Fonksiyon Optimizasyonunda Genetik Algoritmalar
|
|
|
- Hazan Mumcu
- 8 yıl önce
- İzleme sayısı:
Transkript
1 Ümit Akıncı Fonksiyon Optimizasyonunda Genetik Algoritmalar 1 Fonksiyon Optimizasyonu Fonksiyon optimizasyonu fizikte karşımıza sık çıkan bir problemdir. Örneğin incelenen sistemin kararlı durumu için minimum enerjili durumlar aranır. N değişkenli f( ) fonksiyonunun sayısal yöntemlerle minimumunu bulmak oldukça zor bir problemdir 1. Fonksiyonun alabileceği değerler uzayı büyük olduğunda bu problem daha da zorlaşır. Bu tip problemler için daha önce simulated annealing yöntemi incelenmişti ve orada minimizasyon probleminin numerik çözümündeki güçlüklerden de bahsedilmişti. f( ) fonksiyonunun minimumunu bulmak ile f( ) fonksiyonunun maksimumunu bulmak aynı şey olduğu için genel olarak fonksiyonun optimumunu bulma probleminden bahsedilebilir. 2 Temel Kavramlar Genetik Algoritma 1975 de[1] ortaya atılmış ve 90 ların ortasından itibaren çeşitli problemlerde ve disiplinlerde yaygın olarak kullanılmaya başlanmıştır. Temelde doğadaki evrim ile birebir benzerdir, temelini canlıların evriminden almıştır. Problemin aranan çözümü -simulated annealing de olduğu gibi- olası çözümlerin arasından probleme bağlı geliştirilen algoritma ile aranır. Bu arama, olası çözümlerin bulunduğu uzayda rasgele elemanlardan başlayan ve aranan elemana (çözüme) doğru giden bir harekettir. Hareketi algoritma belirler. Genetik algoritmada bu uzayın elemanları (olası çözümler) ikilik (binary) ya da başka bir sistemde (Gray vb.) yazılmış kromozom benzeri dizilerle temsil edilir. Problem çözümlerinin temsili problem bağımlıdır. Bu olası çözümlerin oluşturduğu topluluk popülasyondur. Algoritma ile popülasyon evrim geçirir ve ve her evrim basamağında popülasyon elemanları olan çözümler aranan çözüme biraz daha yaklaşır. Algoritmada iki şey belirlenmiş olmalıdır 1. Problem çözümlerinin kodlanması 2. Problem çözümlerinin aranan çözüme yakınlığının ölçüsü olan uygunluk fonksiyonu (fitness function) 2.1 Kodlama İkilik sistemdeki kodlama kullanılan kodlama yöntemlerinden biridir. Onluk sistem günlük hayatta genelde kullanılan sistemdir abcd = a 3 + b 2 + c 2 + d 0 (1) 1 Gezgin satıcı problemi de böyle bir problemdir, problemde N tane noktayı birleştiren en kısa kapalı yol aranır ve nokta sayısı arttıkça problemin kesin çözümü imkansız hale gelir 1
2 Burada a, b, c, d, [0, 9] aralığında rakamlardır. Benzer olarak ikilik sistemde yazılmış bir dizinin onluk sistemdeki değeri yzt = y2 2 + z2 2 + t2 0 (2) dir ve burada,y,z,t, [0, 1] aralığında rakamlardır. Genelde kullanılan onluk sistemdeki sayılar ikilik sisteme çevrilerek elde edilen diziler genetik algoritma ile çözümde kullanılabilir. Örneğin, 13 = , (3) 2.2 Uygunluk fonksiyonu Popülasyondaki bir elemanın (olası bir çözümün) aranan elemana (gerçek (aranan) çözüme) yakınlığının ölçüsünü verecek şekilde seçilmiş fonksiyondur. Optimizasyon problemlerinde bu fonksiyon, optimumu aranan fonksiyon olarak seçilebilir. f( ) fonksiyonunun maksimum değeri aranıyor olsun. Başlangıç popülasyonunda -çözüm aralığında rasgele seçilmiş- bulunan N tane eleman 1, 2,..., N { i },i = 1...N bulunsun. f i f( i ) olmak üzere, i. elemanın uygunluğu, olmak üzere f = N f i (4) ile verilir. Bu durumda f popülasyonun uygunluğunun bir ölçüsü olacaktır. f ī f i=1 (5) 3 Algoritma Algoritma, var olan bir popülasyonu (olası çözümleri) aşağıdaki adımlarla uygunluğu daha yüksek olan bir popülasyona (gerçeğe daha yakın olası çözümlere) evirir. Burada özel olarak genetik algoritmanın fonksiyon optimizasyonunda kullanımı verilecektir. f( ) fonksiyonunun [a,b] aralığında maksimumu aranıyor olsun. 1. Başlangıç popülasyonunun oluşturulması, ve uygunlukların hesaplanması { i },i = 1...N i [a,b] Tüm i ler seçilen kodlamaya göre kodlanır Tüm i ler için f i ve buradan da sistemin uygunluğu f (4) den hesaplanır, böylece popülasyondaki tüm elemanlar için uygunluklar (f i / f) hesaplanabilir 2. Popülasyonun evrimi Popülasyondaki uygunluğu yüksek elemanlar seçilerek ara popülasyon oluşturulur, bunun için bir yol şudur: (,y 0 9 arası rakamlar olmak üzere) uygunluğu.y olan elemandan 1.0 olasılığıyla tane eleman, 0.y olasılığıyla + 1 tane eleman ara popülasyona alınır. 2
3 Yani bu elemandan ara popülasyona tane alınır, bir tane daha alınma olasılığı 0.y dir. 2 Uygunluğu 0.y olan elemanda ara popülasyona 0.y olasılığıyla alınır Ara popülasyondan rasgele seçilen iki eleman p b olasılığıyla birleştirilerek iki yeni eleman oluşturulur (crossover) A,B iki eleman olmak üzere, her ikiside rasgele bir yerden bölünür. A dan, A 1,A 2 ve B den, B 1,B 2 olmak üzere iki parça oluşur. A 1 ile B 1, A 2 ile B 2 aynı uzunluktadır. Yeni iki eleman A 1 ile B 2 nin ve B 1 ile A 2 nin birleşiminden oluşacaktır. Örneğin ve 100 şeklindeki iki eleman 3. noktalarından birleştirilerek 000 ve 111 şeklinde iki yeni eleman oluşturur. Bu birleşmenin olup olmayacağı p b oalsılığıyla belirlenir, yani r, [0, 1] aralığında rasgele bir sayı olmak üzere r < p b ise birleşme olur, değilse olmaz. Son durumda iki eleman da aynen sonraki popülasyona alınacaktır. Oluşan elemanlar p m olasılığıyla mutasyona uğrar. Mutasyon sonucu bir elemandaki bir bit ters çevrilir. Örneğin şeklindeki bir eleman mutasyon sonucu şeklinde dönüşebilir. Burada 3. bit ters çevrilmiştir. 3. Ara popülasyondan yukarıdaki gibi oluşturulan N elemanlı sonraki popülasyon yine 2. deki işlemlerle evrilir. Seçilen durma kriteri gerçekleştiğinde elde edilen popülasyon elemanları aranan çözümü temsil eden elemanlar olacaktır. p b ve p m olasılıkları program boyunca sabittir ve tipik değerleri sırasıyla , civarındadır. 4 Bir Boyutlu Probleme Uygulama f = + cos( ) + fonksiyonunun (0, 31) aralığında tamsayı maksimumunu arayalım. Gerçek çözüm = 31 dir. Programda p b = 0.7,p m = 0.1, N = elemanlı popülasyonlar ve 0 evrim basamağı kullanılmıştır. Çözüm uzayı 32 elemanlıdır ve 0 31 arası tamsayıları içerir. Kodlama ikilik tabanda yapılmıştır ve 5 bitlik diziler kullanılmıştır. Uygunluk fonksiyonu olarak maksimumu aranan f fonksiyonu kullanılmıştır. Programda üretilen başlangıç poopülasyonu ve uygunluk değerleri tablodadır. ilk adımda uygunluk değeri yüksek olan 29(4), 26(2), 19(3), 13(1), (1) elemanlarından parantez içinde belirtiklen sayılarda ara popülasyona seçilmiş ve bunlardan rasgele seçilen elemanların p b olasılığıyla birleşmesi ve oluşan elemanların p m olasılııyla mutasyon geçirmesi sonucu bir sonraki popülasyon elemanları 31(1), 29(1), 27(2), 25(3), 21(1) yine parantez içinde belirtilen sayılarda oluşturulmuştur. Ilk adım sonrasında popülasyonun uygunluk değeri e yükselmiştir. İlk popülasyonda olmayan 31, 27, 25, 21, 18, 14 olası çözümlerinin ortaya çıkması birleşme ve mutasyon sonucudur, 1, 7 gibi ilk popülasyonda olan ve uygunluğu düşük olan çözümlerin de elenmiş olması yine algoritmadaki seçim ile olmuştur ve doğadaki doğal seleksiyon ile birebir benzerdir. 2 r [0, 1] arası üretilen rasgele sayı olmak üzere r < 0.y ise alınır 3
4 Şekil 1: f = + cos( ) + fonksiyonunun (0, 31) aralığındaki davranışı kodlama f i / f Tablo 1: Örnek problem için başlangıç popülasyonu ve elemanların uygunluk değerleri, popülasyonun uygunluk değeri.55 Program boyunca popülasyonun uygunluk değerinin değişimi aşağıdaki grafikte görülebilir. Evrim sürecinde zaman ilerledikçe popülasyondaki elemanların temsil ettiği çözümler de gerçek (aranan) çözüme yaklaşmaktadır. Popülasyonun içerdiği elemanların gerçek (aranan) çözüme yakınlığının ölçüsü olan popülasyonun uygunluk değerinin zamanla değişiminden (Şekil 2) bu görülebilir. Şekil 3 den de ilerleyen evrim basamaklarında, popülasyon elemanı olan olası çözümlerin (şekildeki siyah noktalar), gerçek çözüme yaklaştığı görülebilir. References [1] Holland J., Adaptation in natural and artificial systems, 1975, University of Michigan Pres. 4
5 Şekil 2: 0 adımlık evrim boyunca popülasyonların uygunluk değerlerinin zamanla değişimi 5
6 (a) t = (b) t = (c) t = (d) t = (e) t = (f) t = 0 Şekil 3: Evrim boyunca farklı zaman adımlarında popülasyondaki elemanların temsil ettiği çözümler 6
Fonksiyon Minimizasyonunda Simulated Annealing Yöntemi
07-04-006 Ümit Akıncı Fonksiyon Minimizasyonunda Simulated Annealing Yöntemi İçindekiler Fonksiyon Minimizasyonu Metropolis Algoritması. Algoritma.......................................... Bir boyutlu
YZM 5257 YAPAY ZEKA VE UZMAN SİSTEMLER DERS#6: GENETİK ALGORİTMALAR
YZM 5257 YAPAY ZEKA VE UZMAN SİSTEMLER DERS#6: GENETİK ALGORİTMALAR Sınıflandırma Yöntemleri: Karar Ağaçları (Decision Trees) Örnek Tabanlı Yöntemler (Instance Based Methods): k en yakın komşu (k nearest
Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı
Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım Mehmet Ali Aytekin Tahir Emre Kalaycı Gündem Gezgin Satıcı Problemi GSP'yi Çözen Algoritmalar Genetik Algoritmalar
Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:
Genetik Algoritmalar Bölüm 1 Optimizasyon Yrd. Doç. Dr. Adem Tuncer E-posta: [email protected] Optimizasyon? Optimizasyon Nedir? Eldeki kısıtlı kaynakları en iyi biçimde kullanmak olarak tanımlanabilir.
Zeki Optimizasyon Teknikleri
Zeki Optimizasyon Teknikleri Genetik Algoritma (Genetic Algorithm) Doç.Dr. M. Ali Akcayol Genetik Algoritma 1970 li yıllarda John Holland tarafından geliştirilmiştir. 1989 yılında David E. Goldberg Genetik
GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ
GENETİK ALGORİTMALAR Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Genetik algoritmalar, Darwin in doğal seçim ve evrim teorisi ilkelerine dayanan bir arama ve optimizasyon yöntemidir.
GENETİK ALGORİTMA ÖZNUR CENGİZ HİLAL KOCA
GENETİK ALGORİTMA ÖZNUR CENGİZ 201410306014 HİLAL KOCA 150306024 GENETİK ALGORİTMA Genetik Algoritma yaklaşımının ortaya çıkışı 1970 lerin başında olmuştur. 1975 te John Holland ın makine öğrenmesi üzerine
OPTİMİZASYON TEKNİKLERİ. Kısıtsız Optimizasyon
OPTİMİZASYON TEKNİKLERİ Kısıtsız Optimizasyon Giriş Klasik optimizasyon yöntemleri minimum veya maksimum değerlerini bulmak için türev gerektiren ve gerektirmeyen teknikler olarak bilinirler. Bu yöntemler
GENETİK ALGORİTMALAR BÜŞRA GÜRACAR
GENETİK ALGORİTMALAR BÜŞRA GÜRACAR 201420404036 İÇERİK Genetik Algoritmanın, Amacı Kullanım Alanları Kavramları Uygulama Adımları Parametreler Genetik Algoritma Kodlama Türleri Genetik Algoritma Genetik
METASEZGİSEL YÖNTEMLER. Genetik Algoritmalar
METASEZGİSEL YÖNTEMLER Genetik Algoritmalar 1970 li yıllarda John Holland tarafından geliştirilmiştir. 1989 yılında David E. Goldberg Genetik Genetik Algoritma Algoritma Uygulamaları üzerine klasik eser
GENETİK ALGORİTMALARA GİRİŞ
GENETİK ALGORİTMALARA GİRİŞ Nedim TUTKUN Düzce Üniversitesi Elektrik Elektronik Mühendisliği Bölümü [email protected] Düzce Üniversitesi Elektrik&Elektronik Mühendisliği Bölümü Konuralp 81620 Düzce
GENETİK ALGORİTMALARA GİRİŞ (I)
Bu notlar D. Coley ve S. Haupt ın Kitaplarından Yararlanarak Hazırlanmıştır. GENETİK ALGORİTMALARA GİRİŞ (I) Nedim TUTKUN Düzce Üniversitesi Elektrik Elektronik Mühendisliği Bölümü [email protected]
GENETİK ALGORİTMALARA GİRİŞ (II) BİNARİ KODLANMIŞ GA
GENETİK ALGORİTMALARA GİRİŞ (II) BİNARİ KODLANMIŞ GA Nedim TUTKUN Düzce Üniversitesi Elektrik Elektronik Mühendisliği Bölümü [email protected] Düzce Üniversitesi Elektrik&Elektronik Mühendisliği
TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir.
TABAN ARĠTMETĠĞĠ Kullandığımız 10 luk sayma sisteminde sayılar {0,1,2,3,4,5,6,7,8,9} kümesinin elemanları (Rakam) kullanılarak yazılır. En büyük elemanı 9 olan, 10 elemanlı bir kümedir. Onluk sistemde;
VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN
VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN [email protected] İçerik Kümeleme İşlemleri Kümeleme Tanımı Kümeleme Uygulamaları Kümeleme Yöntemleri Kümeleme (Clustering) Kümeleme birbirine
Zeki Optimizasyon Teknikleri
Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:
Yrd.Doç.Dr. Celal Murat KANDEMİR. Kodlama (Coding) : Bir nesneler kümesinin bir dizgi (bit dizisi) kümesi ile temsil edilmesidir.
Bilgisayar Mimarisi İkilik Kodlama ve Mantık Devreleri Yrd.Doç.Dr. Celal Murat KANDEMİR ESOGÜ Eğitim Fakültesi - BÖTE twitter.com/cmkandemir Kodlama Kodlama (Coding) : Bir nesneler kümesinin bir dizgi
Zeki Optimizasyon Teknikleri
Zeki Optimizasyon Teknikleri (nt lgorithm) Doç.Dr. M. li kcayol 996 yılında Marco Dorigo tarafından ortaya atılmıştır. Temel olarak karıncaların yiyecek madde ile yuvaları arasındaki en kısa yolu bulmalarından
PARÇACIK SÜRÜ OPTİMİZASYONU BMÜ-579 METASEZGİSEL YÖNTEMLER YRD. DOÇ. DR. İLHAN AYDIN
PARÇACIK SÜRÜ OPTİMİZASYONU BMÜ-579 METASEZGİSEL YÖNTEMLER YRD. DOÇ. DR. İLHAN AYDIN 1995 yılında Dr.Eberhart ve Dr.Kennedy tarafından geliştirilmiş popülasyon temelli sezgisel bir optimizasyon tekniğidir.
Google Maps ve Genetik Algoritmalarla GSP Çözümü İçin Öneri
Google Maps ve Genetik Algoritmalarla GSP Çözümü İçin Öneri Onur KARASOY 1, Serkan BALLI 2 1 Muğla Sıtkı Koçman Üniversitesi Bilgi İşlem Dairesi Başkanlığı 2 Muğla Sıtkı Koçman Üniversitesi Bilişim Sistemleri
Yrd. Doç. Dr. Ümit ATİLA
Yrd. Doç. Dr. Ümit ATİLA Sıralama Bir grup veriyi azalan veya artan şekilde yerleştirme. Bilgisayar sistemleri için veri sıralama çok önemlidir. Sıralama işlemi, hem arama işlemlerini hem de bir grup veriyi
Self Organising Migrating Algorithm
OPTİMİZASYON TEKNİKLERİ Self Organising Migrating Algorithm Kendini Organize Eden Göç/Geçiş Algoritması MELİH HİLMİ ULUDAĞ Fırat Üniversitesi Teknoloji Fakültesi Yazılım Mühendisliği Bölümü İletişim: www.melihhilmiuludag.com
Populasyon Genetiği. Populasyonlardaki alel ve gen frekanslarının değişmesine neden olan süreçleri araştıran evrimsel bilim dalı.
Bu dersin içeriği, Populasyonun tanımı, Alel ve genotip frekansı, Gen havuzu, Gen frekansı, Gerçek/Doğal populasyonlar ve ideal populasyonlar, Populasyon genetiğinin çalışma alanları, HW kanunu -giriş,
ERCİYES ÜNİVERSİTESİ KİMYA ANABİLİM DALI
İlaç Tasarımında Yeni Yazılımların Geliştirilmesi: Elektron Konformasyonel-Genetik Algoritma Metodu ile Triaminotriazin Bileşiklerinde Farmakofor Belirlenmesi ve Nicel Biyoaktivite Hesabı; ERCİYES ÜNİVERSİTESİ
Genetik Algoritmalar (GA) Genetik Algoritmalar Đçerik Nesin Matematik Köyü E rim Ç lı l ş ı ta t yı Nisan, 2012 Mustafa Suphi Erden
Genetik Algoritmalar Nesin Matematik Köyü Evrim Çalıştayı 20-23 Nisan, 202 Genetik Algoritmalar (GA Đçerik Biyolojiden esinlenme GA nın özellikleri GA nın unsurları uygulama Algoritma Şema teoremi Mustafa
GENETİK ALGORİTMALARA GİRİŞ (V)
GENETİK ALGORİTMALARA GİRİŞ (V) Nedim TUTKUN Düzce Üniversitesi Elektrik Elektronik Mühendisliği Bölümü [email protected] Düzce Üniversitesi Elektrik&Elektronik Mühendisliği Bölümü Konuralp 81620
GENETİK ALGORİTMALARA GİRİŞ (II) BİNARİ KODLANMIŞ GA
GENETİK ALGORİTMALARA GİRİŞ (II) BİNARİ KODLANMIŞ GA Nedim TUTKUN Düzce Üniversitesi Elektrik Elektronik Mühendisliği Bölümü [email protected] Düzce Üniversitesi Elektrik&Elektronik Mühendisliği
Yrd. Doç. Dr. A. Burak İNNER Bilgisayar Mühendisliği
Yrd. Doç. Dr. A. Burak İER Bilgisayar Mühendisliği Algoritma Analizi İçerik: Temel Kavramlar Yinelemeli ve Yinelemesiz Algoritma Analizi Asimptotik otasyonlar Temel Kavramlar Algoritma: Bir problemin çözümüne
Dr. Fatih AY Tel: 0 388 225 22 55 [email protected] www.fatihay.net
Bilgisayar Programlama Ders 9 Dr. Fatih AY Tel: 0 388 225 22 55 [email protected] www.fatihay.net Dizileri Fonksiyonlara Dizileri Fonksiyonlara Bir dizi argümanını fonksiyon içinde bir değer olarak kullanabilmek
Web Madenciliği (Web Mining)
Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing
Tek Değişkenli Optimizasyon OPTİMİZASYON. Gradient Tabanlı Yöntemler. Bisection (İkiye Bölme) Yöntemi
OPTİMİZASYON Gerçek hayatta, çok değişkenli optimizasyon problemleri karmaşıktır ve nadir olarak problem tek değişkenli olur. Bununla birlikte, tek değişkenli optimizasyon algoritmaları çok değişkenli
İLERİ ALGORİTMA ANALİZİ GENETİK ALGORİTMA
İLERİ ALGORİTMA ANALİZİ 1. Giriş GENETİK ALGORİTMA Geniş çözüm uzaylarının klasik yöntemlerle taranması hesaplama zamanını artırmaktadır. Genetik algoritma ile kabul edilebilir doğrulukta kısa sürede bir
MATEMATİK MÜHENDİSLİĞİ BÖLÜMÜ
İSTANBUL TEKNİK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK MÜHENDİSLİĞİ BÖLÜMÜ K-MEANS KÜMELEME ALGORİTMASININ GENETİK ALGORİTMA KULLANILARAK GELİŞTİRİLMESİ BİTİRME ÖDEVİ Yunus YÜNEL Tez Danışmanı:
RASSAL SAYI ÜRETİLMESİ
Dr. Mehmet AKSARAYLI Ekonometri Böl. Simülasyon Ders Notları Rassal Sayı Üretilmesi RASSAL SAYI ÜRETİLMESİ Simülasyon analizinde kullanılacak az sayıda rassal sayı üretimi için ilkel yöntemler kullanılabilir.
BLM-112 PROGRAMLAMA DİLLERİ II. Ders-7 Sıralama Algoritmaları
BLM-112 PROGRAMLAMA DİLLERİ II Ders-7 Sıralama Algoritmaları Yrd. Doç. Dr. Ümit ATİLA [email protected] http://web.karabuk.edu.tr/umitatilla/ Sıralama Bir grup veriyi azalan veya artan şekilde yerleştirme.
Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.
TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }
SAYI SİSTEMLERİ. Sayı Sistemleri için Genel Tanım
SAYI SİSTEMLERİ Algoritmalar ve Programlama dersi ile alakalı olarak temel düzeyde ve bazı pratik hesaplamalar dahilinde ikilik, onluk, sekizlik ve onaltılık sayı sistemleri üzerinde duracağız. Özellikle
Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2
Bir Olayın Olasılığı P(A) = n(a) n(s) = A nın eleman sayısı S nin eleman sayısı Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? Çözüm: S
YZM ALGORİTMA ANALİZİ VE TASARIM DERS#2: ALGORİTMA ANALİZİ
YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#2: ALGORİTMA ANALİZİ Algoritma Analizi Çerçevesi Algoritma Analizinde Göz Önünde Bulundurulması Gerekenler Neler? Algoritmanın Doğruluğu (Correctness) Zaman
GENETİK ALGORİTMALARA GİRİŞ (III)
GENETİK ALGORİTMALARA GİRİŞ (III) Nedim TUTKUN Düzce Üniversitesi Elektrik Elektronik Mühendisliği Bölümü [email protected] Düzce Üniversitesi Elektrik&Elektronik Mühendisliği Bölümü Konuralp 81620
GENETİK ALGORİTMA İLE RÜZGAR TÜRBİNİ KANAT SAYISI SEÇİMİ
VI. Ulusal Temiz Enerji Sempozyumu UTES 2006 25 27 Mayıs 2006, Isparta Sf.756 764 GENETİK ALGORİTMA İLE RÜZGAR TÜRBİNİ KANAT SAYISI SEÇİMİ Nida Nurbay ve Ali Çınar Kocaeli Üniversitesi Tek. Eğt. Fak. Makine
SAYI VE KODLAMA SİSTEMLERİ. Teknoloji Fakültesi/Bilgisayar Mühendisliği
SAYI VE KODLAMA SİSTEMLERİ Teknoloji Fakültesi/Bilgisayar Mühendisliği Neler Var? Sayısal Kodlar BCD Kodu (Binary Coded Decimal Code) - 8421 Kodu Gray Kodu Artı 3 (Excess 3) Kodu 5 de 2 Kodu Eşitlik (Parity)
GENETĠK ALGORĠTMALAR ĠLE HAFTALIK DERS PROGRAMININ HAZIRLANMASI
ÖZEL EGE LĠSESĠ GENETĠK ALGORĠTMALAR ĠLE HAFTALIK DERS PROGRAMININ HAZIRLANMASI HAZIRLAYAN ÖĞRENCĠLER: Berkin ĠNAN Doğa YÜKSEL DANIġMAN ÖĞRETMEN: Aslı ÇAKIR ĠZMĠR 2014 ĠÇĠNDEKĠLER 1. PROJENĠN AMACI. 3
EM302 Yöneylem Araştırması 2 Çok değişkenli DOP ların çözümü. Dr. Özgür Kabak
EM302 Yöneylem Araştırması 2 Çok değişkenli DOP ların çözümü Dr. Özgür Kabak Doğrusal olmayan programlama Tek değişkenli DOP ların çözümü Uç noktaların analizi Altın kesit Araması Çok değişkenli DOP ların
KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I
KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I 4.1. Dışbükeylik ve Uç Nokta Bir d.p.p. de model kısıtlarını aynı anda sağlayan X X X karar değişkenleri... n vektörüne çözüm denir. Eğer bu
Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir.
5.SUNUM Olasılık, bir deneme sonrasında ilgilenilen olayın tüm olaylar içinde ortaya çıkma ya da gözlenme oranı olarak tanımlanabilir. Günlük hayatta sıklıkla kullanılmakta olan olasılık bir olayın ortaya
SAYISAL ELEKTRONİK. Ege Ü. Ege MYO Mekatronik Programı
SAYISAL ELEKTRONİK Ege Ü. Ege MYO Mekatronik Programı BÖLÜM 2 Sayı Sistemleri İkilik, Onaltılık ve İKO Sayılar İkilik Sayı Sistemi 3 Çoğu dijital sistemler 8, 16, 32, ve 64 bit gibi, 2 nin çift kuvvetleri
Elektronik sistemlerde dört farklı sayı sistemi kullanılır. Bunlar;
I. SAYI SİSTEMLERİ Elektronik sistemlerde dört farklı sayı sistemi kullanılır. Bunlar; i) İkili(Binary) Sayı Sistemi ii) Onlu(Decimal) Sayı Sistemi iii) Onaltılı(Heksadecimal) Sayı Sistemi iv) Sekizli(Oktal)
Olimpiyat Eğitimi TUĞBA DENEME SINAVI
TUSİ Ortaöğretim Öğretmenleri için Olimpiyat Eğitimi TUĞBA DENEME SINAVI 10.01.2014-17.01.2014 2 1. Tuğba üç test yapar. İlkinde, 25 sorudan %60 ını, ikinci de 30 sorudan ve %70 ini ve son olarak 45 sorudan
Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi
Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması Ağaç, verilerin birbirine sanki bir ağaç yapısı oluşturuyormuş gibi sanal olarak bağlanmasıyla elde edilen hiyararşik yapıya sahip
Algoritmalar. Arama Problemi ve Analizi. Bahar 2016 Doç. Dr. Suat Özdemir 1
Algoritmalar Arama Problemi ve Analizi Bahar 2016 Doç. Dr. Suat Özdemir 1 Arama Problemi Sıralama algoritmaları gibi arama algoritmaları da gerçek hayat bilgisayar mühendisliği problemlerinin çözümünde
3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem
3.2. DP Modellerinin Simpleks Yöntem ile Çözümü 3.2.1. Primal Simpleks Yöntem Grafik çözüm yönteminde gördüğümüz gibi optimal çözüm noktası, her zaman uygun çözüm alanının bir köşe noktası ya da uç noktası
127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ
127 - Twoing Algoritması ile Sınıflandırma Kalp Hastalığı Uygulaması MEHMET AKİF ERSOY ÜNİVERSİTESİ İLHAN UYSAL MEHMET BİLEN SAMİ ULUKUŞ Veri Madenciliği : Bir sistemin veri madenciliği sistemi olabilmesi
ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 9.SINIF ELEME SINAVI TEST SORULARI
x 5 6. 0 x 4x 5 x denklemin çözüm kümesi aşağıdakilerden hangisidir? 5 5 4. 6 6... a ise, a kaçtır? A) B) 4 C) 6 D) 8 E) 0 A) B), C) 5, D) 5 E) 5. m 9m m m işleminin sonucu kaçtır?. (6) x x y y (4. ) eşitliği
Esnek Hesaplamaya Giriş
Esnek Hesaplamaya Giriş J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Esnek Hesaplama Nedir? Esnek hesaplamanın temelinde yatan
EMM4131 Popülasyon Temelli Algoritmalar (Population-based Algorithms) Genetik Algoritma
2017-2018 Güz Yarıyılı Balıkesir Üniversitesi, Endüstri Mühendisliği Bölümü EMM4131 Popülasyon Temelli Algoritmalar (Population-based Algorithms) 3 Genetik Algoritma Yrd. Doç. Dr. İbrahim KÜÇÜKKOÇ Web:
Geniş Bantlı Log-Periyodik Anten Dizgelerinin Genetik Algoritmalar Kullanılarak Tasarlanması
Geniş Bantlı Log-Periyodik Anten Dizgelerinin Genetik Algoritmalar Kullanılarak Tasarlanması Levent Gürel ve Özgür Ergül Elektrik ve Elektronik Mühendisliği Bölümü Bilkent Üniversitesi, Ankara [email protected]
3.3. İki Tabanlı Sayı Sisteminde Dört İşlem
3.3. İki Tabanlı Sayı Sisteminde Dört İşlem A + B = 2 0 2 1 (Elde) A * B = Sonuç A B = 2 0 2 1 (Borç) A / B = Sonuç 0 + 0 = 0 0 0 * 0 = 0 0 0 = 0 0 0 / 0 = 0 0 + 1 = 1 0 0 * 1 = 0 0 1 = 1 1 0 / 1 = 0 1
YZM ALGORİTMA ANALİZİ VE TASARIM DERS#3: ALGORİTMA ANALİZİ#2
YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#3: ALGORİTMA ANALİZİ#2 Özyineli Olmayan (Nonrecursive) Algoritmaların Matematiksel Analizi En büyük elemanı bulma problemi En Büyük Elemanı Bulma Problemi Girdi
Algoritma Geliştirme ve Veri Yapıları 3 Veri Yapıları. Mustafa Kemal Üniversitesi
Algoritma Geliştirme ve Veri Yapıları 3 Veri Yapıları Veri yapısı, bilginin anlamlı sırada bellekte veya disk, çubuk bellek gibi saklama birimlerinde tutulması veya saklanması şeklini gösterir. Bilgisayar
Rasgele Sayıların Özellikleri
Rasgele Sayı Üretme Rasgele Sayıların Özellikleri İki önemli istaiksel özelliği var : Düzgünlük (Uniformity) Bağımsızlık R i, rasgele sayısı olasılık yoğunluk fonksiyonu aşağıdaki gibi olan uniform bir
ALGORİTMA VE PROGRAMLAMA I
ALGORİTMA VE PROGRAMLAMA I YZM 1101 Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Genel Bakış 2 Diziler Dizi Nedir? Dizilerin Bildirimi Dizilere Başlangıç Değeri Verme Dizilerde Arama
Sayı sistemleri iki ana gruba ayrılır. 1. Sabit Noktalı Sayı Sistemleri. 2. Kayan Noktalı Sayı Sistemleri
2. SAYI SİSTEMLERİ VE KODLAR Sayı sistemleri iki ana gruba ayrılır. 1. Sabit Noktalı Sayı Sistemleri 2. Kayan Noktalı Sayı Sistemleri 2.1. Sabit Noktalı Sayı Sistemleri 2.1.1. Ondalık Sayı Sistemi Günlük
Olimpiyat Soruları. sonuçları tekrar fonksiyonda yerine koyup çıkan tüm sonuçları toplayan program (iterasyon sayısı girilecek)
HAZIRLAYAN MUSA DEMIRELLI BISHKEK KYRGYZ TURKISH BOYS HIGH SCHOOL education.online.tr.tc compsources0.tripod.com Olimpiyat Soruları 1- Bir diziyi ters çeviren algoritma ve program 2- Bir diziyi sıralayan
ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ ( ŞUBAT 2010 )
ULUSAL MATEMATİK OLİMPİYATLARI DENEMESİ ( ŞUBAT 010 ) 1) Dar açılı ABC üçgeninde BB 1 ve CC 1 yükseklikleri H noktasında kesişiyor. CH = C H, BH = B H ise BAC açısını bulunuz. 1 1 A)0 0 B)45 0 C) arccos
rasgele değişkeninin olasılık yoğunluk fonksiyonu,
3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının
kişi biri 4 kişilik, üçü ikişer kişilik 4 takıma kaç farklı şekilde ayrılabilir? (3150)
PERMÜTASYON KOMBİNASYON. A = {,,,,5} kümesinin alt kümelerinin kaç tanesinde 5 elemanı bulunur? (). 7 elemanlı bir kümenin en az 5 elemanlı kaç tane alt kümesi vardır? (9). A { a, b, c, d, e, f, g, h}
Algoritmalar. Sıralama Problemi ve Analizi. Bahar 2017 Doç. Dr. Suat Özdemir 1
Algoritmalar Sıralama Problemi ve Analizi Bahar 2017 Doç. Dr. Suat Özdemir 1 Sıralama Problemi ve Analizi Bu bölümde öncelikle bir diğer böl-ve-yönet yöntemine dayalı algoritma olan Quick Sort algoritması
Lineer Programlama. Doğrusal terimi, hem amaç hem de kısıtları temsil eden matematiksel fonksiyonların doğrusal olduğunu gösterir.
LİNEER PROGRAMLAMA Giriş Uygulamada karşılaşılan birçok optimizasyon problemi kısıtlar içerir. Yani optimizasyon probleminde amaç fonksiyonuna ilave olarak çözümü kısıtlayıcı ek denklemler mevcuttur. Bu
SORULAR. 2. Noktaları adlandırılmamış 6 noktalı kaç ağaç vardır? Çizerek cevaplayınız.
MAT3 AYRIK MATEMATİK DERSİ DÖNEM SONU SINAVI 4.0.0 Numarası :..................................... Adı Soyadı :..................................... SORULAR. Prüfer kodu ( 3 3 ) olan ağacı çiziniz.. Noktaları
DOSYA ORGANİZASYONU. Doğrudan erişimli dosya organizasyonu ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ
DOSYA ORGANİZASYONU ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Doğrudan erişimli dosya organizasyonu Sunum planı Doğrudan erişimli dosyalar Anahtar değerin tek adres olması durumu Anahtar
Sıklık Tabloları, BASİT ve TEK değişkenli Grafikler Ders 3 ve 4 ve 5
Sıklık Tabloları, BASİT ve TEK değişkenli Grafikler Ders 3 ve 4 ve 5 Sıklık Tabloları Veri dizisinde yer alan değerlerin tekrarlama sayılarını içeren tabloya sıklık tablosu denir. Tek değişken için çizilen
Ev Tipi Yenilenebilir Hibrit Sistem İçin Mikro-Genetik Algoritma ile Optimal Yük Planlaması
Ev Tipi Yenilenebilir Hibrit Sistem İçin Mikro-Genetik Algoritma ile Optimal Yük Planlaması Özay CAN, Nedim TUTKUN Düzce Üniversitesi Elektrik/Elektronik Mühendisliği Kapsam Giriş Hibrit Sistem ve Güç
Programlama Dilleri 1. Ders 3: Rastgele sayı üretimi ve uygulamaları
Ders 3: Rastgele sayı üretimi ve uygulamaları Ders 3 Genel Bakış Giriş Rastgele Sayı Rastgele Sayı Üreteci rand Fonksiyonunun İşlevi srand Fonksiyonunun İşlevi Monte Carlo Yöntemi Uygulama 1: Yazı-Tura
Şartlı Olasılık. Pr[A A ] Pr A A Pr[A ] Bir olayın (A 1 ) olma olsılığı, başka bir olayın (A 2 ) gerçekleştiğinin bilinmesine bağlıysa;
Şartlı Olasılık Bir olayın (A ) olma olsılığı, başka bir olayın (A 2 ) gerçekleştiğinin bilinmesine bağlıysa; Pr[A A 2 Pr A A Pr A A = Pr[A A 2 2 2 Pr[A Pr[A 2 2 A A 2 S Pr[A A 2 A 2 verildiğinde (gerçekleştiğinde)
FAKTÖRİYEL. TANIM Pozitif ilk n tam sayının çarpımı n = n! biçiminde gösterilir. n Faktöriyel okunur.
FAKTÖRİYEL TANIM Pozitif ilk n tam sayının çarpımı 1.2.3 n = n! biçiminde gösterilir. n Faktöriyel okunur. 1!=1 2!=1.2=2 3!=1.2.3=6 4!=1.2.3.4=24 5!=1.2.3.4.5=120 gibi. Özel olarak; 0! = 1 olarak tanımlanmıştır.
MAT101 MATEMATİK I BÖLÜM 13 EĞRİ ÇİZİMİ
MAT101 MATEMATİK I BÖLÜM 13 EĞRİ ÇİZİMİ Yrd. Doç. Dr. Furkan BAŞER Ankara Üniversitesi Uygulamalı Bilimler Fakültesi Eğri-Çizme Teknikleri Bu konuda ele alacağımız 3 alt başlık yer alır. Alt Başlıklar
VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN
VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN [email protected] Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma
Uzaktan Eğitim Uygulama ve Araştırma Merkezi
JAVA PROGRAMLAMA Öğr. Gör. Utku SOBUTAY İÇERİK 2 Java da Diziler Dizi Tanımlama ve İlk Değer Atama Dizi Elemanlarının Kullanılması Dizi İşlemleri Java da Diziler JAVA DA DİZİLER 4 Dizi; tek bir veri tipinde,
ELEKTRONİK ÇİZELGE. Hücreleri Biçimlendirme. Formülleri Kullanma. Verileri Sıralama. Grafik Oluşturma 1) HÜCRELERİ BİÇİMLENDİRME
Hücreleri Biçimlendirme ELEKTRONİK ÇİZELGE Formülleri Kullanma Verileri Sıralama Grafik Oluşturma 1) HÜCRELERİ BİÇİMLENDİRME Elektronik Çizelge de sayıları; bin ayracı, yüzde oranı, tarih/saat ve para
SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme
SAYISAL ÇÖZÜMLEME 1 SAYISAL ÇÖZÜMLEME 4. Hafta DENKLEM ÇÖZÜMLERİ 2 İÇİNDEKİLER Denklem Çözümleri Doğrusal Olmayan Denklem Çözümleri Grafik Yöntemleri Kapalı Yöntemler İkiye Bölme (Bisection) Yöntemi Adım
AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ
AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a
2017 MÜKEMMEL YGS MATEMATİK
2017 MÜKEMMEL YGS MATEMATİK 1. 2,31 0,33 0,65 0,13 + 3,6 0,6 işleminin sonucu kaçtır? A)0,5 B) 0,8 C)0,9 D)5 E)8 4. Üç basamaklı ABB doğal sayısı 4 e ve 9 a kalansız bölünmektedir. Buna göre, A+B toplamının
Atatürk Anadolu. Temel Kavramlar Üzerine Kısa Çalışmalar
Atatürk Anadolu Lisesi M A T E M A T İ K Temel Kavramlar Üzerine Kısa Çalışmalar KONYA \ SELÇUKLU 01 MATEMATİK 1. TEMEL KAVRAMLAR 1.1. RAKAM Sayıların yazılmasında kullanılan sembollere rakam denir. Onluk
CEVAP ANAHTARI. Tempo Testi D 2-B 3-A 4-A 5-C 6-B 7-B 8-C 9-B 10-D 11-C 12-D 13-C 14-C
01. BÖLÜM: FONKSİYONLARLA İLGİLİ UYGULAMALAR - 1 1-E 2-D 3-C 4-E 5-B 6-C 7-C 8-B 9-C 10-D 11-C - 2 1-D 2-E 3-C 4-D 5-E 6-E 7-C 8-D 9-E 10-B - 3 1-E 2-A 3-B 4-D 5-A 6-E 7-E 8-C 9-C 10-C 11-C 1-A 2-B 3-E
Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var :
Rasgele Sayı Üretme Rasgele Sayıların Özellikleri İki önemli istaiksel özelliği var : Düzgünlük (Uniformity) Bağımsızlık R i, rasgele sayısı olasılık yoğunluk fonksiyonu aşağıdaki gibi olan uniform bir
ALGORİTMA VE PROGRAMLAMA I
ALGORİTMA VE PROGRAMLAMA I Yrd. Doç. Dr. Deniz KILINÇ [email protected] YZM 1101 Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Genel Bakış 2 Diziler Dizi Nedir? Dizilerin Bildirimi
DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI
DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI BİREYSEL YARIŞMA SORULARI CEVAPLARI CEVAP KAĞIDI ÜZERİNE YAZINIZ. SORU KİTAPÇIĞINI KARALAMA MAKSATLI KULLANABİLİRSİNİZ 1
SAYILAR DOĞAL VE TAM SAYILAR
1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği
YÖNEYLEM ARAŞTIRMASI - III
YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Bu bölümde eşitsizlik kısıtlarına bağlı bir doğrusal olmayan kısıta sahip problemin belirlenen stasyoner noktaları
Zeki Optimizasyon Teknikleri
Zeki Optimizasyon Teknikleri Tabu Arama (Tabu Search) Doç.Dr. M. Ali Akcayol Tabu Arama 1986 yılında Glover tarafından geliştirilmiştir. Lokal minimum u elimine edebilir ve global minimum u bulur. Değerlendirme
METASEZGİSEL YÖNTEMLER
METASEZGİSEL YÖNTEMLER Ara sınav - 30% Ödev (Haftalık) - 20% Final (Proje Sunumu) - 50% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn: Zaman çizelgeleme, en kısa yol bulunması,
Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş
Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 7 İç Kuvvetler Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 7. İç Kuvvetler Bu bölümde, bir
4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.
4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI [email protected] Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin
EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER
EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının
Giriş MİKROİŞLEMCİ SİSTEMLERİ. Elektronik Öncesi Kuşak. Bilgisayar Tarihi. Elektronik Kuşak. Elektronik Kuşak. Bilgisayar teknolojisindeki gelişme
Giriş MİKROİŞLEMCİ SİSTEMLERİ Bilgisayar teknolojisindeki gelişme Elektronik öncesi kuşak Elektronik kuşak Mikroişlemci kuşağı Yrd. Doç. Dr. Şule Gündüz Öğüdücü 1 Bilgisayar Tarihi Elektronik Öncesi Kuşak
Algoritmalar. Heap Sort. Bahar 2017 Doç. Dr. Suat Özdemir 1
Algoritmalar Heap Sort Bahar 2017 Doç. Dr. Suat Özdemir 1 Heap Sort Heap Sort algoritması Merge Sort ve Insertion Sort algoritmalarının iyi özelliklerini bir arada toplar. Algoritma Insertion Sort gibi
ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU
ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU Tek değişkenli bir f(x) fonksiyonunu ele alalım. [Bazı x ler için f (x) bulunamayabilir.] Aşağıdaki DOP modelini çözmek istediğimizi var sayalım. Max f(x)
Kısıtsız Optimizasyon OPTİMİZASYON Kısıtsız Optimizasyon
OPTİMİZASYON Bu bölümde çok değişkenli kısıtsız optimizasyon problemlerinin çözüm yöntemleri incelenecektir. Bu bölümde anlatılacak yöntemler, kısıtlı optimizasyon problemlerini de çözebilmektedir. Bunun
