MAT223 AYRIK MATEMATİK
|
|
|
- Hande Cumali
- 10 yıl önce
- İzleme sayısı:
Transkript
1 MAT223 AYRIK MATEMATİK Gezgin Satıcı Problemi 9. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR Öğretim Yılı
2 Gezgin Satıcı Problemi Soru n tane şehri olan bir ülke tüm şehirleri birbirine bağlayan bir telefon ağı kurmak istiyor. Her bir şehirden bir diğerine doğrudan hat olmasına gerek yok. Ancak tüm şehirler birbiri ile bağlantılı olacak. Tekparça! Eğer bir şehirden diğer bir şehre bağlantı varsa, bu şehirler arasında doğrudan bir hat olmasına gerek yok. Döngü bulunmayacak! O halde istenen, yukarıdaki özellikleri sağlayan minimal çizge yani bir ağaç. Nokta sayısı n olan bir ağacın n 1 tane kenarı olduğuna göre sadece n 1 tane hat döşemek yeterlidir. 2/22 AYRIK MATEMATİK Anadolu Üniversitesi
3 Şehirler arasındaki mesafe, dağlar, göller vb. hatların maliyetlerini etkiliyor. Bu nedenle telefon ağı için hangi ağacın seçildiği önemli. Soru Herhangi iki şehir arasındaki hattın maliyeti verildiğinde maliyeti en düşük ağacı nasıl bulabiliriz? İlk akla gelen yöntem tüm mümkün ağaçları listeleyip, en düşük maliyetli olanı seçmek olabilir. Ancak, bu yöntem ifade edildiği kadar kolay uygulanamayabilir. Örneğin, sadece 10 şehir için bile Cayley Teoreminden, noktaları adlandırılmış 10 8 tane ağacın var olduğunu biliyoruz. Eğer 20 şehir varsa, bu durumda ağaç sayısı (10 23 ten fazla) olur. Bu durumda en düşük maliyetli ağacın bulunması hiç de kolay değil! 3/22 AYRIK MATEMATİK Anadolu Üniversitesi
4 Telefon hatlarının şu şekilde döşendiğini kabul edelim: Ülke en ucuz hattı döşeyebilecek kadar paraya sahip olduğunda bu hattı döşesin. Daha sonra yine en ucuz hattı döşeyebilecek kadar paraya sahip olduğunda bu hattı da döşesin. Böyle devam etsin. Ancak, en ucuz hat bir döngü oluşturuyorsa, o hattı döşemesin (biraz daha para biriktirsin). Böylece döngü bulundurmayan tekparça bir çizge yani, ağaç elde edilir. Soru Peki bu şekilde elde edilen ağaç maliyeti en düşük olan ağaç mı? Başlangıçta ucuz olanları, sonlarda ise pahalıları seçmek daha fazla para harcamaya mı sebep olur? Büyük bir şansla bu yöntemle elde edilen ağaç maliyeti en düşük ağaç olur. 4/22 AYRIK MATEMATİK Anadolu Üniversitesi
5 Gezgin Satıcı Problemi Büyük bir şansla diyoruz. Çünkü, problem biraz daha farklı olsaydı. Örneğin, herhangi iki şehir arasında iki farklı hat olma koşulu istenseydi (hatlardan birisi kesilirse diye). O zaman bu yöntemle elde edilen çizge en ucuz maliyetli çizge olmazdı. Gerçekten de şehirler ve bu şehirler arasındaki hatların maliyetleri aralarındaki uzaklığa bağlı olarak aşağıdaki gibi olsaydı 2 C B C D 1 D A 2 5/2 5/2 0 A B B 65/2 13/2 C C 2 C 1 D 1 D 0 A B A B Maliyet Maliyet /22 AYRIK MATEMATİK Anadolu Üniversitesi
6 Gezgin Satıcı Problemi Bir bölgedeki köyler arasına bir sulama kanalı inşa etmek istiyorsunuz. Elbette herhangi iki köy arasında doğrudan bir sulama kanalı inşa etmenize gerek yok. Yani, doğrudan bir hat inşa etmek yerine suyu üçüncü bir köy üzerinden de ulaştırabilirsiniz. Yeter ki, her köye su ulaşsın. Diğer taraftan köyler arasındaki dağlar, ormanlar gibi coğrafi koşullar da inşa edilecek kanalların maliyetine etki ediyor. Bu durumda en az maliyetle bu sulama sistemini nasıl inşa etmek gerekir? a b c d e f g e f a b a g d c d e c b f g /22 AYRIK MATEMATİK Anadolu Üniversitesi
7 a b c d e f g a b c d e f g a f 3 g b e c 5 d 7/22 AYRIK MATEMATİK Anadolu Üniversitesi
8 Şimdi tekrar maliyeti en düşük ağacı bulma problemimize geri dönelim ve anlatılan yöntemle bulunan ağacın gerçekten de maliyeti en düşük olan ağaç olduğunu kanıtlayalım. Bu yönteme Kruskal Algoritması denir. Bu yöntemle elde edilen optimal ağaç F olsun. Kanıtlamamız gereken herhangi başka bir ağacın maliyetinin en az F kadar olduğudur. G ağacı, F ağacından farklı herhangi bir ağaç olsun. Şimdi bu G ağacının maliyetinin F ağacının maliyetinden daha az olamayacağını gösterelim (maliyetler aynı olabilir). 8/22 AYRIK MATEMATİK Anadolu Üniversitesi
9 Gezgin Satıcı Problemi 11 F G /22 AYRIK MATEMATİK Anadolu Üniversitesi
10 Gezgin Satıcı Problemi F ağacını oluştururken G de olmayan ilk kenarı e ile gösterelim. 11 F G e /22 AYRIK MATEMATİK Anadolu Üniversitesi
11 Gezgin Satıcı Problemi Eğer e kenarını G ye eklersek, G ağacında bir döngü oluşur. Bu döngüye C diyelim. 11 F G e 3 2 C /22 AYRIK MATEMATİK Anadolu Üniversitesi
12 Gezgin Satıcı Problemi C döngüsü F ağacında yer almaz. Dolayısıyla, C döngüsünün F de olmayan f gibi bir kenarı vardır. Eğer G ye e yi ekler, f yi çıkarırsak bir başka ağaç elde ederiz. Bu ağacı da H ile gösterelim. 11 F G H e 3 2 C 5 6 f 12/22 AYRIK MATEMATİK Anadolu Üniversitesi
13 Şimdi H ağacının maliyetinin en fazla G ağacının maliyeti kadar olduğunu gösterelim. Ya da, G ile H nin sadece e ve f kenarları farklı olduğundan e kenarının maliyetinin en fazla f kenarı kadar olduğunu gösterelim: Bunun için tersini kabul edelim: f nin maliyeti e nin maliyetinden daha az olsun. O zaman şu soru sorulabilir: Neden ülke hatları oluştururken daha ucuz olan f hattını değil de e hattını seçti? Bunun tek bir nedeni olabilir: f yi seçince bir C döngüsü oluşuyordur. Fakat e kenarına kadar olan tüm kenarlar G nin de kenarı! Bu durumda C döngüsü G de olurdu. Ancak, G ağaç olduğundan bu olanaksız. Çelişki! O halde varsayım hatalı f nin maliyeti e den daha az olamaz. Dolayısıyla G ağacının maliyeti H ağacının maliyetinden az olamaz. 13/22 AYRIK MATEMATİK Anadolu Üniversitesi
14 Şimdi G ağacını H ağacı ile değiştirirsek, F ağacı ile daha çok kenarı ortak olan ve daha az maliyete sahip bir ağaç elde ederiz. Bu yöntemi tekrar tekrar uygularsak, sonunda F ağacına ulaşırız. O halde F ağacının maliyeti keyfi G ağacının maliyetinden daha fazla olamaz. 14/22 AYRIK MATEMATİK Anadolu Üniversitesi
15 Gezgin Satıcı Problemi Gezgin Satıcı Problemi (The Traveling Salesman Problem) Düzlemde n tane şehir (nokta) ve bu şehirlerin herhangi ikisi arasında doğrudan bir yol olsun. Ayrıca bu yollar ile seyahatlerin maliyetleri de verilmiş olsun. Tüm şehirleri ziyaret edip başladığı noktaya geri dönen en ucuz maliyetli döngüyü arayalım. Bu problem kombinatoryal optimizasyon teorisinin en önemli problemlerinden birisidir ve gezgin satıcı problemi olarak bilinir. Postacıların mektupları dağıtmasından, çöpçülerin çöpleri toplamasına kadar bir çok uygulaması vardır. Örneğin, bir matkabın bir bilgisayarın ana kartı üzerine delikler açıp tekrar başladığı konuma geri gelmesi gerektiğini düşünelim. Bu deliklerin sayısı binlerce olabilir. Matkabın delik deleceği bir noktadan diğer bir noktaya konumlanması belli bir zaman alacaktır. İşte bu işlem için gereken toplam zamanı minimize etme problemi de gezgin satıcı problemine bir örnek olarak verilebilir. 15/22 AYRIK MATEMATİK Anadolu Üniversitesi
16 Gezgin Satıcı Problemi Gezgin Satıcı Problemi (The Traveling Salesman Problem) Soru Gezgin satıcı problemi ile Hamilton döngüsü arasında nasıl bir bağlantı vardır? K 4 tam çizgesinde 3 farklı Hamilton Döngüsü vardır. d c a b c d a a c d b a a b d c a a b Bir tam çizge üzerindeki gezgin satıcı probleminin çözümü elbette bir Hamilton döngüsü olur. Soru Bir K n tamçizgesinde kaç farklı Hamilton döngüsü vardır? (Ödev) 16/22 AYRIK MATEMATİK Anadolu Üniversitesi
17 Gezgin Satıcı Problemi (The Traveling Salesman Problem) n noktalı bir G çizgesi verildiğinde bu çizgenin noktaları arasında şöyle bir uzaklık tanımlayalım: Komşu noktaların birbirine uzaklığı 1, komşu olmayan iki noktanın birbirine olan uzaklığı da 2 birim olsun. Bu uzaklık ile verilen n noktalı G çizgesinde bir Hamilton döngüsü varsa, bu döngü aynı zamanda gezgin satıcı probleminin bir çözümü olur ve optimal maliyet n olur. Çizgede bir Hamilton döngüsü yoksa gezgin satıcı probleminin çözümünün maliyeti en az n+1 olacaktır. Böylece, gezgin satıcı problemini çözecek bir algoritmamız varsa, bu algoritma yardımıyla çizgede bir Hamilton döngüsünün olup olmadığını da söyleyebiliriz. 17/22 AYRIK MATEMATİK Anadolu Üniversitesi
18 Gezgin Satıcı Problemi (The Traveling Salesman Problem) Gezgin satıcı problemi, optimal ağacı bulma probleminden çok daha zor bir problemdir. Ne yazık ki gezgin satıcı problemini çözmek için Kruskal Algoritması gibi bu ders kapsamında verebileceğimiz basit bir algoritma yoktur. Elbette literatürde çeşitli algoritmalar ve bu algoritmaların uygulamaları yer almaktadır. Örneğin, 2004 yılında İsveç in şehri için gezgin satıcı problemi çözülmüştür (yaklaşık kilometre). Şu anda rekor şehir civarındadır (devre tasarımı). ( 18/22 AYRIK MATEMATİK Anadolu Üniversitesi
19 Gezgin Satıcı Problemi (The Traveling Salesman Problem) Fakat basit bir algoritmayla en iyi turu bulamasak da en iyi turun maliyetinden en fazla iki kat maliyete sahip turu kolayca bulabiliriz. Bunun için verilen çizgenin üçgen eşitsizliğini sağladığını kabul edeceğiz. Yani, bir i noktasından j noktasına gitmenin maliyeti c(ij) ile gösterilecek olursa, c(ij)+c(jk) c(ik) olduğunu kabul edeceğiz (doğrudan i den k ya gitmenin maliyeti j ye uğrayarak k ya gitmenin maliyetinden daha az olsun). Bu eşitsizlik doğal bir eşitsizlik gibi görünse de bazen hava yolu şirketlerinde aktarmalı uçuşların maliyetleri doğrudan uçuşların maliyetinden daha az olabiliyor. 19/22 AYRIK MATEMATİK Anadolu Üniversitesi
20 Gezgin Satıcı Problemi (The Traveling Salesman Problem) Algoritmamız şöyle: Önce verilen noktaları birleştiren optimal T ağacını bulalım. Bu ağacın maliyetine c diyelim. Bu ağacı kullanarak daha önce düzlemsel kod elde etmek için kullanılan yönteme benzer şekilde ağacın etrafında dolaşalım. Ancak, bir i noktasından j noktasına giderken, j noktasına daha önce uğramışsak, onu atlayıp daha önce uğramadığımız k noktasına geçelim (kestirmeden gidelim). 20/22 AYRIK MATEMATİK Anadolu Üniversitesi
21 Gezgin Satıcı Problemi Gezgin Satıcı Problemi (The Traveling Salesman Problem) Ders kitabındaki çözümlü alıştırmalar ve yi inceleyiniz. 21/22 AYRIK MATEMATİK Anadolu Üniversitesi
22 Gezgin Satıcı Problemi (The Traveling Salesman Problem) Teorem Üçgen eşitsizliğini sağlayan bir çizgede yukarıdaki yöntemle elde edilen turun maliyeti gezgin satıcı probleminin çözümünün maliyetinin iki katından az olur. Kanıt. Açıktır ki T ağacının maliyeti c ise bu ağacın etrafını dolaşmanın maliyeti 2c olur. Hatta üçgen eşitsizliğinden ve (varsa) kestirme yolları kullandığımızdan maliyet 2c den de az olabilir. Peki bu yöntemle elde ettiğimiz turun maliyetinin optimal turun maliyeti ile nasıl bir bağlantısı var? Açıktır ki, optimal ağacın maliyeti, optimal turun maliyetinden daha azdır. Çünkü optimal turun bir kenarını çıkararak bir ağaç elde edebiliriz (hatta bu ağaç bir yol olur). Ancak, bu ağaç optimal olmayabilir. Fakat kesinlikle optimal turdan daha az maliyete sahiptir. Böylece yukarıdaki yöntemi kullanarak elde ettiğimiz turun maliyeti optimal turun maliyetinin en fazla iki katı olur. 22/22 AYRIK MATEMATİK Anadolu Üniversitesi
MAT223 AYRIK MATEMATİK
MAT223 AYRIK MATEMATİK Gezgin Satıcı Problemi 9. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Gezgin Satıcı Problemi Soru n tane şehri olan bir
MAT223 AYRIK MATEMATİK
MAT223 AYRIK MATEMATİK Euler Formülü 12. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Saldıraya Uğrayan Gezegen Euler Formülü Saldıraya Uğrayan
MAT223 AYRIK MATEMATİK
MAT223 AYRIK MATEMATİK Çizgeler 7. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Çift ve Tek Dereceler Çizgeler Çift ve Tek Dereceler Soru 51 kişinin
MAT223 AYRIK MATEMATİK
MAT223 AYRIK MATEMATİK Ağaçlar 8. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Ağacın Tanımı Ağaçlar Ağacın Tanımı Tanım Döngüsü olmayan tekparça
MAT223 AYRIK MATEMATİK
MAT223 AYRIK MATEMATİK Geometride Kombinatorik 11. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Köşegenlerin Arakesiti Geometride Kombinatorik
A GRUBU Noktaları adlandırılmış K 6 tam çizgesinin tam olarak 3 noktalı kaç tane alt çizgesi vardır? A) 9 B) 20 C) 24 D) 60 E) 160
A GRUBU.. Numarası :............................................. Adı Soyadı :............................................. SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına
3. Herhangi bir G çizgesi için aşağıdaki önermelerden hangi(ler)si her zaman doğrudur?
Ayrık Hesaplama Yapıları A GRUBU.0.05 Numarası : Adı Soyadı : SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem ile yazınız.
MAT223 AYRIK MATEMATİK
MAT223 AYRIK MATEMATİK Geometride Kombinatorik 11. Bölüm Doç. Dr. Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2011 2012 Güz Dönemi Köşegenlerin Arakesiti Geometride Kombinatorik
SINAV YÖNERGESİ. Numarası : CEVAP. Adı Soyadı : ANAHTARI A) 512 B) 513 C) 256 D) 1024 E) 1025 A) 252 B) 256 C) 3024 D) 126 E) =?
Ayrık Hesaplama Yapıları A GRUBU 0.0.01 Numarası Adı Soyadı : CEVAP : ANAHTARI SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem
2. K 6 tam çizgesinde kaç farklı mükemmel eşleme vardır? 4. Düzlemsel kodu (planar code) olan ağacın kaç köşe noktası vardır?
Ayrık Hesaplama Yapıları A GRUBU 0.06.01 Numarası :. K 6 tam çizgesinde kaç farklı mükemmel eşleme vardır? Adı Soyadı : SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına
SORULAR. 2. Noktaları adlandırılmamış 6 noktalı kaç ağaç vardır? Çizerek cevaplayınız.
MAT3 AYRIK MATEMATİK DERSİ DÖNEM SONU SINAVI 4.0.0 Numarası :..................................... Adı Soyadı :..................................... SORULAR. Prüfer kodu ( 3 3 ) olan ağacı çiziniz.. Noktaları
A GRUBU Her bir yüzü düzgün beşgen olan düzgün 12-yüzlünün kaç ayrıtı vardır? A) 30 B) 24 C) 12 D) 36 E) 48
Numarası : Adı Soyadı : SINAV YÖNERGESİ 2. K 5 tam çizgesinin bir kenarı çıkarılarak elde edilen çizgenin köşe noktaları en az kaç renk ile boyanabilir? A) 3 B) 4 C) 2 D) 5 E) 6 İşaretlemelerinizde kurşun
MAT223 AYRIK MATEMATİK
MAT223 AYRIK MATEMATİK Çizgeler 7. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Çift ve Tek Dereceler Çizgeler Çift ve Tek Dereceler Soru 51 kişinin
MAT223 AYRIK MATEMATİK
MAT223 AYRIK MATEMATİK Kombinatoryal Olasılık 5. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Olaylar ve Olasılıklar Kombinatoryal Olasılık Olaylar
T.C. ANADOLU ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ ÇİZGELERİ BOYAMAK HAZIRLAYAN FERHAN ÇİFTCİ 27991225984. DANIŞMAN Doç. Dr.
T.C. ANADOLU ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ ÇİZGELERİ BOYAMAK HAZIRLAYAN FERHAN ÇİFTCİ 27991225984 DANIŞMAN Doç. Dr. EMRAH AKYAR MAT401 MATEMATİK UYGULAMALARI 2011 2012 GÜZ DÖNEMİ 1 Ön Bilgiler
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
MAT223 AYRIK MATEMATİK
MAT223 AYRIK MATEMATİK Fibonacci Sayıları 4. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Fibonacci nin Tavşanları Fibonacci Sayıları Fibonacci
Sevdiğim Birkaç Soru
Sevdiğim Birkaç Soru Matematikte öyle sorular vardır ki, yanıtı bulmak önce çok zor gibi gelebilir, sonradan saatler, günler, aylar, hatta kimi zaman yıllar sonra yanıtın çok basit olduğu anlaşılır. Bir
GEZGİN SATICI PROBLEMİ. Feasible Çözümler? Optimal Çözüm?
7..07 ÖRNEK : Bir ilaç satış temsilcisi no lu şehirde yaşamaktadır ve mevcut programında ziyaret etmesi gereken farklı şehirde yaşayan müşterileri mevcuttur. Şehirler arasındaki mesafeler tabloda verilmiştir.
VERİ YAPILARI. GRAPH LAR Düzce Üniversitesi Teknoloji Fakültesi ÖĞR.GÖR.GÜNAY TEMÜR 1
VERİ YAPILARI GRAPH LAR Düzce Üniversitesi Teknoloji Fakültesi ÖĞR.GÖR.GÜNAY TEMÜR 1 GRAPH (ÇİZGE - GRAF) Terminoloji Çizge Kullanım Alanları Çizge Gösterimi Komşuluk Matrisi Komşuluk Listesi Çizge Üzerinde
4.3. Türev ile İlgili Teoremler
4.. Türev ile İlgili Teoremler Bu kesimde ortalama değer teoremini vereceğiz. Ortalama değer teoremini ispatlarken kullanılacak olan Fermat teoremini ve diğer bazı teoremleri ispat edeceğiz. 4...Teorem
Bahçe Sorusu Ali Nesin
Bahçe Sorusu Ali Nesin 1. Giriş. Daire biçiminde bir bahçeye, merkezden başlayarak, birer metre aralıklarla yatay ve dikey sıralanmış fidan dikmeyi düşünüyoruz. İşte bahçemizi ve fidanları dikeceğimiz
BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1
BMT 206 Ayrık Matematik Yük. Müh. Köksal GÜNDOĞDU 1 Graph (Çizge) Yük. Müh. Köksal GÜNDOĞDU 2 Graph (Çizge) Köşe (vertex) adı verilen düğümlerden ve kenar (edge) adı verilip köşeleri birbirine bağlayan
köşe (vertex) kenar (edg d e)
BÖLÜM 7 köşe (vertex) kenar (edge) Esk den Ank ya bir yol (path) Tanım 7.1.1: Bir G çizgesi (ya da yönsüz çizgesi) köşelerden oluşan bir V kümesinden ve kenarlardan oluşan bir E kümesinden oluşur. Herbir
= 646 ] (n+2) 2 1 = n 2 + 4n+4 1 = (n 2 1)+4(n+1) MAT223 AYRIK MATEMATİK DERSİ 2.ARA SINAVI ÇÖZÜMLER
MAT3 AYRIK MATEMATİK DERSİ.ARA SINAVI 18.1.009 ÇÖZÜMLER 1. G çizgesinin silindiğinde kalan çizge tek parça olacak şekildeki kenarlarını birer birer silelim (G yoldan farklı olduğundan en az bir böyle bir
GRAPH LAR Düzce Üniversitesi Teknoloji Fakültesi VERİ YAPILARI. Bilgisayar Mühendisliği ÖĞR.GÖR.GÜNAY TEMÜR 1
VERİ YAPILARI GRAPH LAR Düzce Üniversitesi Teknoloji Fakültesi Bilgisayar Mühendisliği ÖĞR.GÖR.GÜNAY TEMÜR 1 GRAPH (ÇİZGE - GRAF) Terminoloji Çizge Kullanım Alanları Çizge Gösterimi Komşuluk Matrisi Komşuluk
Lineer Denklem Sistemleri
Lineer Denklem Sistemleri Yazar Yrd. Doç.Dr. Nezahat ÇETİN ÜNİTE 3 Amaçlar Bu üniteyi çalıştıktan sonra; Lineer Denklem ve Lineer Denklem Sistemleri kavramlarını öğrenecek, Lineer Denklem Sistemlerinin
Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak
10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.
YZM 2116 Veri Yapıları
YZM 2116 Veri Yapıları Yrd. Doç. Dr. Deniz KILINÇ Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Yazılım Mühendisliği BÖLÜM - 11 Bu bölümde, Graph (Çizge - Graf) Terminoloji Çizge Kullanım
BÖLÜM III: Şebeke Modelleri. Şebeke Kavramları. Şebeke Kavramları. Şebeke Kavramları. Yönlü Şebeke (Directed Network) Dal / ok
8.0.0 Şebeke Kavramları BÖLÜM III: Şebeke Modelleri Şebeke (Network) Sonlu sayıdaki düğümler kümesiyle, bunlarla bağlantılı oklar (veya dallar) kümesinin oluşturduğu yapı şeklinde tanımlanabilir ve (N,A)
1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI
Reel sayılar kümesinin "küçük ya da eşit", bağıntısı ile sıralanmış olduğunu biliyoruz. Bu bağıntı herhangi bir X kümesine aşağıdaki şekilde genelleştirilebilir. Bir X kümesi üzerinde aşağıdaki yansıma,
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
Algoritmalar. Çizge Algoritmaları. Bahar 2017 Doç. Dr. Suat Özdemir 1
Algoritmalar Çizge Algoritmaları Bahar 201 Doç. Dr. Suat Özdemir 1 En Kısa Yol Problemi Çizgelerdeki bir diğer önemli problem de bir düğümden diğer bir düğüme olan en kısa yolun bulunmasıdır. Bu problem
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
Uzayda iki doğrunun ortak dikme doğrusunun denklemi
Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse
10.Hafta Minimum kapsayan ağaçlar Minimum spanning trees (MST)
1 10.Hafta Minimum kapsayan ağaçlar Minimum spanning trees (MST) Kapsayan ağaç Spanning Tree (ST) Bir Kapsayan Ağaç (ST); G, grafındaki bir alt graftır ve aşağıdaki özelliklere sahiptir. G grafındaki tüm
Ders 8: Konikler - Doğrularla kesişim
Ders 8: Konikler - Doğrularla kesişim Geçen ders RP 2 de tekil olmayan her koniğin bir dönüşümün ardından tek bir koniğe dönüştüğü sonucuna vardık; o da {[x : y : z x 2 + y 2 z 2 = 0]} idi. Bu derste bu
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
18.034 İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
SU DALGALARINDA GİRİŞİM
SU DALGALARINDA GİRİŞİM Yukarıda iki kaynağın oluşturduğu dairesel su dalgalarının meydana getirdiği girişim deseni gösterilmiştir Burada kesikli çizgiler dalga çukurlarını, düz çizgiler dalga tepelerini
ÇARPANLAR ve KATLAR. Uygulama-1. Asal Sayılar. Pozitif Bir Tam Sayının Çarpanlarını Bulma. Aşağıdaki sayıların çarpanlarını (bölenlerini) bulunuz.
Asal Sayılar Sadece kendisine ve sayısına bölünebilen 'den büyük tam sayılara asal sayı denir. En küçük asal sayı 2'dir ÇARPANLAR ve KATLAR Uygulama- Aşağıdaki sayıların çarpanlarını (bölenlerini) 36=
İZMİR İN GEZGİN SATICISI
ÖZEL EGE LİSESİ İZMİR İN GEZGİN SATICISI HAZIRLAYAN ÖĞRENCİLER: Aylin RAMYAR Doruk ÇAKMAKÇI DANIŞMAN ÖĞRETMEN: Serenay YILMAZ İZMİR 2014 İÇİNDEKİLER 1. PROJENİN AMACI... 3 2. GİRİŞ... 3 3. ÖN BİLGİLER...
VEKTÖR UZAYLARI 1.GİRİŞ
1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.
10. DİREKT ÇARPIMLAR
10. DİREKT ÇARPIMLAR Teorem 10.1. H 1,H 2,, H n bir G grubunun alt gruplarının bir ailesi ve H = H 1 H 2 H n olsun. Aşağıdaki ifadeler denktir. a ) dönüşümü altında dır. b) ve olmak üzere her yi tek türlü
BÖLÜM IV. olsa r s(mod p) bulunur ki, bu mümkün değildir. Ayrıca bu sayı takımındaki hiçbir sayı p tarafından bölünmez.
BÖLÜM IV (KÜÇÜK FERMAT VE WİLSON TEOREMLERİ Teorem 4. (Fermat Teoremi F a olan bir asal sayı olsun. Bu durumda a (mod İsat: a sayısının a a a K ( a gibi ilk ( katından oluşan sayı takımını gözönüne alalım.
Beyin Cimnastikleri (I) Ali Nesin
Beyin Cimnastikleri (I) Ali Nesin S eks, yemek ve oyun doğal zevklerdendir. Her memeli hayvan hoşlanır bunlardan. İlk ikisi konumuz dışında. Üçüncüsünü konu edeceğiz. 1. İlk oyunumuz şöyle: Aşağıdaki dört
5. Salih Zeki Matematik Araştırma Projeleri Yarışması. PROJE ADI Düzensizlikten Düzene: Çeşitkenar Üçgen Üzerinde Eşkenar Üçgen
5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJE ADI Düzensizlikten Düzene: Çeşitkenar Üçgen Üzerinde Eşkenar Üçgen Eslem Nur KELEŞOĞLU Muhammet Enes ÖRCÜN ÖZEL BAŞAKŞEHİR ÇINAR FEN LİSESİ İSTANBUL,
MAT223 AYRIK MATEMATİK
MAT223 AYRIK MATEMATİK Kombinatoryal Olasılık 5. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Olaylar ve Olasılıklar Kombinatoryal Olasılık Olaylar
ÇARPANLAR VE KATLAR ÖĞRENİYORUM
ÖĞRENİYORUM Bir pozitif tam sayıyı birden fazla pozitif tam sayının çarpımı şeklinde yazarken kullandığımız her bir sayıya o sayının çarpanı denir. Örnek: nin çarpanları,, 3, 4, 6 ve dir. UYGULUYORUM Verilmeyen
İSTANBUL III. BİLİM OLİMPİYATI
İSTANBUL III. BİLİM OLİMPİYATI MATEMATİK SBELIAN Bu çalışma notunda İstanbul Bilim Olimpiyatı matematik sorularının bir bölümünün soru metinleri ve çözümleri verilmiştir. Soruların tamamının yayın hakkı
T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A
T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 İyi Sıralama 5 Bibliography 13 1 İyi Sıralama Well Ordering İyi sıralama kavramı, doğal sayıların
MAT223 AYRIK MATEMATİK
MAT223 AYRIK MATEMATİK Çizgelerde Eşleme 10. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Bir Dans Problemi Çizgelerde Eşleme Bir Dans Problemi
JBMO c Genç Balkan Matematik Olimpiyatları (JBMO) her yıl katılımcı 10 ülkeden
Genç Balkan Matemat ık Ol ımp ıyatı JBMO 2009 Sorular ve Çözümler ı c www.sbelian.wordpress.com [email protected] Genç Balkan Matematik Olimpiyatları (JBMO) her yıl katılımcı 10 ülkeden gelen
EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak
EM302 Yöneylem Araştırması 2 Dr. Özgür Kabak TP Çözümü TP problemlerinin çözümü için başlıca iki yaklaşım vardır kesme düzlemleri (cutting planes) dal sınır (branch and bound) tüm yaklaşımlar tekrarlı
Ders 10: Düzlemde cebirsel eğriler
Ders 10: Düzlemde cebirsel eğriler İzdüşümsel geometride bir doğruyu derecesi 1 olan homojen bir polinomun sıfırları kümesi olarak tarif ettik. Bir kuadrik, derecesi 2 olan homojen bir polinomla anlatılıyordu
için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun.
11. Cauchy Teoremi ve p-gruplar Bu bölümde Lagrange teoreminin tersinin doğru olduğu bir özel durumu inceleyeceğiz. Bu teorem Cauchy tarafından ispatlanmıştır. İlk olarak bu teoremi sonlu değişmeli gruplar
ÇİZGE KURAMI KESİKLİ MATEMATİKSEL YAPILAR GÜZ
ÇİZGE KURAMI KESİKLİ MATEMATİKSEL YAPILAR 2012-2013 GÜZ Çizgeler Yollar ve Çevrimler Çizge Olarak Modelleme Çizge Olarak Modelleme Yönlü Çizge Kenar - Köşe 2 / 90 Çizgeler Yollar ve Çevrimler Çizge Olarak
MAT223 AYRIK MATEMATİK
MAT223 AYRIK MATEMATİK Fibonacci Sayıları 4. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Fibonacci nin Tavşanları Fibonacci Sayıları Fibonacci
8. HOMOMORFİZMALAR VE İZOMORFİZMALAR
8. HOMOMORFİZMALAR VE İZOMORFİZMALAR Şimdiye kadar bir gruptan diğer bir gruba tanımlı olan fonksiyonlarla ilgilenmedik. Bu bölüme aşağıdaki tanımla başlayalım. Tanım 8.1: ve iki grup ve f : G H bir fonksiyon
Graf Veri Modeli. Düğümler kümesi. Kenarlar kümesi
Graf Veri Modeli Graf, bir olay veya ifadenin düğüm ve çizgiler kullanılarak gösterilme şeklidir. Fizik, Kimya gibi temel bilimlerde ve mühendislik uygulamalarında ve tıp biliminde pek çok problemin çözümü
Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)
AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
Özdeğer ve Özvektörler
Özdeğer ve Özvektörler Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; bir lineer dönüşümün ve bir matrisin özdeğer ve özvektör kavramlarını anlayacak, bir dönüşüm matrisinin
YZM ALGORİTMA ANALİZİ VE TASARIM DERS#6: AZALT VE FETHET YÖNTEMİ
YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#6: AZALT VE FETHET YÖNTEMİ Azalt ve Fethet Algoritmaları Problemi daha küçük bir örneğine çevir: Küçük örneği çöz Çözümü asıl probleme genişlet 3 tipi vardır:
KESİN PROJE RAPORU PROJENİN ADI PROJEYİ HAZIRLAYANLAR BABÜR NEDİM ÇAĞATAY OKUL ADI VE ADRESİ DANIŞMAN ÖĞRETMEN
KESİN PROJE RAPORU PROJENİN ADI HANGİ ADAYI SEÇELİM? PROJEYİ HAZIRLAYANLAR BABÜR NEDİM ÇAĞATAY OKUL ADI VE ADRESİ ÖZEL KÜLTÜR FEN LİSESİ ATAKÖY 9.-10. KISIM, 34156 BAKIRKÖY - İSTANBUL DANIŞMAN ÖĞRETMEN
1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.
1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa
1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)
T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A
T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 Denklik Bağıntıları 5 Bibliography 13 1 Denklik Bağıntıları 1 1denklik 1.1 Eşitlik Günlük
Singapur Matematik Olimpiyatı Soruları
Singapur Matematik Olimpiyatı Soruları 1.) 1, 1, 1,., 1 sayıları tahtaya yazılıyor. Burak x ve y gibi iki sayı seçip bunları siliyor ve 1 2 3 2010 x+y+xy sayısını yazıyor. Burak bu işleme tahtada tek sayı
MAT223 AYRIK MATEMATİK
MAT3 AYRIK MATEMATİK 4 Ders Doç Dr Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 00 0 Güz Dönemi 3 yüzyılda İtalyan matematikçi Leonardo Fibonacci aşağıdaki soruyu ortaya atmıştır:
Graflar bilgi parçaları arasındaki ilişkileri gösterirler.
Graflar (Graphs) Graf gösterimi Uygulama alanları Graf terminolojisi Depth first dolaşma Breadth first dolaşma Topolojik sıralama Yrd.Doç.Dr. M. Ali Akcayol Graflar Graflar bilgi parçaları arasındaki ilişkileri
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
2 şeklindeki bütün sayılar. 2 irrasyonel sayısı. 2 irrasyonel sayısından elde etmekteyiz. Benzer şekilde 3 irrasyonel sayısı
1.8.Reel Sayılar Kümesinin Tamlık Özelliği Rasyonel sayılar kümesi ile rasyonel olmayan sayıların kümesi olan irrasyonel sayılar kümesinin birleşimine reel sayılar kümesi denir ve IR ile gösterilir. Buna
Zeki Optimizasyon Teknikleri
Zeki Optimizasyon Teknikleri (nt lgorithm) Doç.Dr. M. li kcayol 996 yılında Marco Dorigo tarafından ortaya atılmıştır. Temel olarak karıncaların yiyecek madde ile yuvaları arasındaki en kısa yolu bulmalarından
için Örnek 7.1. simetri grubunu göz önüne alalım. Şu halde dür. Şimdi kalan sınıflarını göz önüne alalım. Eğer ve olarak alırsak işlemini kullanarak
7. Bölüm Grupları olmak üzere grubunu nasıl inşa ettiğimizi hatırlayalım. grubunun alt grubu grubu tüm olacak şekilde tüm sınıflardan oluşmuştur. Sınıfların toplamını ile, yani ile tanımlamıştık. Şimdi
7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;
İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit
( KARMAŞIK SAYI MODÜL VE ÖZELLİKLERİ İKİ KARMAŞIK SAYI ARASI UZAKLIK DÜZLEMDE BELİRTTİĞİ BÖLGELER ) 1) z = z = i.z = z =... 2) z 1.
BİR KARMAŞIK SAYININ MUTLAK DEĞERI (MODÜLÜ) Karmaşık düzlemde, bir karmaşık sayıya karşılık gelen noktanın (A noktasının), başlangıç noktasına uzaklığına bu sayının mutlak değeri (modülü) denir ve z şeklinde
MAT223 AYRIK MATEMATİK
MAT223 AYRIK MATEMATİK Saymanın Temelleri 1. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Ayşe nin Doğum Günü Partisi Saymanın Temelleri Ayşe
Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.
Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)
11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 8. Konu TORK VE DENGE ETKİNLİK VE TEST ÇÖZÜMLERİ
11. SINI NU ANAIMI 1. ÜNİE: UVVE VE HAREE 8. onu R VE DENGE EİNİ VE ES ÇÖZÜMERİ 8 ork ve Denge 1. Ünite 8. onu (ork ve Denge) A nın Çözümleri 1. Çubuk dengede olduğuna göre noktasına göre toplam tork sıfırdır.
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
x 2i + A)( 1 yj 2 + B) u (v + B), y 1
Ders 11: Örnekler 11.1 Kulplarla inşalar Bu bölümde kulpları birbirine yapıştırıp tanıdık manifoldlar elde edeceğiz. Artık bu son ders. Özellikle dersin ikinci bölümünde son meyveleri toplamak adına koşarak
GENETİK ALGORİTMALAR BÜŞRA GÜRACAR
GENETİK ALGORİTMALAR BÜŞRA GÜRACAR 201420404036 İÇERİK Genetik Algoritmanın, Amacı Kullanım Alanları Kavramları Uygulama Adımları Parametreler Genetik Algoritma Kodlama Türleri Genetik Algoritma Genetik
2. (v+w+x+y+z) 8 ifadesinin açılımında kaç terim vardır? 3. log 5 0, 69897 olduğuna göre 50 10 sayısı kaç basamaklıdır?
Ayrık Hesaplama Yapıları A GRUBU 3.03.0 Numarası Adı Soyadı : CEVAP : ANAHTARI SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem
6. Ders. Mahir Bilen Can. Mayıs 16, 2016
6. Ders Mahir Bilen Can Mayıs 16, 2016 Bu derste lineer cebirdeki bazı fikirleri gözden geçirip Lie teorisine uygulamalarını inceleyeceğiz. Bütün Lie cebirlerinin cebirsel olarak kapalı ve karakteristiği
Çemberde Açılar ve Yaylar
Çemberde Açılar ve Yaylar 13.12.2012 Akdeniz Üniversitesi/Antalya Bilgisayar-1 Dersi Projesi İçindekiler KONU HAKKINDA GENEL BİLGİ... 3 ÇEMBERLE İLGİLİ TEMEL KAVRAMLAR... 4 ÇEMBERDE YAYLAR... 5 ÇEMBERDE
İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48
İÇİNDEKİLER Önsöz...2 Önermeler ve İspat Yöntemleri...3 Küme Teorisi...16 Bağıntı...26 Fonksiyon...38 İşlem...48 Sayılabilir - Sonlu ve Sonsuz Kümeler...56 Genel Tarama Sınavı...58 Önermeler ve İspat Yöntemleri
Bir odada sonsuz say da insan n bulundu unu varsayal m. Bu
Ramsey Teoremi Bir odada sonsuz say da insan n bulundu unu varsayal m. Bu odada bulunan herhangi iki kifli birbirlerini ya tan rlar ya da tan mazlar. Buras belli. Yan t belli olmayan soru flu: Bu odadan,
ARALARINDA ASAL SAYILAR
ARALARINDA ASAL SAYILAR Bir ( 1 ) sayısı her sayının bölenidir. İki tamsayının birden başka ortak böleni yoksa böyle iki tamsayıya aralarında asal tam sayılar denir. İki tamsayı asal sayı olmak zorunda
İlkokulu - 3/ Sınıfı *** Matematik *** Geometrik şekiller - 3
İlkokulu - 3/ Sınıfı *** Matematik *** Geometrik şekiller - 3 Adım Soyadım : Okul Numaram:. S ü l e y m a n O C A K S ü l e y m a n O C A K S O ü l C e y A m a K n İlkokulu - 3/ Sınıfı *** Matematik ***
Sıfırdan farklı a, b, c tam sayıları için aşağıdaki özellikler sağlanır.
SAYILAR TEORİSİ 1 Bölünebilme Bölme Algoritması: Her a ve b 0 tam sayıları için a = qb + r ve 0 r < b olacak şekilde q ve r tam sayıları tek türlü belirlenebilir. r sayısı a nın b ile bölümünden elde edilen
Cevap : B. Cevap : D Not : a b a b a. Cevap: C
07 KPSS GY-GK MATEMATİK SORULARI VE ÇÖZÜMLERİ (ÖSYM-.05.07) 7 7 7 4 9 4 9 4 9 0 5 5 5 6 6 6 5 9 0 4 9 5 6 5 5 5 6 6 buluruz. 5 9. 4. 4.0 0 5 0 0 5 5 0 5 5. 5 5 5 buluruz. 5 Cevap : Cevap : D Not : a b
Ar tık Matematiği Çok Seveceksiniz!
Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.
GEZGİN SATICI PROBLEMİ İÇİN BİR MEMETİK ALGORİTMA ÖNERİSİ
GEZGİN SATICI PROBLEMİ İÇİN BİR MEMETİK ALGORİTMA ÖNERİSİ Engin Sansarcı İ.T.Ü. İşletme Fakültesi, İSTANBUL [email protected] Abdullah Aktel İ.T.Ü. İşletmeFakültesi, İSTANBUL [email protected]
KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I
KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I 4.1. Dışbükeylik ve Uç Nokta Bir d.p.p. de model kısıtlarını aynı anda sağlayan X X X karar değişkenleri... n vektörüne çözüm denir. Eğer bu
8. HOMOMORFİZMALAR VE İZOMORFİZMALAR
8. HOMOMORFİZMALAR VE İZOMORFİZMALAR Şimdiye kadar bir gruptan diğer bir gruba tanımlı olan fonksiyonlarla ilgilenmedik. Bu bölüme aşağıdaki tanımla başlayalım. Tanım 8.1: G, ve H, iki grup ve f : G H
B: Bu şekildeki her bir nokta dikdörtgenin noktalarını temsil eder.
2. ÇOK KATLI İNTEGRALLER, DİFERENSİYEL DENKLEMLERE GİRİŞ 2.1. Çok Katlı İntegraller 2.1.1. İki Katlı İntegraller Fonksiyonu bir B bölgesinde sınırlı yani için olsun. B bölgesi alt bölgelere ayrılırsa;
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
