele bir seçim kullanılır. Her zaman aralığında feromen miktarı için buharlaşma hesaplanır. uharlaşma 0 ile arasında bir değerdir. ir karıncanın bir şehre iki sefer gitmesi tabu listesi ile engellenir. Her hareketten sonra her karıncanın gittiği şehirler güncellenir. 4
5 (Yol problemi) - devam Her bir hareketten sonra feromen miktarı aşağıdaki formülle güncellenir. Fij(t+) = b.fij(t) + Fij Fij = Q / Kn (Her turdan sonraki güncelleme içinde i kullanılır) l urada Fij i. İle j. şehirler arasındaki yolda biriken feromen miktarı, b buharlaşma oranıdır. Q sabit katsayı ve Kn karıncanın kullandığı toplam yol uzunluğudur. ir sonraki şehre geçiş oranı aşağıdaki formülle belirlenir. yollar) Pij = Fij(t) α. Nij β / Σ Fik(t) α. Nik β k (k izin verilen urada Nij i. ile j. şehirler arasındaki yol uzunluğu, α ve β kontrol parametreleridir. (Uygulamalar ve raştırma) Gezgin satıcı problemi. raç yol problemi. Daha kapsamlı araştırma ş için Marco Dorigo nun bu konuyla ilgili Web sayfası kullanılabilir. Sitede şu ana kadar yapılmış olan çalışmalar ve yayınlarla ilgili bilgiler bulunmaktadır. Makale taramak için:
6 Haftalık Ödev: Karınca algoritması konusunda çalışmayı içeren bir makale incelenecek ve elde edilen sonuçları içeren bir rapor hazırlanacaktır. İncelenen makalede karınca algoritması kullanılmasının gerekçeleri, uygulamanın sonuçları değerlendirilecektir. - İncelenen makale son 5 yılda yayınlanmış olacaktır. - Makale Yurtdışında SCI te taranan bir dergide yayınlanmış olacaktır. - SCI te tarandığını gösterir bilgi ödeve eklenecektir. - Hazırlanan rapora makalenin tam metnide eklenecektir. Gelecek Hafta Tavlama enzetimi (Simulated nnealing) 6
Zeki Optimizasyon Teknikleri. Karınca Algoritması (Ant Algorithm)
Zeki Optimizasyon Teknikleri Karınca Algoritması (Ant Algorithm) Karınca Algoritması 1996 yılında Marco Dorigo tarafından ortaya atılmıştır. Temel olarak karıncaların yiyecek madde ile yuvaları arasındaki
Zeki Optimizasyon Teknikleri
Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:
KARINCA KOLONİ ALGORİTMASI BMÜ-579 Meta Sezgisel Yöntemler. Yrd. Doç. Dr. İlhan AYDIN Fırat Üniversitesi, Bilgisayar Mühendisliği Bölümü
KARINCA KOLONİ ALGORİTMASI BMÜ-579 Meta Sezgisel Yöntemler Yrd. Doç. Dr. İlhan AYDIN Fırat Üniversitesi, Bilgisayar Mühendisliği Bölümü Karınca Koloni Algoritması Bilim adamları, böcek davranışlarını inceleyerek
Zeki Optimizasyon Teknikleri
Zeki Optimizasyon Teknikleri Tabu Arama (Tabu Search) Doç.Dr. M. Ali Akcayol Tabu Arama 1986 yılında Glover tarafından geliştirilmiştir. Lokal minimum u elimine edebilir ve global minimum u bulur. Değerlendirme
Zeki Optimizasyon Teknikleri
Zeki Optimizasyon Teknikleri Genetik Algoritma (Genetic Algorithm) Doç.Dr. M. Ali Akcayol Genetik Algoritma 1970 li yıllarda John Holland tarafından geliştirilmiştir. 1989 yılında David E. Goldberg Genetik
Karınca Koloni Algoritması 2
Yrd. Doç. Dr. İbrahim KÜÇÜKKOÇ Web: http://ikucukkoc.baun.edu.tr Karınca Koloni Algoritması 2 7 TSP ve ACO Algoritması Gezgin satıcı problemi (travelling salesman problem-tsp) yöneylem araştırması ve teorik
Karınca Koloni Algoritması 1
Yrd. Doç. Dr. İbrahim KÜÇÜKKOÇ Web: http://ikucukkoc.baun.edu.tr Karınca Koloni Algoritması 1 6 Ders Planı (Vize Sonrası) 11. Hafta (H7312): Sürü Zekası, Doğada Karıncalar, ACO Giriş 12. Hafta (H7312):
Fonksiyon Optimizasyonunda Genetik Algoritmalar
01-12-06 Ümit Akıncı Fonksiyon Optimizasyonunda Genetik Algoritmalar 1 Fonksiyon Optimizasyonu Fonksiyon optimizasyonu fizikte karşımıza sık çıkan bir problemdir. Örneğin incelenen sistemin kararlı durumu
KARINCA OPTİMİZASYONU. Harun Kayıkçı
KARINCA OPTİMİZASYONU Harun Kayıkçı Ö Z E T : Karınca kolonisi optimizasyonu algoritması, kombinasyonel (kombinasyon hesapları içeren) optimizasyon problemlerinde, optimuma en yakın çözümü üretmek için
Fonksiyon Minimizasyonunda Simulated Annealing Yöntemi
07-04-006 Ümit Akıncı Fonksiyon Minimizasyonunda Simulated Annealing Yöntemi İçindekiler Fonksiyon Minimizasyonu Metropolis Algoritması. Algoritma.......................................... Bir boyutlu
İLERİ ALGORİTMA ANALİZİ KARINCA KOLONİ ALGORİTMASI
İLERİ ALGORİTMA ANALİZİ 1. Gerçek Karıncaların Davranışları KARINCA KOLONİ ALGORİTMASI Gerçek karıncalar, yuvaları ile yiyecek kaynağı arasındaki en kısa yolu bulma kabiliyetine sahiptirler ve ayrıca çevredeki
Hülya Özdağ (YTÜ Matematik Bölümü Ö.Ü.) Nilgün Aygör (YTÜ Matematik Bölümü Ö.Ü.) Aykut Parlak (YTÜ Matematik Mühendisliği)
Karınca Kolonisi Algoritmasının Zaman Çizelgelemesi Üzerine: Bir Modellemesi ve Uygulaması Hülya Özdağ (YTÜ Matematik Bölümü Ö.Ü.) Nilgün Aygör (YTÜ Matematik Bölümü Ö.Ü.) Aykut Parlak (YTÜ Matematik Mühendisliği)
Yaklaşık Düşünme Teorisi
Yaklaşık Düşünme Teorisi Zadeh tarafından 1979 yılında öne sürülmüştür. Kesin bilinmeyen veya belirsiz bilgiye dayalı işlemlerde etkili sonuçlar vermektedir. Genellikle bir f fonksiyonu ile x ve y değişkeni
GENETİK ALGORİTMALAR BÜŞRA GÜRACAR
GENETİK ALGORİTMALAR BÜŞRA GÜRACAR 201420404036 İÇERİK Genetik Algoritmanın, Amacı Kullanım Alanları Kavramları Uygulama Adımları Parametreler Genetik Algoritma Kodlama Türleri Genetik Algoritma Genetik
Gezgin Satıcı Probleminin Karınca Kolonisi ve Genetik Algoritmalarla Eniyilemesi ve Karşılaştırılması
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi Suleyman Demirel University Journal of Natural andappliedscience 18(1), 8-13, 2014 Gezgin Satıcı Probleminin Karınca Kolonisi ve Genetik Algoritmalarla
Ara Sınav 1. Algoritmalara Giriş 14 Ekim 2005 Massachusetts Institute of Technology Profesörler Erik D. Demaine ve Charles E. Leiserson Kitapçık 14
Algoritmalara Giriş 14 Ekim 2005 Massachusetts Institute of Technology 6.046J/18.410J Profesörler Erik D. Demaine ve Charles E. Leiserson Kitapçık 14 Ara Sınav 1 Dağıtılan sınav kitapçığını, size söylenene
MAT223 AYRIK MATEMATİK
MAT223 AYRIK MATEMATİK Gezgin Satıcı Problemi 9. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Gezgin Satıcı Problemi Soru n tane şehri olan bir
MAT223 AYRIK MATEMATİK
MAT223 AYRIK MATEMATİK Gezgin Satıcı Problemi 9. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Gezgin Satıcı Problemi Soru n tane şehri olan bir
METASEZGİSEL YÖNTEMLER
METASEZGİSEL YÖNTEMLER Ara sınav - 30% Ödev (Haftalık) - 20% Final (Proje Sunumu) - 50% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn: Zaman çizelgeleme, en kısa yol bulunması,
Bulanık Kural Tabanlı Sistemler
Üçgen (Triangular) normlar: Üçgen normlar (t-norm) Schweizer ve Sklar tarafından öne sürülmüştür. Herhangi bir a [0,1] aralığı için t-norm T(a, 1) = a şeklinde tanımlanır ve aşağıdaki özellikleri sağlar;
VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN
VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN [email protected] İçerik Sınıflandırma yöntemleri Karar ağaçları ile sınıflandırma Entropi Kavramı ID3 Algoritması C4.5
ö Ö ğ
Ü ö ö ö Ğ ğ Ü Ğ Ğ Ö ğ ö ö ğ «ö Ö ğ Ü Ü Ü Ğ Ö Ö Ü Ğ ğ ö ö Ö ğ ğ ğ ğ ö ğ ğ Ü ğ ğ ğ ö ğ Ü ğ ğ ö ğ ğ ğ ğ Ü Ü ö ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ö ğ ğ Ö ö ğ ğ ö ğ ğ ö» ğ ö ğ ğ ğ ğ ö ğ ğ ö ö ö ö ğ Ö ğ Ğ ğ ö
Ü Ü Ğ Ü Ğ Ü «Ğ Ğ» Ü
Ü Ü Ğ Ü Ğ Ü «Ğ Ğ» Ü ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü Ü ğ ğ ğ ğ ğ ğ Ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ
Ğ ç ğ ç ç ğ ç ğ ç ç ğ ç ğ ğ ç ç ğ ç ç ğ ç ç ç ğ ç ç ğ ç ç ç İ ğ ğ ğ ç ğ ğ ç ğ ğ ğ ğ ğ ç ç ç ç ğ ç ğ ç ç ğ ğ ç ç ç ğ ğ ç ğ ğ ç ç ç ç İ ğ ç ğ ç ğ ç ç ğ
İ Ü İ İ İ ç ğ ğ ç ç Ğ «Ö Ğ ğ ç ğ ç ğ ç ç ğ ğ ç ğ ç ğ ç ğ ç ğ ç ç Ö ğ Ö ğ ç Ğ ç ğ ç ç ğ ç ğ ç ç ğ ç ğ ğ ç ç ğ ç ç ğ ç ç ç ğ ç ç ğ ç ç ç İ ğ ğ ğ ç ğ ğ ç ğ ğ ğ ğ ğ ç ç ç ç ğ ç ğ ç ç ğ ğ ç ç ç ğ ğ ç ğ ğ ç
ö ü ü ö ö ü ö ü ü ğ ö ç ü Ç ğ ç ç ö ü ç ü ö Ş ğ üç ğ ç ü ö ç ç ç ç ğ ç ü ü ç ö ç ü ç ü ö ğ ç ç ö ç ğ ğ ç ç ö ç ö ü ğ ü Ş Ü Ü ö
ö Ş ü ö ü ö ğ ç ü Ç ç ü ğ ü ü ğ ç ö ğ ö ç ö ç ü ö ü ö ğ ü ç ö ğ ö ö ğ ğ ğ ç ö ğ ö ç ö «Ö ö ü ğ Ç ğ ğ ç ü ç ö ö ö ğ ç ö ü ü ö ö ü ö ü ü ğ ö ç ü Ç ğ ç ç ö ü ç ü ö Ş ğ üç ğ ç ü ö ç ç ç ç ğ ç ü ü ç ö ç ü ç
ö Ş Ç ö ö ö ö ö Ö ö Ö ö Ç ö ö ö Ö Ğ Ğ
ö ö ö ö ö ö ö ö ö ö ö ö ö Ş Ş ö ö Ş Ç ö ö ö ö ö Ö ö Ö ö Ç ö ö ö Ö Ğ Ğ ö ö Ç Ş Ğ Ç Ş Ş Ğ ö Ü Ğ ö Ü ö ö Ü Ü Ç Ü Ç ö ö ö ö Ç ö ö ö ö Ö Ü Ö ö ö ö ö ö ö ö Ö Ü ö ö ö ö ö ö ö ö ö Ü ö ö Ö ö ö ö ö Ö ö ö ö ö Ş ö
Ş Ğ ş Ğ İ Ğ İ ş ş Ü Ü Ş Ü İ ş ş ş
İ İ Ğ Ğ İ İ ş Ğ Ğ «Ğ İ Ğ ş ş ş ş ş Ç ş ş İ ş Ç ş İ İ İ ş Ş Ğ ş Ğ İ Ğ İ ş ş Ü Ü Ş Ü İ ş ş ş Ğ İ İ Ş Ğ ş ş İ ş ş Ş ş İ İ ş Ğ ş ş ş Ü ş ş ş İ ş Ğ ş ş ş Ş ş İ ş İ İ ş İ İ ş İ İ Ö Ü ş Ö ş ş ş İ ş ş ş ş İ ş
ğ Ü ğ ğ ğ ğ ğ ğ ğ İ ğ ğ ğ İ ğ ğ ğ ğ ğ ğ
İ İ İ İ İ İ İ İ İ İ Ö İ İ İ Ö İ ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ ğ ğ ğ ğ İ ğ ğ ğ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü ğ ğ Ö ğ ğ ğ Ö ğ ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ İ ğ ğ ğ Ö ğ ğ Ç ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ ğ Ç ğ ğ
Ç Ç Ç Ş İ ğ ğ ğ Ç Ş İ ğ Ç ğ ğ ğ Ç ğ Ş ğ ğ ğ Ç ğ Ş ğ ğ ğ ğ İ ğ İ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ
Ğ İ Ü Ş İ İ Ş İ Ş Ğ Ç Ö İĞİ Ç Ç ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ İ İ ğ ğ ğ ğ ğ ğ Ç Ç Ç Ş İ ğ ğ ğ Ç Ş İ ğ Ç ğ ğ ğ Ç ğ Ş ğ ğ ğ Ç ğ Ş ğ ğ ğ ğ İ ğ İ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ İ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü Ü İŞ İ İ ğ İ
ç ç ç ç ç
Ğ Ö Ş ç ç ç ç ç ç ç Ç Ş Ü Ş Ü ç ç ç ç Ö ç ç ç ç ç ç ç Ş ç ç Ö ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç Ö ç ç ç Ş ç ç ç Ö ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç
ö Ç ş ş ö ç ç ş ş ö ö ö Ç ö ş ş ö
Ğ Ğ Ğ Ğ Ğ Ğ ş ş ş ş ş ş ş ş ş ş ş ç ç ş ş ç ö ş ö ö ş ö ö ş ö Ç ş ş ö ç ç ş ş ö ö ö Ç ö ş ş ö Ğ Ğ Ğ Ğ ş Ğ ş ş ş ş ş ş ş ş ş ş ş ş ş ş ş ç ş ç ş ş ç ö ö ş ö ö ş ş ş ş ö ş ş ö Ğ Ğ Ğ Ğ ş Ğ ş Ğ ş ş ş ş ş ş
İĞİ ğ ş. ğ ş ğ ğ ğ Ş İ. ş ş. ş ğ ğ. ş ş ğ ş ş ş. ğ ş ş İ İ İ. ş ş
İĞİ ğ ş ğ ş ğ ğ ğ ğ ş ş ş Ş İ İ İ İ ş ş ş ğ ğ ş ş ğ ş ş ş ğ ş ş ş ğ ş ş ş ş ş İ İ İ ş ş ş ğ İ ş ş ş ğ ş ş ğ ş ş ş ğ ğ ş ş ş ğ ş ş ş ğ ğ ş ş ğ ş ğ ğ ğ ş ş ğ ğ ş ş ğ ş ğ ğ ş ğ İ ğ ğ ş ğ ğ ş ş ğ ş ğ ğ ş ş
Zeki Optimizasyon Teknikleri
Zeki Optimizasyon Teknikleri Yapay Sinir Ağları (Artificial Neural Network) Doç.Dr. M. Ali Akcayol Yapay Sinir Ağları Biyolojik sinir sisteminden esinlenerek ortaya çıkmıştır. İnsan beyninin öğrenme, eski
GEZGİN SATICI PROBLEMİ. Feasible Çözümler? Optimal Çözüm?
7..07 ÖRNEK : Bir ilaç satış temsilcisi no lu şehirde yaşamaktadır ve mevcut programında ziyaret etmesi gereken farklı şehirde yaşayan müşterileri mevcuttur. Şehirler arasındaki mesafeler tabloda verilmiştir.
Büyük Veri Analitiği (Big Data Analytics)
Büyük Veri Analitiği (Big Data Analytics) M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeffrey David
Tek Değişkenli Optimizasyon OPTİMİZASYON. Gradient Tabanlı Yöntemler. Bisection (İkiye Bölme) Yöntemi
OPTİMİZASYON Gerçek hayatta, çok değişkenli optimizasyon problemleri karmaşıktır ve nadir olarak problem tek değişkenli olur. Bununla birlikte, tek değişkenli optimizasyon algoritmaları çok değişkenli
DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 4903
Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: KESİKLİ OPTİMİZASYON MOD. VE ALGORİTMALARI Dersin Orjinal Adı: KESİKLİ OPTİMİZASYON MOD. VE ALGORİTMALARI Dersin Düzeyi:(Ön lisans, Lisans, Yüksek
YZM ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR
YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR Aç Gözlü (Hırslı) Algoritmalar (Greedy ) Bozuk para verme problemi Bir kasiyer 48 kuruş para üstünü nasıl verir? 25 kuruş, 10 kuruş,
GENETİK ALGORİTMA ÖZNUR CENGİZ HİLAL KOCA
GENETİK ALGORİTMA ÖZNUR CENGİZ 201410306014 HİLAL KOCA 150306024 GENETİK ALGORİTMA Genetik Algoritma yaklaşımının ortaya çıkışı 1970 lerin başında olmuştur. 1975 te John Holland ın makine öğrenmesi üzerine
AKILLI TATIL PLANLAMA SISTEMI
AKILLI TATIL PLANLAMA SISTEMI Istanbul Teknik Üniversitesi Bilgisayar ve Bilişim Fakültesi Bitirme Ödevi Ali Mert Taşkın [email protected] Doç. Dr. Feza Buzluca [email protected] Ocak 2017 İçerik Giriş
Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:
Genetik Algoritmalar Bölüm 1 Optimizasyon Yrd. Doç. Dr. Adem Tuncer E-posta: [email protected] Optimizasyon? Optimizasyon Nedir? Eldeki kısıtlı kaynakları en iyi biçimde kullanmak olarak tanımlanabilir.
GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ
GENETİK ALGORİTMALAR Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Genetik algoritmalar, Darwin in doğal seçim ve evrim teorisi ilkelerine dayanan bir arama ve optimizasyon yöntemidir.
METASEZGİSEL YÖNTEMLER. Genetik Algoritmalar
METASEZGİSEL YÖNTEMLER Genetik Algoritmalar 1970 li yıllarda John Holland tarafından geliştirilmiştir. 1989 yılında David E. Goldberg Genetik Genetik Algoritma Algoritma Uygulamaları üzerine klasik eser
PARÇACIK SÜRÜ OPTİMİZASYONU BMÜ-579 METASEZGİSEL YÖNTEMLER YRD. DOÇ. DR. İLHAN AYDIN
PARÇACIK SÜRÜ OPTİMİZASYONU BMÜ-579 METASEZGİSEL YÖNTEMLER YRD. DOÇ. DR. İLHAN AYDIN 1995 yılında Dr.Eberhart ve Dr.Kennedy tarafından geliştirilmiş popülasyon temelli sezgisel bir optimizasyon tekniğidir.
Genel Graf Üzerinde Mutlak 1-merkez
Genel Graf Üzerinde Mutlak 1-merkez Çözüm yöntemine geçmeden önce bazı tanımlara ihtiyaç vardır. Dikkate alınan G grafındaki düğümleri 1 den n e kadar numaralandırın. Uzunluğu a(i, j)>0 olarak verilen
YZM 5257 YAPAY ZEKA VE UZMAN SİSTEMLER DERS#6: GENETİK ALGORİTMALAR
YZM 5257 YAPAY ZEKA VE UZMAN SİSTEMLER DERS#6: GENETİK ALGORİTMALAR Sınıflandırma Yöntemleri: Karar Ağaçları (Decision Trees) Örnek Tabanlı Yöntemler (Instance Based Methods): k en yakın komşu (k nearest
AKADEMİK DEĞERLENDİRME KISTASLARI GENEL KURALLAR
AKADEMİK DEĞERLENDİRME KISTASLARI GENEL KURALLAR (DOĞU AKDENİZ ÜNİVERSİTESİ AKADEMİK PERSONELİN ÜNVAN TÜZÜĞÜ 6. Maddesi altında Üniversite Yönetim Kurulu Onayı ile hazırlanıp sunulmuştur. ) Aşağıdaki kurallar
Karınca Kolonisi Algoritmasının Zaman Çizelgelemesi Üzerine: Bir Modellemesi ve Uygulaması
Karınca Kolonisi Algoritmasının Zaman Çizelgelemesi Üzerine: Bir Modellemesi ve Uygulaması Hülya Özdağ 1, Nilgün Aygör 1, Aykut Parlak 2 1 Yıldız Teknik Üniversitesi Matematik Bölümü, İstanbul 2 Yıldız
GEZGİN SATICI PROBLEMİ İÇİN BİR MEMETİK ALGORİTMA ÖNERİSİ
GEZGİN SATICI PROBLEMİ İÇİN BİR MEMETİK ALGORİTMA ÖNERİSİ Engin Sansarcı İ.T.Ü. İşletme Fakültesi, İSTANBUL [email protected] Abdullah Aktel İ.T.Ü. İşletmeFakültesi, İSTANBUL [email protected]
BİL-142 Bilgisayar Programlama II
BİL-142 Bilgisayar Programlama II (C/C++) Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Giriş math Kütüphane Fonksiyonları Çok Parametreyle Fonksiyon Tanımı Fonksiyon
OPTİMİZASYON TEKNİKLERİ. Kısıtsız Optimizasyon
OPTİMİZASYON TEKNİKLERİ Kısıtsız Optimizasyon Giriş Klasik optimizasyon yöntemleri minimum veya maksimum değerlerini bulmak için türev gerektiren ve gerektirmeyen teknikler olarak bilinirler. Bu yöntemler
Algoritmalar. Çizge Algoritmaları. Bahar 2017 Doç. Dr. Suat Özdemir 1
Algoritmalar Çizge Algoritmaları Bahar 201 Doç. Dr. Suat Özdemir 1 En Kısa Yol Problemi Çizgelerdeki bir diğer önemli problem de bir düğümden diğer bir düğüme olan en kısa yolun bulunmasıdır. Bu problem
KOMBİNATORYAL OPTİMİZASYON
KOMBİNATORYAL OPTİMİZASYON İnsanların, daha iyi nasıl olabilir ya da nasıl elde edilebilir?, sorusuna cevap aramaları, teknolojinin gelişmesini sağlayan en önemli etken olmuştur. Gerçek hayatı daha kolay
VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN
VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN [email protected] İçerik Kümeleme İşlemleri Kümeleme Tanımı Kümeleme Uygulamaları Kümeleme Yöntemleri Kümeleme (Clustering) Kümeleme birbirine
Google Maps ve Genetik Algoritmalarla GSP Çözümü İçin Öneri
Google Maps ve Genetik Algoritmalarla GSP Çözümü İçin Öneri Onur KARASOY 1, Serkan BALLI 2 1 Muğla Sıtkı Koçman Üniversitesi Bilgi İşlem Dairesi Başkanlığı 2 Muğla Sıtkı Koçman Üniversitesi Bilişim Sistemleri
Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA
i GENETİK ALGORİTMA YAKLAŞIMIYLA ATÖLYE ÇİZELGELEME Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ OCAK 2005 ANKARA ii Serdar BİROĞUL tarafından hazırlanan
YZM 3217 YAPAY ZEKA DERS#10: KÜMELEME
YZM 317 YAPAY ZEKA DERS#10: KÜMELEME Sınıflandırma (Classification) Eğiticili (supervised) sınıflandırma: Sınıflandırma: Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğunu bilinir Eğiticisiz (unsupervised)
1.58 arasındaki her bir değeri alabileceği için sürekli bir
7.SUNUM Hatırlanacağı gibi, kesikli rassal değişkenler sonlu (örneğin; 0, 1, 2,...,10) veya sayılabilir sonsuzlukta (örneğin; 0, 1, 2,...) değerler alabilmektedir. Fakat birçok uygulamada, rassal değişkenin
1 Actions-> Generate Random TSP yolunu izleyerek 100 şehirden oluşan bir gezgin satıcı problemi oluşturunuz.
BAUN, Endüstri Mühendisliği Bölümü, Popülasyon Temelli Algoritmalar ACO-2 Laboratuvar Uygulaması 04.12.2017, C106 Yrd. Doç. Dr. İbrahim KÜÇÜKKOÇ Öncelikle uygulama kapsamında kullanacağımız acopt.jar dosyasını
Rastgele değişken nedir?
Rastgele değişken nedir? Şİmdiye kadar hep, kümelerden ve bu kümelerin alt kümelerinden (yani olaylar)dan bahsettik Bu kümelerin elemanları sayısal olmak zorunda değildi. Örneğin, yazı tura, kız erkek
EVREN, ÖRNEK, TEMSİLİYET. Prof. Mustafa Necmi İlhan
EVREN, ÖRNEK, TEMSİLİYET Prof. Mustafa Necmi İlhan MD, PhD, PhD, MBA Gazi Üniversitesi Tıp Fakültesi Halk Sağlığı AbD [email protected] 1 Neden Araştırma Yaparız? Bilimsel gerçeğe ulaşmak Bilinenlerin
FAALİYET TÜRLERİNE GÖRE KANITLAYICI BELGELER
FAALİYET TÜRLERİNE GÖRE KANITLAYICI BELGELER Araştırmacıların öncelikle ilgili yönetmeliği dikkatle incelemeleri ve faaliyetler için yönetmelikte belirtilen hususların şüpheye düşmeyecek şekilde değerlendirilmesine
Kümeler arası. Küme içi. uzaklıklar. maksimize edilir. minimize edilir
Kümeleme Analizi: Temel Kavramlar ve Algoritmalar Kümeleme Analizi Nedir? Her biri bir dizi öznitelik ile, veri noktalarının bir kümesi ve noktalar arasındaki benzerliği ölçen bir benzerlik ölçümü verilmiş
Kısıtsız Optimizasyon OPTİMİZASYON Kısıtsız Optimizasyon
OPTİMİZASYON Bu bölümde çok değişkenli kısıtsız optimizasyon problemlerinin çözüm yöntemleri incelenecektir. Bu bölümde anlatılacak yöntemler, kısıtlı optimizasyon problemlerini de çözebilmektedir. Bunun
Yapay Zeka İle Aramızdaki Fark
Yapay Zeka İle Aramızdaki Fark Yapay zeka kavramını az çok hepimiz duymuşuzdur. Yapay zeka denildiğinde aklımıza uçan robotlar, bizden daha zeki, Dünya savaşlarında başrol oynayan demirden yapılar gelir.
Sezgisel-Bilgili Arama (Heuristic-Informed Search)
Sezgisel-Bilgili rama (Heuristic-Informed Search) 1 Sezgisel-Bilgili rama (Heuristic-Informed Search) Kör arama yöntemleri basittir, fakat çoğu zaman pratik değildir. Kör arama yöntemleri bilgisiz yöntemlerdir.
HİTİT ÜNİVERSİTESİ AKADEMİK TEŞVİK ÖDEMESİNE ESAS OLARAK YAPILACAK PUANLAMADA İSTENEN BELGELER
HİTİT ÜNİVERSİTESİ AKADEMİK TEŞVİK ÖDEMESİNE ESAS OLARAK YAPILACAK PUANLAMADA İSTENEN BELGELER Faaliyet/Alt Faaliyet Türü Proje Araştırma Araştırma kitabı, ders kitabı, kitapta editörlük, kitap bölümü,
BİLİMSEL ARAŞTIRMA YÖNTEMLERİ
BİLİMSEL ARAŞTIRMA YÖNTEMLERİ Temel Kavramlar Dr. Seher Yalçın 3.2.2017 Dr. Seher Yalçın 1 Araştırmaların Sunumu Bir araştırma raporu, genellikle, üç kümede toplanabilen bölümler halinde düzenlenir. Bunlar:
Uzaktan Algılama Teknolojileri
Uzaktan Algılama Teknolojileri Ders 11 Hiperspektral Görüntülerde Kümeleme ve Sınıflandırma Alp Ertürk [email protected] Sınıflandırma Sınıflandırma işleminin amacı, her piksel vektörüne bir ve
YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ
YAPAY SİNİR AĞLARI Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ İÇERİK Sinir Hücreleri Yapay Sinir Ağları Yapısı Elemanları Çalışması Modelleri Yapılarına Göre Öğrenme Algoritmalarına Göre Avantaj ve
10.Hafta Minimum kapsayan ağaçlar Minimum spanning trees (MST)
1 10.Hafta Minimum kapsayan ağaçlar Minimum spanning trees (MST) Kapsayan ağaç Spanning Tree (ST) Bir Kapsayan Ağaç (ST); G, grafındaki bir alt graftır ve aşağıdaki özelliklere sahiptir. G grafındaki tüm
Temel ve Uygulamalı Araştırmalar için Araştırma Süreci
BÖLÜM 8 ÖRNEKLEME Temel ve Uygulamalı Araştırmalar için Araştırma Süreci 1.Gözlem Genel araştırma alanı 3.Sorunun Belirlenmesi Sorun taslağının hazırlanması 4.Kuramsal Çatı Değişkenlerin açıkça saptanması
SÜREKLĠ OLASILIK DAĞILIMLARI
SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde
