Görüntü Sınıflandırma

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Görüntü Sınıflandırma"

Transkript

1 Görüntü Sınıflandırma Chapter 12 CBwQFjAA&url=http%3A%2F%2Ffaculty.une.edu%2Fcas%2Fszeeman%2Frs%2Flect%2FCh% %2520Image%2520Classification.ppt&ei=0IA7Vd36GYX4Uu2UhNgP&usg=AFQjCNE2wG 21x1FvF9XPCbStx_tj_rcFUQ&sig2=H0frftLhKwBj-iOz0cTQBw&bvm=bv ,d.d24 CBwQFjAA&url=http%3A%2F%2Fwww.crssa.rutgers.edu%2Fcourses%2Fremsens%2Fremsens_ ugrad_ppt%2fremsensing8_files%2fremsensing8.ppt&ei=srq8vevxd8j4upr- gdam&usg=afqjcnhb2fhs3qixj1ddmhkcc5c1f7twiw&sig2=_a4vepgnzf- VhJWz5QTXdw&bvm=bv ,d.d24

2 Giriş Görüntü sınıflandırma piksellerin ilgili sınıflara atanmasıdır. Böylelikle homojen piksel grupları oluşturulur.

3 N bantlı görüntü Piksel Yansıma değerleri Belirlenen sınıflar Sınıflandırma sonucu Bantlar karşılaştırma sınıflandırma

4 Sınıflandırma kontrollü ve kontrolsüz sınıflandırma olmak üzere iki ana gruba ayrılır Kontrollü sınıflandırmada sınıflar kullanıcı tarafından bilinir. Kontrolsüz sınıflandırmada seçilen algoritma ve sınıf sayısına bağlı olarak pikseller gruplandırılır. Hibrid sınıflandırıcılar kontrollü ve kontrolsüz sınıflandırma yöntemlerinin her ikisini de kullanır.

5 Kontrollü Kontrol alanlarının seçimi kontrolsüz Kümeleme algoritması Düzeltilmesi/de ğerlendirilmesi Sınıfların belirlenmsi sınıflandırma Düzeltilmesi/değe rlendirilmesi Sınıflandırmanın doğruluk analizi Sınıflandırmanın doğruluk analizi

6 Kontrollü sınıflandırma A=Su B=Tarım alanı C=Kayalık alan

7 Kontrolsüz sınıflandırma Görüntüye ilişkin öncül bilgi mevcut değildir. Pikseller spektral olarak ayrılır. Kullanıcı: Sınıf sayısını İterasyon sayısını Yakınsama eşik değerini belirler En yaygın olarak: Isodata and k-means yöntemleri kullanılır.

8 Unsupervised classification Yansıma değerleri Algoritma Sınıflar A=Su B=Tarım alanı C=Kayalık alan Spektral sınıflar

9 Varyans Varyans: Ortalamadan olan farkların karesi olarak tanımlanır. Diğer bir deyişle standart sapmanın karesidir σ 2

10 Omuz yükseklikleri: 600mm, 470mm, 170mm, 430mm and 300mm Ort. = = 5 5 = 394

11 Ortalamadan farklar varyans (-224) (-94) 2 = 108,520 Variance: σ 2 = = 21,

12 Standart sapma: σ = 21,704 = 4.7 Böylelikle standart sapma kullanılarak normalin, çok uzun ve çok kısanın belirlenmesine yönelik bir ölçüt elde edilmiş olur. Buna göre Rottweillers uzun köpekler. And Dachsunds biraz kısa... Gibi.

13 Normal Dağılım

14

15 Ortalamaların farkları Basit bir tahmin için iki sınıfın ortalamalarının farkları alınabilir. En doğru yöntem normalleştirilmiş farklara bakmaktır. ND x a x b s a s b

16 NDWI

17 Normalleştirilmiş fark bitki indeksi

18 Kontrolsüz sınıflandırma Uzaktan algılama görüntüleri genellikle farklı spektral sınıfları içerirler Kontrolsüz sınıflandırma öncül olarak söz konusu sınıfların tanımlanması, işaretlenmesi, vb. işlemler için kullanılır.

19 Kontrolsüz sınıflandırma Avantajları Bölgeye ilişkin öncül bilgiye gereksinim yoktur İnsan hatası minimize edilmiştir Her bir sınıf farklı bir kümede toplanır Sakıncaları Sınıflar gerçek anlamda doğadaki karşılıkları ile eşleşmeyebilir Sınıflar ve özellikleri kontrol edilemez Sınıfların spektral özellikleri zaman içinde değişebilir

20 Kontrolsüz sınıflandırma Mesafe ölçümleri yansıma değerlerinin gruplandırılmasında kullanılır. Bu amaçla yakınlık ölçütünü elde etmek için Öklid mesafesi kullanılır.

21

22 Öklid uzaklığı uzaklık

23 Öklid uzaklığı Çok bantlı görüntüler için gösterim (bands) Σ (dif) 2 = 1, = Pixel A Pixel B Fark (Dif)

24 Spektral plot Görüntünün iki bandı. Her bir pikselin 2 band için dağılımı Band 2 Gözle pikseller kolaylıkla gruplandırılabilir Bazı piksellerin hiçbir kümeye atanamadığı durum söz konusu olabilir Band 1

25 K-means (kontrolsüz) 1. Her bir kümeye ait öncül merkezler belirlenir. 2. Pikseller kendilerine en yakın kümeye atanır 3. Her bir kümeye ait ortalama konum yeniden hesaplanır 4. Bu sınıf merkezleri sabit oluncaya kadar iteratif olarak tekrarlanır.

26 Örnek, k-means Band 2 Band 2 Band 2 Band 1 1. Birinci irerasyon. Sınıf merkezleri rastgele belirlenir. Pikseller en yakın sınıfa atanır. Band 1 2. İkinci iterasyon sınıf merkezleri sınıftaki piksellerin merkezine göre yeniden hesaplanır. Band 1 3. N. İterasyon sınıf merkezleri sabit kalır.

27 Sonuç olarak: Kontrolsüz sınıflandırmada uygulanacak yöntem için; Uzaklık ölçümü Sınıf merkezlerinin belirlenmesi Sınıfların ayrılabilirliğinin testi Önemlidir.

28 Karar sınırları Tüm sınıflandırma yazılımları sınıflar arasındaki sınırın belirlenmesi temeline dayanır. Böylelikle sınıflar arasında kesişim oluşmaz. Ortalamaya olan en kısa mesafe En yakın komşuluk Karar sınırı belirlenmesine yönelik kullanılan ölçütlerden bazılarıdır.

29 Karar sınırı Karar sınırı Ortalamaya en küçük mesafe En yakın komşuluk

30 Kontrollü sınıflandırma Sınıflara ilişkin ön bilgi gerekir. Sınıflar belirlenir Her bir sınıf için kontrol alanı seçilir Kontrol alanlarının testi için yer gerçekliği kullanılır. Birçok yöntem söz konusudur: Parallelepiped Maximum likelihood.

31 Kontrollü sınıflandırma Avantajları Analist sınıflandırmayı kontrol edebilir Her bir sınıfa ilişkin bilgi söz konusudur Denetim alanları yardımı ile yanlış sınıflandırma sonuçları denetlenebilir

32 Kontrollü sınıflandırma Zayıf yönleri Sınıflandırmayı analist belirler Kontrol alanları genellikle spektral özelliklere göre değil bilgiye dayalı olarak ölçülür Kontrol alanlarının temsil etme özelliği yetersiz olabilir Kontrol alanlarının seçimi zor ve zaman alıcı olabilir

33 Kontrollü sınıflandırma Kontrol alanlarının önemli karakteristikleri Piksel sayısı Bir sınıf için birden fazla kontrol alanı ölçülebilir Kontrol alanına örneklem pikseller sınıfı istatistiksel olarak temsil edebilecek sayıda olmalıdır Sayı dsınıf sayısına, çeşitliliğe ve kaynağa bağlıdır

34 Parallelepiped Minimum Distance sınıflandırıcı

35 Maximum likelihood (kontrollü) Her bir sınıf için seçilen kontrol alanlarına ilişkin varyans ve co-varyans hesaplabır Sınıf istatistiksel olarak ortalama vektörü ve kovaryans matrisi ile modellenir Sınıfın normal dağılımlı olduğu kabülü söz konusudur Tanımlanmayan pikseller verilen bir olasılık dahilinde bir sınıfa atanırlar Bir pikselin bir sınıfa atanması için o pikselin o sınıfa ait olma olasılığının en yüksek olması gerekir ya da tüm sınıflara ait olma olasılığı düşükse sınıflandırılmayan olarak belirlenir

36 Maximum likelihood (kontrollü) Olasılık yoğunluk fonksiyonu : iki değişkenli

37 N I R R e f l e c t a n c e Spektral özellik uzayı Maximum likelihood Grass Trees water Red Reflectance Impervious Surface & Bare Soil

38 N I R R e f l e c t a n c e Spektral özellik uzayı Grass Mix: grass/trees Broadleaf Trees Conifer Impervious Surface & Bare Soil water Red Reflectance

39 Maximum likelihood örnek Her bir eğitim sınıfına ilişkin normal olasılık dağılımları Çizgiler eşit olasılıklara sahip bölgeleri gösterir 1 1 nolu noktanın mavi sınıfa ait olma olasılığı en yüksektir 2 nolu noktanın tüm sınıflara ait olma olasılığı düşük olduğu için sınıflandırılmamış olarak işaretlenir Equiprobability contours 2

40 ISODATA (hibrid) k-means ın genişletilmiş durumudur Kümeler için standart sapma hesaplanır. Her bir sınıf için ortalama konum yeniden hesaplandıktan sonra : Merkezleri yakın olan sınıflar birleştirilir Büyük standart sapmaya sahip sınıflar ayrılır Çok küçük sınıflar silinir Sınıflandırma yenilenir. Maksimum iterasyon tamamlandığında ya da yakınsama limitine ulaştığında sonlanır Pikseller sınıflara atanır.

41

42

43 Örnek ISODATA Band 2 Band 2 Band 2 Band 1 Band 1 Band 1 1. Kümeleme yapılmıştır fakat mavi sınıf 1. bandda çok esnemiştir. 2.Cyan ve yeşil sınıflar sadece 2 ya da daha az piksele sahiptir. Silinirler 3. Outlier lar ya en yakın sınıfa atanır ya da sınıflandırılmamış olarak işaretlenirler.

44 Bayes s Sınıflandırma Bayesian sınıflandırma bir pikselin bir sınıfa ait olma olasılığının hesaplanmasına dayanır Bunu basit olarak 2 farklı zar çifti örneğinde açıklamak mümkündür 1. çift normal olsun 2. çiftte her yüzde fazladan bir nokta daha olsun 1. oyuncu herhangi birini seçer, atar ve sonucu söyler 2. oyuncu hangi zar çiftinin kullanıldığını söyler

45 Bayes s sınıflandırma Karar sınırının belirlenmesi için tüm olası sonuçların listelenmesi ve hangilerinin en çok benzediğinin belirlenmesi gerekir Normal zarlar için 2-12 Diğer zarlar için 6-16 Bunlar nasıl benzer olabilir? 2 nin elde edilebilmesi için yalnız bir durum söz konusudur 3 için, 2 durum (1 ve 2, veya 2 ve1)

46

47

48 Bayes s sınıflandırma Histogramlar ayırd edici fonksiyon niteliğini kazanır ve karar sınırı verilen bir durum için en yüksek olasılık olarak set edilir Çıktı 7 ise, bunun standart zara ait olması muhtemeldir Çıktı 4 ise, bu kesinlikle standart zara aittir

49 Bayes s sınıflandırma Arazi örtüsünü belirlemeye çalışılırken Olasılıklar kontrol alanları yardımı ile belirlenebilir Her bir sınıfın histogramları yardımı ile olasılık fonksiyonu hesaplanabilir Bu olasılıklar da pikselleri gruplamak için kullanılır

50

51 K-En Yakın Komşuluk

52 k Nearest Neighbor 3 durumu gerektirir:? Görüntü Sınıflar arasındaki uzaklığı hesaplama için bir uzaklık ölçütü k, elde edilebilen en yakın komşu sayısı Bilinmeyen bir pikseli sınıflandırmak için: Diğer kontrol alanlarına olan uzaklıklar hesaplanır k belirlenir Bilinmeyen pikselin bir sınıfa atanması için en yakındaki komşulara ait sınıflar belirlenir

53 k Nearest Neighbor İki nokta arasındaki mesafe: Euclidean uzaklığı d(p,q) = (p i q i ) 2 Hamming uzaklığı (overlap metric) En yakın komşu listesinden sınıfı belirlemek K-en yakın komşularda en çok tekrarlanan sınıf Ağırlık faktörü w = 1/d 2

54 k Nearest Neighbor k = 1: Kare sınıfına ait? k = 3: Üçgen sınıfına ait k = 7: Kare sınıfına ait Choosing the value of k: Eğer k çok küçükse gürültüye duyarlıdır Eğer k çok büyükse komşuluk diğer sınıflara ait noktaları içerebilir

55 Bulanık (Fuzzy) Kümeleme Geleneksel yöntemlerde bir pikselin herhangi bir sınıfa üyelik derecesi ya 0 dır ya da 1 dir. Bu durum bir çok uygulamada karışık sınıf sorununu meydana getirmektedir. Pikseller yanlış sınıflara atanabilmektedir. Bulanık mantıkta ise bir pikselin birden fazla sınıfa farklı derecelerde üyeliği söz konusudur Örneğin bir pikselin su sınıfna 0.7, orman sınıfına da 0.3 üyeliği söz konusu olabilir.

56 Yapay sinir ağları (Neural Networks) Yapay sinir ağları (YSA) beyni simüle eden yaklaşımdır. Girdi ve çıktı arasındaki bağlantılar oluşturularak güçlendirilir. Genel olarak 3 bileşenden oluşur Girdi katman Gizli katmanlar Çıktı katmanlar-sınıflar

57 Basit bir yapay sinir ağı Girdi katman Gizli katman Çıkı katmanı

Uzaktan Algılama Uygulamaları

Uzaktan Algılama Uygulamaları Aksaray Üniversitesi Uzaktan Algılama Uygulamaları Doç.Dr. Semih EKERCİN Harita Mühendisliği Bölümü [email protected] 2010-2011 Bahar Yarıyılı Uzaktan Algılama Uygulamaları GÖRÜNTÜ İŞLEME TEKNİKLERİ

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 11 Hiperspektral Görüntülerde Kümeleme ve Sınıflandırma Alp Ertürk [email protected] Sınıflandırma Sınıflandırma işleminin amacı, her piksel vektörüne bir ve

Detaylı

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN [email protected] İçerik Kümeleme İşlemleri Kümeleme Tanımı Kümeleme Uygulamaları Kümeleme Yöntemleri Kümeleme (Clustering) Kümeleme birbirine

Detaylı

Kümeler arası. Küme içi. uzaklıklar. maksimize edilir. minimize edilir

Kümeler arası. Küme içi. uzaklıklar. maksimize edilir. minimize edilir Kümeleme Analizi: Temel Kavramlar ve Algoritmalar Kümeleme Analizi Nedir? Her biri bir dizi öznitelik ile, veri noktalarının bir kümesi ve noktalar arasındaki benzerliği ölçen bir benzerlik ölçümü verilmiş

Detaylı

YZM 3217 YAPAY ZEKA DERS#10: KÜMELEME

YZM 3217 YAPAY ZEKA DERS#10: KÜMELEME YZM 317 YAPAY ZEKA DERS#10: KÜMELEME Sınıflandırma (Classification) Eğiticili (supervised) sınıflandırma: Sınıflandırma: Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğunu bilinir Eğiticisiz (unsupervised)

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Görüntü Sınıflandırma Sınıflandırma nedir Sınıflandırma türleri Kontrolsüz/Kontrollü (Denetimli, Eğitimli)

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN [email protected]

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN [email protected] Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

Eğitim seti (training set) sınıflandırma modelinin elde edileceği kayıtları içerir

Eğitim seti (training set) sınıflandırma modelinin elde edileceği kayıtları içerir sınıflandırma: temel kavramlar, karar ağaçları ve model değerlendirme Sınıflandırma : Tanım Eğitim seti (training set) sınıflandırma modelinin elde edileceği kayıtları içerir Eğitim setindeki her kayıt

Detaylı

KISIM 5 COĞRAFİ BİLGİ SİSTEMİ (GIS) ANALİZİ KISIM 5: GIS ANALİZİ 1

KISIM 5 COĞRAFİ BİLGİ SİSTEMİ (GIS) ANALİZİ KISIM 5: GIS ANALİZİ 1 KISIM 5 COĞRAFİ BİLGİ SİSTEMİ (GIS) ANALİZİ KISIM 5: GIS ANALİZİ 1 GIS ANALİZİ GIS Analizi, üretme, işleme ve mekansal veriyi sorgulama kısımlarını kapsar 1. Veri üretme Görüntüyü sınıflandırma (Unsupervised)

Detaylı

Makine Öğrenmesi 2. hafta

Makine Öğrenmesi 2. hafta Makine Öğrenmesi 2. hafta Uzaklığa dayalı gruplandırma K-means kümeleme K-NN sınıflayıcı 1 Uzaklığa dayalı gruplandırma Makine öğrenmesinde amaç birbirine en çok benzeyen veri noktalarını aynı grup içerisinde

Detaylı

Özörgütlemeli Öğrenme (SOM) A. Cumhur KINACI

Özörgütlemeli Öğrenme (SOM) A. Cumhur KINACI Özörgütlemeli Öğrenme (SOM) A. Cumhur KINACI Öğrenme Türleri Eğiticili Öğrenme Eğiticisiz Öğrenme: Ağın verilerin sınıflandırmasını dışarıdan yardım almadan kendi başına yapmasıdır. Bunun olabilmesi için

Detaylı

Büyük Veri İçin İstatistiksel Öğrenme (Statistical Learning for Big Data)

Büyük Veri İçin İstatistiksel Öğrenme (Statistical Learning for Big Data) Büyük Veri İçin İstatistiksel Öğrenme (Statistical Learning for Big Data) M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, The Elements of Statistical Learning: Data

Detaylı

UA Teknikleri Kullanılarak Taşkın Alanlarının Belirlenmesi ve Bölgesel Taşkın Frekans Analizinin Batı Karadeniz Bölgesinde Uygulanması

UA Teknikleri Kullanılarak Taşkın Alanlarının Belirlenmesi ve Bölgesel Taşkın Frekans Analizinin Batı Karadeniz Bölgesinde Uygulanması UA Teknikleri Kullanılarak Taşkın Alanlarının Belirlenmesi ve Bölgesel Taşkın Frekans Analizinin Batı Karadeniz Bölgesinde Uygulanması Prof. Dr. A. Ünal Şorman Orta Doğu Teknik Üniversitesi, Đnşaat Mühendisliği

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 10 Nesne / Yüz Tespiti ve Tanıma Alp Ertürk [email protected] Nesne Tespiti Belirli bir nesnenin sahne içindeki konumunun tespitidir Tespit edilecek nesne önceden

Detaylı

K En Yakın Komşu Methodu (KNearest Neighborhood)

K En Yakın Komşu Methodu (KNearest Neighborhood) K En Yakın Komşu Methodu (KNearest Neighborhood) K-NN algoritması, Thomas. M. Cover ve Peter. E. Hart tarafından önerilen, örnek veri noktasının bulunduğu sınıfın ve en yakın komşunun, k değerine göre

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

Görüntü Segmentasyonu (Bölütleme)

Görüntü Segmentasyonu (Bölütleme) Görüntü Segmentasyonu (Bölütleme) Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. 20 Aralık 2014 Cumartesi 1 Görüntü Segmentasyonu 20 Aralık 2014 Cumartesi 2 Gestalt kanunları Görüntü

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2016-2017 Öğretim Yılı Bahar Dönemi 1 Görüntü Zenginleştirme Mekânsal Dönüşümler Mekânsal dönüşümler, uzaktan algılama görüntülerindeki bilgiyi

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN [email protected] İçerik Sınıflandırma yöntemleri Karar ağaçları ile sınıflandırma Entropi Kavramı ID3 Algoritması C4.5

Detaylı

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir.

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir. ÇELĐK YÜZEYLERĐN SINIFLANDIRILMASI * Cem ÜNSALAN ** Aytül ERÇĐL * Ayşın ERTÜZÜN *Boğaziçi Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü [email protected] **Boğaziçi Üniversitesi, Endüstri Mühendisliği

Detaylı

Ders 9: Kitle Ortalaması ve Varyansı için Tahmin

Ders 9: Kitle Ortalaması ve Varyansı için Tahmin Ders 9: Kitle Ortalaması ve Varyansı için Tahmin Kitle ve Örneklem Örneklem Dağılımı Nokta Tahmini Tahmin Edicilerin Özellikleri Kitle ortalaması için Aralık Tahmini Kitle Standart Sapması için Aralık

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Sınıflandırıcıların Değerlendirilmesi Skorlar Karışıklık matrisi Accuracy Precision Recall

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2015-2016 Öğretim Yılı Bahar Dönemi 1 Görüntü Zenginleştirme Mekânsal Dönüşümler Mekânsal dönüşümler, uzaktan algılama görüntülerindeki bilgiyi

Detaylı

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü 3.2. Raster Veriler Satırlar Piksel/hücre büyüklüğü Sütunlar 1 Görüntü formatlı veriler Her piksel için gri değerleri kaydedilmiştir iki veya üç bant (RGB) çok sayıda bant Fotoğraf, uydu görüntüsü, ortofoto,

Detaylı

HAVADAN LAZER TARAMA ve SAYISAL GÖRÜNTÜ VERİLERİNDEN BİNA TESPİTİ VE ÇATILARIN 3 BOYUTLU MODELLENMESİ

HAVADAN LAZER TARAMA ve SAYISAL GÖRÜNTÜ VERİLERİNDEN BİNA TESPİTİ VE ÇATILARIN 3 BOYUTLU MODELLENMESİ Akdeniz Üniversitesi Uzay Bilimleri ve Teknolojileri Bölümü Uzaktan Algılama Anabilim Dalı HAVADAN LAZER TARAMA ve SAYISAL GÖRÜNTÜ VERİLERİNDEN BİNA TESPİTİ VE ÇATILARIN 3 BOYUTLU MODELLENMESİ Dr.Nusret

Detaylı

AST416 Astronomide Sayısal Çözümleme - II. 6. Monte Carlo

AST416 Astronomide Sayısal Çözümleme - II. 6. Monte Carlo AST416 Astronomide Sayısal Çözümleme - II 6. Monte Carlo Bu derste neler öğreneceksiniz? Monte Carlo Yöntemleri Markov Zinciri (Markov Chain) Rastgele Yürüyüş (Random Walk) Markov Chain Monte Carlo, MCMC

Detaylı

Bu bölümde; Çok ölçütlü karar verme yöntemlerinden biri olan TOPSİS yöntemi anlatılacaktır.

Bu bölümde; Çok ölçütlü karar verme yöntemlerinden biri olan TOPSİS yöntemi anlatılacaktır. ÇOK ÖLÇÜTLÜ KARAR VERME TOPSIS (Technique For Order Preference By Similarity To Ideal Solution) PROF. DR. İBRAHİM ÇİL 1 Bu bölümde; Çok ölçütlü karar verme yöntemlerinden biri olan TOPSİS yöntemi anlatılacaktır.

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) Öğretim Yılı Güz Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) Öğretim Yılı Güz Dönemi Uzaktan Algılama (JDF439) Sayısal yükseklik modeli Görüntü sınıflandırma yöntemleri Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) 2016-2017 Öğretim Yılı Güz Dönemi 1 ARAZİ MODELLERİ Yeryüzü, matematiksel olarak

Detaylı

Görüntü İyileştirme Teknikleri. Hafta-8

Görüntü İyileştirme Teknikleri. Hafta-8 Görüntü İyileştirme Teknikleri Hafta-8 1 Spektral İyileştirme PCA (Principal Component Analysis) Dönüşümü. Türkçesi Ana Bileşenler Dönüşümü Decorrelation Germe Tasseled Cap RGB den IHS ye dönüşüm IHS den

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Final

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Final Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Bilgisayarla Görme Final Harris ve Moravec Köşe Belirleme Metotları Selçuk BAŞAK 08501008 Not: Ödevi hazırlamak için geliştirdiğim

Detaylı

UYDU GÖRÜNTÜLERİNİN SINIFLANDIRILMASI DOĞRULUK DEĞERLENDİRMESİ

UYDU GÖRÜNTÜLERİNİN SINIFLANDIRILMASI DOĞRULUK DEĞERLENDİRMESİ ZKÜ MÜHENDİSLİK FAKÜLTESİ JEODEZİ VE FOTOGRAMETRİ MÜHENDİSLİĞİ BÖLÜMÜ UYDU GÖRÜNTÜLERİNİN SINIFLANDIRILMASI VE DOĞRULUK DEĞERLENDİRMESİ UZM. MURAT ORUÇ 1 UZAKTAN ALGILAMANIN FİZİKSEL F ESASLARI Günümüzde

Detaylı

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21 İçindekiler Önsöz İkinci Basım için Önsöz Türkçe Çeviri için Önsöz Gösterim xiii xv xvii xix 1 Giriş 1 1.1 Yapay Öğrenme Nedir?......................... 1 1.2 Yapay Öğrenme Uygulamalarına Örnekler...............

Detaylı

CBS ve Coğrafi Hesaplama

CBS ve Coğrafi Hesaplama Yıldız Teknik Üniversitesi CBS ve Coğrafi Hesaplama 2. Bölüm Yrd. Doç. Dr. Alper ŞEN Harita Mühendisliği Bölümü Kartografya Anabilim Dalı web: http://www.yarbis.yildiz.edu.tr/alpersen/ E mail: [email protected]

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

Appendix C: İstatistiksel Çıkarsama

Appendix C: İstatistiksel Çıkarsama Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama Doç.

Detaylı

ORM 7420 USING SATELLITE IMAGES IN FOREST RESOURCE PLANNING

ORM 7420 USING SATELLITE IMAGES IN FOREST RESOURCE PLANNING ORM 7420 USING SATELLITE IMAGES IN FOREST RESOURCE PLANNING Asst. Prof. Dr. Uzay KARAHALİL Week IV NEDEN UYDU GÖRÜNTÜLERİ KULLANIRIZ? Sayısaldır (Dijital), - taramaya gerek yoktur Hızlıdır Uçuş planı,

Detaylı

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında ucuz ve hızlı sonuç alınabilen uzaktan algılama tekniğinin, yenilenebilir

Detaylı

YZM 5257 YAPAY ZEKA VE UZMAN SİSTEMLER DERS#6: GENETİK ALGORİTMALAR

YZM 5257 YAPAY ZEKA VE UZMAN SİSTEMLER DERS#6: GENETİK ALGORİTMALAR YZM 5257 YAPAY ZEKA VE UZMAN SİSTEMLER DERS#6: GENETİK ALGORİTMALAR Sınıflandırma Yöntemleri: Karar Ağaçları (Decision Trees) Örnek Tabanlı Yöntemler (Instance Based Methods): k en yakın komşu (k nearest

Detaylı

Mekatronik Mühendisliği Uygulamalarında Yapay Zekâ. Ders 1- Yapay Zekâya Giriş. Erhan AKDOĞAN, Ph.D.

Mekatronik Mühendisliği Uygulamalarında Yapay Zekâ. Ders 1- Yapay Zekâya Giriş. Erhan AKDOĞAN, Ph.D. Mekatronik Mühendisliği Uygulamalarında Yapay Zekâ Ders 1- Yapay Zekâya Giriş Erhan AKDOĞAN, Ph.D. Yapay Zekâ nedir?! İnsanın düşünme ve karar verme yeteneğini bilgisayarlar aracılığı ile taklit etmeye

Detaylı

İSTATİSTİK EXCEL UYGULAMA

İSTATİSTİK EXCEL UYGULAMA İSTATİSTİK EXCEL UYGULAMA EXCEL UYGULAMA Bu bölümde Excel ile ilgili temel bilgiler sunulacak ve daha sonra İstatistiksel Uygulamalar hakkında bilgi verilecektir. İşlenecek Konular: Merkezi eğilim Ölçüleri

Detaylı

BÖLÜM-II ERDAS IMAGINE TEMEL KISIM1: IMAGINE VIEWER 1

BÖLÜM-II ERDAS IMAGINE TEMEL KISIM1: IMAGINE VIEWER 1 BÖLÜM-II ERDAS IMAGINE TEMEL KISIM1: IMAGINE VIEWER 1 KISIM 1 ERDAS IMAGINE VIEWER KULLANIMI KISIM1: IMAGINE VIEWER 2 GİRİŞ TERMİNOLOJİ GÖRÜNTÜ NEDİR? UZAKTAN ALGILAMA GÖRÜNTÜLERİN GÖRÜNÜŞÜ GEOMETRİK DÜZELTME

Detaylı

Hafta 03/04 - Uzaklık/Benzerlik - En Yakın Komşular - Karar Ağaçları

Hafta 03/04 - Uzaklık/Benzerlik - En Yakın Komşular - Karar Ağaçları Hafta 03/04 - Uzaklık/Benzerlik - En Yakın Komşular - Karar Ağaçları BGM 565 - Siber Güvenlik için Makine Öğrenme Yöntemleri Bilgi Güvenliği Mühendisliği Yüksek Lisans Programı Dr. Ferhat Özgür Çatak [email protected]

Detaylı

TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ

TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ 1 İstatistik İstatistik, belirsizliğin veya eksik bilginin söz konusu olduğu durumlarda çıkarımlar yapmak ve karar vermek için sayısal verilerin

Detaylı

Görüntü Segmentasyonu (Bölütleme) Dijital Görüntü İşleme Fevzi Karslı, KTÜ Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır.

Görüntü Segmentasyonu (Bölütleme) Dijital Görüntü İşleme Fevzi Karslı, KTÜ Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. Görüntü Segmentasyonu (Bölütleme) Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. 16 Ocak 2014 Perşembe 1 Görüntü Segmentasyonu 16 Ocak 2014 Perşembe 2 Görüntüden Objelere Bir objeyi

Detaylı

Uzaktan algılamada uydu görüntülerine uygulanan işlemler

Uzaktan algılamada uydu görüntülerine uygulanan işlemler Uzaktan algılamada uydu görüntülerine uygulanan işlemler Uzaktan algılama görüntülerine uygulanan işlemler genel olarak; 1. Görüntü ön işleme (Düzeltme) 2. Görüntü İşleme olarak ele alınabilir. GÖRÜNTÜ

Detaylı

Hızlı Düzey Küme Yöntemine Bağlı Retinal Damar Bölütlemesi. Bekir DİZDAROĞLU. KTÜ Bilgisayar Mühendisliği Bölümü

Hızlı Düzey Küme Yöntemine Bağlı Retinal Damar Bölütlemesi. Bekir DİZDAROĞLU. KTÜ Bilgisayar Mühendisliği Bölümü Bekir DİZDAROĞLU KTÜ Bilgisayar Mühendisliği Bölümü [email protected] 1/29 Tıbbi imge bölütleme klasik yaklaşımları a) Piksek tabanlı b) Kenar tabanlı c) Bölge tabanlı d) Watershed (sınır) tabanlı e) Kenar

Detaylı

Copyright 2004 Pearson Education, Inc. Slide 1

Copyright 2004 Pearson Education, Inc. Slide 1 Slide 1 Bölüm 2 Verileri Betimleme, Keşfetme, ve Karşılaştırma 2-1 Genel Bakış 2-2 Sıklık Dağılımları 2-3 Verilerin Görselleştirilmesi 2-4 Merkezi Eğilim Ölçüleri 2-5 Değişimin Ölçülmesi 2-6 Nispi Sabitlerin

Detaylı

Emrah Kurtoğlu Gamze Dinçar Liva Gizem Göze Ali Kadir Ulu

Emrah Kurtoğlu Gamze Dinçar Liva Gizem Göze Ali Kadir Ulu 1302120002 1302130068 1302150039 1302150049 Emrah Kurtoğlu Gamze Dinçar Liva Gizem Göze Ali Kadir Ulu 17.10.2016 SPEKTRAL İMGELER Bir malzeme için yansıyan, yutulan veya iletilen ışınım miktarları dalga

Detaylı

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 Görüntü İşleme K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 İçerik Görüntü İşleme Nedir? Görüntü Tanımlamaları Görüntü Operasyonları Görüntü İşleme

Detaylı

BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 )

BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 ) 4. SUNUM 1 Gözlem ya da deneme sonucu elde edilmiş sonuçların, rastlantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HİPOTEZ TESTLERİ denir. Sonuçların rastlantıya bağlı

Detaylı

Kümeleme Algoritmaları. Tahir Emre KALAYCI

Kümeleme Algoritmaları. Tahir Emre KALAYCI Tahir Emre KALAYCI 2010 Gündem En önemli gözetimsiz öğrenme (unsupervised learning) problemi olarak değerlendirilmektedir Bu türdeki diğer problemler gibi etiketsiz veri kolleksiyonları için bir yapı bulmakla

Detaylı

Uzaktan Algılama (3) Yrd. Doç. Dr. Özgür ZEYDAN Renk Teorileri

Uzaktan Algılama (3) Yrd. Doç. Dr. Özgür ZEYDAN   Renk Teorileri Uzaktan Algılama (3) Yrd. Doç. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri Eklemeli renk teorisi Çıkarmalı renk teorisi 1 RGB (Red Green - Blue) Kavramı Red Green - Blue RGB-Mixer

Detaylı

UZAKTAN ALGILAMADA SINIFLANDIRMA YÖNTEMLERĐNĐN KARŞILAŞTIRILMASI

UZAKTAN ALGILAMADA SINIFLANDIRMA YÖNTEMLERĐNĐN KARŞILAŞTIRILMASI UZAKTAN ALGILAMADA SINIFLANDIRMA YÖNTEMLERĐNĐN KARŞILAŞTIRILMASI Eminnur Ayhan 1, Oğuz Kansu 2 1 Karadeniz Teknik Üniversitesi Jeodezi ve Fotogrametri Mühendisliği Bölümü, Fotogrametri Anabilim Dalı,Trabzon.

Detaylı

RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN

RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN RASTGELE SAYILARIN ÜRETİLMESİ Rastgele değişimler yapay tablolardan veya parametreleri verilen teorik dağılım fonksiyonlarından elde edilir.

Detaylı

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun.

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Doç.Dr.Mehmet MISIR-2013 TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında

Detaylı

BÖLÜM 12 STUDENT T DAĞILIMI

BÖLÜM 12 STUDENT T DAĞILIMI 1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir

Detaylı

Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri

Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri Eklemeli renk teorisi Çıkarmalı renk teorisi 1 RGB (Red Green - Blue) Kavramı Red Green - Blue RGB-Mixer

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

TÜRKİYE NİN BİTKİ ÖRTÜSÜ DEĞİŞİMİNİN NOAA UYDU VERİLERİ İLE BELİRLENMESİ*

TÜRKİYE NİN BİTKİ ÖRTÜSÜ DEĞİŞİMİNİN NOAA UYDU VERİLERİ İLE BELİRLENMESİ* TÜRKİYE NİN BİTKİ ÖRTÜSÜ DEĞİŞİMİNİN NOAA UYDU VERİLERİ İLE BELİRLENMESİ* Determination the Variation of The Vegetation in Turkey by Using NOAA Satellite Data* Songül GÜNDEŞ Fizik Anabilim Dalı Vedat PEŞTEMALCI

Detaylı

Zahmetsiz örüntü tanıma: Nokta bulutlarının karşılaştırılması yoluyla veri-tabanlı ve parametresiz istatistiksel öğrenme

Zahmetsiz örüntü tanıma: Nokta bulutlarının karşılaştırılması yoluyla veri-tabanlı ve parametresiz istatistiksel öğrenme Zahmetsiz örüntü tanıma: Nokta bulutlarının karşılaştırılması yoluyla veri-tabanlı ve parametresiz istatistiksel öğrenme Doç. Dr. Bilge Karaçalı Biyomedikal Veri İşleme Laboratuvarı Elektrik-Elektronik

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

PAN-SHARP LANDSAT 7 ETM+ GÖRÜNTÜSÜ KULLANILARAK PİKSEL-TABANLI VE NESNE-TABANLI SINIFLANDIRMA YAKLAŞIMLARININ KARŞILAŞTIRILMASI

PAN-SHARP LANDSAT 7 ETM+ GÖRÜNTÜSÜ KULLANILARAK PİKSEL-TABANLI VE NESNE-TABANLI SINIFLANDIRMA YAKLAŞIMLARININ KARŞILAŞTIRILMASI TMMOB Harita ve Kadastro Mühendisleri Odası 11. Türkiye Harita Bilimsel ve Teknik Kurultayı 2-6 Nisan 2007, Ankara PAN-SHARP LANDSAT 7 ETM+ GÖRÜNTÜSÜ KULLANILARAK PİKSEL-TABANLI VE NESNE-TABANLI SINIFLANDIRMA

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

İş Zekası. Hafta 6 Kestirimci Modelleme Teknikleri. Yrd. Doç. Dr. H. İbrahim CEBECİ

İş Zekası. Hafta 6 Kestirimci Modelleme Teknikleri. Yrd. Doç. Dr. H. İbrahim CEBECİ İş Zekası Hafta 6 Kestirimci Modelleme Teknikleri Business Intelligence and Analytics: Systems for Decision Support 10e isimli eserden adapte edilmiştir Bölüm Amaçları Yapay Sinir Ağları (YSA) kavramını

Detaylı

BÖLÜM III: Şebeke Modelleri. Şebeke Kavramları. Şebeke Kavramları. Şebeke Kavramları. Yönlü Şebeke (Directed Network) Dal / ok

BÖLÜM III: Şebeke Modelleri. Şebeke Kavramları. Şebeke Kavramları. Şebeke Kavramları. Yönlü Şebeke (Directed Network) Dal / ok 8.0.0 Şebeke Kavramları BÖLÜM III: Şebeke Modelleri Şebeke (Network) Sonlu sayıdaki düğümler kümesiyle, bunlarla bağlantılı oklar (veya dallar) kümesinin oluşturduğu yapı şeklinde tanımlanabilir ve (N,A)

Detaylı

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir.

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. İSTATİSTİKSEL TAHMİNLEME Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. 1 ŞEKİL: Evren uzay-örneklem uzay İstatistiksel tahmin

Detaylı

1: DENEYLERİN TASARIMI VE ANALİZİ...

1: DENEYLERİN TASARIMI VE ANALİZİ... İÇİNDEKİLER Bölüm 1: DENEYLERİN TASARIMI VE ANALİZİ... 1 1.1. Deneyin Stratejisi... 1 1.2. Deneysel Tasarımın Bazı Tipik Örnekleri... 11 1.3. Temel Kurallar... 16 1.4. Deneyleri Tasarlama Prensipleri...

Detaylı

NDEN BELİRLENEBİLME LME POTANSİYELİ UYDU GÖRÜNTÜLERİNDEN

NDEN BELİRLENEBİLME LME POTANSİYELİ UYDU GÖRÜNTÜLERİNDEN BİNALARIN YÜKSEK Y ÇÖZÜNÜRLÜKLÜRLÜKL UYDU GÖRÜNTÜLERİNDEN NTÜLER NDEN BELİRLENEBİLME LME POTANSİYELİ Dilek KOÇ SAN dkoc@metu metu.edu.tr Orta Doğu u Teknik Üniversitesi, Jeodezi ve Coğrafi Bilgi Teknolojileri

Detaylı

Neotektonik incelemelerde kullanılabilir. Deformasyon stili ve bölgesel fay davranışlarına ait. verileri tamamlayan jeolojik dataları sağlayabilir.

Neotektonik incelemelerde kullanılabilir. Deformasyon stili ve bölgesel fay davranışlarına ait. verileri tamamlayan jeolojik dataları sağlayabilir. Neotektonik incelemelerde kullanılabilir. Deformasyon stili ve bölgesel fay davranışlarına ait verileri tamamlayan jeolojik dataları sağlayabilir. Sismik tehlike değerlendirmeleri için veri tabanı oluşturur.

Detaylı

Hipotez. Hipotez Testleri. Y. Doç. Dr. İbrahim Turan Nisan 2011

Hipotez. Hipotez Testleri. Y. Doç. Dr. İbrahim Turan Nisan 2011 Hipotez Hipotez Testleri Y. Doç. Dr. İbrahim Turan Nisan 2011 Hipotez Nedir? Gözlemlenebilir (araştırılabilir) bir olay, olgu veya fikri mantıklı ve bilimsel olarak açıklamaya yönelik yapılan tahminlerdir.

Detaylı

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ YAPAY SİNİR AĞLARI Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ İÇERİK Sinir Hücreleri Yapay Sinir Ağları Yapısı Elemanları Çalışması Modelleri Yapılarına Göre Öğrenme Algoritmalarına Göre Avantaj ve

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 8 Multispektral Görüntüleme ve Uygulamaları Alp Ertürk [email protected] Multispektral Görüntüleme Her piksel için birkaç adet spektral kanalda ölçüm değeri

Detaylı

İstatistik 1. Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları. Ankara Üniversitesi SBF, GYY

İstatistik 1. Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları. Ankara Üniversitesi SBF, GYY İstatistik 1 Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları Bu Bölümde İşlenecek Konular Temel Olasılık Teorisi Örnek uzayı ve olaylar, basit olasılık, birleşik olasılık Koşullu Olasılık İstatistiksel

Detaylı

VERİ MADENCİLİĞİ (Veri Ön İşleme-2) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Veri Ön İşleme-2) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Veri Ön İşleme-2) Yrd.Doç.Dr. Kadriye ERGÜN [email protected] Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma Kümeleme

Detaylı

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Akış Makine Öğrenmesi nedir? Günlük Hayatımızdaki Uygulamaları Verilerin Sayısallaştırılması Özellik Belirleme Özellik Seçim Metotları Bilgi Kazancı (Informaiton Gain-IG) Sinyalin Gürültüye Oranı: (S2N

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDE GEOMETRİK DÜZELTMENİN SINIFLANDIRMA SONUÇLARINA ETKİSİ

YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDE GEOMETRİK DÜZELTMENİN SINIFLANDIRMA SONUÇLARINA ETKİSİ YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDE GEOMETRİK DÜZELTMENİN SINIFLANDIRMA SONUÇLARINA ETKİSİ E. Ayhan 1,G. Atay 1, O. Erden 1 1 Karadeniz Teknik Üniversitesi Jeodezi ve Fotogrametri Mühendisliği Bölümü,

Detaylı

ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ

ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ TEMEL KAVRAMLAR PARAMETRE: Populasyonun sayısal açıklayıcı bir ölçüsüdür ve anakütledeki tüm elemanlar dikkate alınarak hesaplanabilir. Ana kütledeki

Detaylı

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma...

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma... İçindekiler İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii BÖLÜM 1 Ölçme, İstatistik ve Araştırma...1 Ölçme Nedir?... 3 Ölçme Süreci... 3 Değişkenler

Detaylı

5 İki Boyutlu Algılayıcılar

5 İki Boyutlu Algılayıcılar 65 5 İki Boyutlu Algılayıcılar 5.1 CCD Satır Kameralar Ölçülecek büyüklük, örneğin bir telin çapı, objeye uygun bir projeksiyon ile CCD satırının ışığa duyarlı elemanı üzerine düşürülerek ölçüm yapılır.

Detaylı

YOĞUN GÖRÜNTÜ EŞLEME ALGORİTMALARI İLE ÜRETİLEN YÜKSEK ÇÖZÜNÜRLÜKLÜ SAYISAL YÜZEY MODELİ ÜRETİMİNDE KALİTE DEĞERLENDİRME VE DOĞRULUK ANALİZİ

YOĞUN GÖRÜNTÜ EŞLEME ALGORİTMALARI İLE ÜRETİLEN YÜKSEK ÇÖZÜNÜRLÜKLÜ SAYISAL YÜZEY MODELİ ÜRETİMİNDE KALİTE DEĞERLENDİRME VE DOĞRULUK ANALİZİ YOĞUN GÖRÜNTÜ EŞLEME ALGORİTMALARI İLE ÜRETİLEN YÜKSEK ÇÖZÜNÜRLÜKLÜ SAYISAL YÜZEY MODELİ ÜRETİMİNDE KALİTE DEĞERLENDİRME VE DOĞRULUK ANALİZİ Naci YASTIKLI a, Hüseyin BAYRAKTAR b a Yıldız Teknik Üniversitesi,

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL VERİ MADENCİLİĞİ Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL SPRINT Algoritması ID3,CART, ve C4.5 gibi algoritmalar önce derinlik ilkesine göre çalışırlar ve en iyi dallara ayırma kriterine

Detaylı

Karar Destek Sistemleri. Prof.Dr. Günay Erpul

Karar Destek Sistemleri. Prof.Dr. Günay Erpul Karar Destek Sistemleri Prof.Dr. Günay Erpul Karar Verme Karar verme, karar vericinin/karar vericilerin mevcut tüm seçenekler arasından amaca/amaçlara en uygun bir veya birkaç seçeneği seçmesi olarak tanımlanır.

Detaylı

BULANIK MANTIK ile KONTROL

BULANIK MANTIK ile KONTROL BULANIK MANTIK ile KONTROL AFYON KOCATEPE ÜNİVERSİTESİ Bulanık mantığın temel prensipleri: Bulanık küme sözel değişkenleri göstermek için kullanılır. Az sıcak, biraz soğuk gibi bulanık mantık üyelik fonksiyonları

Detaylı

Merkezi Yığılma ve Dağılım Ölçüleri

Merkezi Yığılma ve Dağılım Ölçüleri 1.11.013 Merkezi Yığılma ve Dağılım Ölçüleri 4.-5. hafta Merkezi eğilim ölçüleri, belli bir özelliğe ya da değişkene ilişkin ölçme sonuçlarının, hangi değer etrafında toplandığını gösteren ve veri grubunu

Detaylı

Popülasyon Ortalamasının Tahmin Edilmesi

Popülasyon Ortalamasının Tahmin Edilmesi Güven Aralıkları Popülasyon Ortalamasının Tahmin Edilmesi Tanımlar: Nokta Tahmini Popülasyon parametresi hakkında tek bir rakamdan oluşan tahmindir. Popülasyon ortalaması ile ilgili en iyi nokta tahmini

Detaylı

Elektrik ve Magnetizma

Elektrik ve Magnetizma Elektrik ve Magnetizma 1.1. Biot-Sawart yasası Üzerinden akım geçen, herhangi bir biçime sahip iletken bir tel tarafından bir P noktasında üretilen magnetik alan şiddeti H iletkeni oluşturan herbir parçanın

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

Kolektif Öğrenme Metotları

Kolektif Öğrenme Metotları Kolektif Öğrenme Metotları Kolektif öğrenme algoritmalarına genel bakış 1-Bagging 2-Ardışık Topluluklarla Öğrenme (Boosting) 3-Rastsal Altuzaylar 4-Rastsal Ormanlar 5-Aşırı Rastsal Ormanlar 6-Rotasyon

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 6 Kenar, Köşe, Yuvarlak Tespiti Alp Ertürk [email protected] KENAR TESPİTİ Kenar Tespiti Amaç: Görüntüdeki ani değişimleri / kesintileri algılamak Şekil bilgisi elde

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ Günümüz simülasyonları gerçek sistem davranışlarını, zamanın bir fonksiyonu olduğu düşüncesine dayanan Monte Carlo yöntemine dayanır. 1.

Detaylı

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir Bilimsel Araştırma Yöntemleri Prof. Dr. Şener Büyüköztürk Doç. Dr. Ebru Kılıç Çakmak Yrd. Doç. Dr. Özcan Erkan Akgün Doç. Dr. Şirin Karadeniz Dr. Funda Demirel Örnekleme Yöntemleri Evren Evren, araştırma

Detaylı