Özörgütlemeli Öğrenme (SOM) A. Cumhur KINACI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Özörgütlemeli Öğrenme (SOM) A. Cumhur KINACI"

Transkript

1 Özörgütlemeli Öğrenme (SOM) A. Cumhur KINACI

2 Öğrenme Türleri Eğiticili Öğrenme Eğiticisiz Öğrenme: Ağın verilerin sınıflandırmasını dışarıdan yardım almadan kendi başına yapmasıdır. Bunun olabilmesi için verilerin ortak özelliklere sahip verilerden oluştuğunu kabul etmemiz gerekir. Destekleyicili Öğrenme

3 Rekabetçi Öğrenme Sinir Hücreleri arasında girdi vektörünü en iyi temsil edenin belirlenmesi.

4 Rekabetçi Öğrenme - 2 Eğiticisiz öğrenmenin bir türü olarak rekabetçi öğrenme; çıktı katmanı sinir hücrelerinin etkin olabilmek için kendi aralarında yarışmalarına dayanır. Sonuç olarak herhangi bir anda sadece bir tane kazanan sinir hücresi olur. Bu rekabet sonunda sinir hücreleri organize olmaya zorlanır.

5 Topografik Harita (Eşlem) Topografi : Bir kara parçasının doğal engebe ve özelliklerini kâğıt üzerinde çizgilerle gösterme işi.

6 WEBSOM: Belgelerin konularına göre topografik eşlemi. ebsom/

7 Topografik Harita (Eşlem) - 2 Biyolojik sinir sistemi çalışmaları göstermiştir ki tüm motor, görsel, işitsel vb. girdiler serebral kortekste bir düzen içerisinde eşlenmiştir.

8 Topografik Harita (Eşlem) - 3 İki özelliği vardır: 1.Sürecin herhangi bir aşamasında gelen her bir bilgi parçası kendisine uygun içerikte tutulur. 2.Yakın alakalı bilgilerle ilgilenen sinir hücreleri birbirlerine yakın konumlanırlar. Böylece daha az sinaptik bağlantıyla haberleşebilirler. Hedef : Yapay topografi eşlemlerini özörgütlemeli bir şekilde sinir sisteminden esinlenen bir bakış açısıyla oluşturmaktır.

9 Topoloji Geometrik cisimlerin nitelikleriyle ilgili özelliklerini ve bağıl konumlarını, biçim ve büyüklüklerinden ayrı olarak alıp inceleyen geometri dalı.

10 SOM'un öncelikli hedefi, herhangi bir boyuta sahip desen sinyallerini bir veya iki boyutlu sonlu eşlemlere dönüştürmektir. R, R 2, R 3

11 Eşleme (Mapping)

12 Özörgütlemeli Öğrenmenin Bileşenleri Dört bileşenden oluşur. 1- İlklendirme: Tüm bağlantı ağırlıkları küçük rastgele sayılarla ilklendirilirler. Başka ilklendirme stratejileri de uygulanabilir. 2- Rekabet: Her girdi deseni için hücreler rekabetin temelini oluşturan ayırt etme fonksiyonu değerlerine göre yarışırlar. Bu fonksiyonun en küçük değeri verdiği hücre kazanan olur.

13 Özörgütlemeli Öğrenmenin Bileşenler İşbirliği: Kazanan hücre uyarılacak hücrelerin topolojik komşuluğunun uzaysal konumunu belirler. Böylece komşu hücreler arasında işbirliği temelleri oluşturulur. 4- Uyum: Uyarılan hücreler ayırt edici fonksiyondan elde ettikleri değeri düşürecek şekilde bağlantı ağırlıklarını ayarlarlar.

14 Rekabetçi Süreç D boyutlu girdilerin olduğunu kabul edelim. girdi desenlerini şu şekilde ifade edebiliriz : Girdi birimi i ile j'inci sinir hücresi arasındaki ağırlıklar da şu şekilde gösterilebilir. N toplam sinir hücresi sayısı.

15 Rekabetçi Süreç - 2 Ayırt edici fonksiyon olarak Öklid uzaklığının karesini alabiliriz. Girdi vektörü X ile her j'inci sinir hücresi için ağırlık vektörü wj arasındaki uzaklık:

16 Rekabetçi Süreç - 3 Bir başka deyişle hangi sinir hücresinin ağırlık vektörü girdi vektörüne yakınsa o hücre kazanır. Bu şekilde sinir hücrelerinin rekabeti sayesinde sürekli girdi uzayı kesikli çıktı uzayıyla eşleştirilmiş olur.

17 İşbirliği Süreci Biyolojik araştırmalar bir sinir hücresi ateşlendiğinde en yakın komşularının da diğer uzaktakilere oranla uyarılmaya eğilimli olduğu gözlemlenmiş. Bu uzaklıkla azalan topolojik komşuluk anlamına gelir. SOM'da komşuluk fonksiyonu zamanla azalan bir fonksiyon olmalıdır.

18 Kazanan Hücre ve Komşuları

19 Uyum süreci Sadece kazanan hücre değil komşuları da girdi vektörüne yaklaşacak şekilde ağırlıkları düzenlenir. Böylece topolojik düzen sağlanmış olur. Ağırlık güncelleme katsayısı da zamana bağlı olarak azalan fonksiyon olmalıdır.

20 Self Organizing Map Mimarisi

21 SOM Algoritması - 1 İlklendirme Örneğin ağa gösterimi Eşleme Güncelleme Döngüye devam

22 SOM Algoritması Rekabet 2. İşbirliği 3. Komşuluk Fonksiyonu 4. Uyum

23 Kullanım Alanları Veri Analizi Kümeleme Risk Analizi

24 Renk Kümeleme Örneği

25 SOM ile Sezgisel TSP çözümü

26 Growing SOM SOM katmanının hücre sayısının ne kadar olması gerektiğini düşünmeden dinamik olarak ağın büyümesi mantığını kullanır.

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ YAPAY SİNİR AĞLARI Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ İÇERİK Sinir Hücreleri Yapay Sinir Ağları Yapısı Elemanları Çalışması Modelleri Yapılarına Göre Öğrenme Algoritmalarına Göre Avantaj ve

Detaylı

YZM 3217 YAPAY ZEKA DERS#10: KÜMELEME

YZM 3217 YAPAY ZEKA DERS#10: KÜMELEME YZM 317 YAPAY ZEKA DERS#10: KÜMELEME Sınıflandırma (Classification) Eğiticili (supervised) sınıflandırma: Sınıflandırma: Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğunu bilinir Eğiticisiz (unsupervised)

Detaylı

Uzaktan Algılama Uygulamaları

Uzaktan Algılama Uygulamaları Aksaray Üniversitesi Uzaktan Algılama Uygulamaları Doç.Dr. Semih EKERCİN Harita Mühendisliği Bölümü [email protected] 2010-2011 Bahar Yarıyılı Uzaktan Algılama Uygulamaları GÖRÜNTÜ İŞLEME TEKNİKLERİ

Detaylı

Bahadır KARASULU, Aybars UĞUR Ege Üniversitesi, Bilgisayar Mühendisliği Bölümü

Bahadır KARASULU, Aybars UĞUR Ege Üniversitesi, Bilgisayar Mühendisliği Bölümü ÖZÖRGÜTLEMELİ YAPAY SİNİR AĞI MODELİ NİN KULLANILDIĞI KUTUP DENGELEME PROBLEMİ İÇİN PARALEL HESAPLAMA TEKNİĞİ İLE BİR BAŞARIM ENİYİLEŞTİRME YÖNTEMİ Bahadır KARASULU, Aybars UĞUR Ege Üniversitesi, Bilgisayar

Detaylı

İş Zekası. Hafta 6 Kestirimci Modelleme Teknikleri. Yrd. Doç. Dr. H. İbrahim CEBECİ

İş Zekası. Hafta 6 Kestirimci Modelleme Teknikleri. Yrd. Doç. Dr. H. İbrahim CEBECİ İş Zekası Hafta 6 Kestirimci Modelleme Teknikleri Business Intelligence and Analytics: Systems for Decision Support 10e isimli eserden adapte edilmiştir Bölüm Amaçları Yapay Sinir Ağları (YSA) kavramını

Detaylı

CBS ve Coğrafi Hesaplama

CBS ve Coğrafi Hesaplama Yıldız Teknik Üniversitesi CBS ve Coğrafi Hesaplama 2. Bölüm Yrd. Doç. Dr. Alper ŞEN Harita Mühendisliği Bölümü Kartografya Anabilim Dalı web: http://www.yarbis.yildiz.edu.tr/alpersen/ E mail: [email protected]

Detaylı

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN [email protected] İçerik Kümeleme İşlemleri Kümeleme Tanımı Kümeleme Uygulamaları Kümeleme Yöntemleri Kümeleme (Clustering) Kümeleme birbirine

Detaylı

1- Matematik ve Geometri

1- Matematik ve Geometri GEOMETRİ ÖĞRETİMİ 1- Matematik ve Geometri Matematik ve Geometri Bir çok matematikçi ve matematik eğitimcisi matematiği «cisimler, şekiller ve sembollerle ilişkiler ve desenler inşa etme etkinliği» olarak

Detaylı

Yapay Sinir Ağları. (Artificial Neural Networks) DOÇ. DR. ERSAN KABALCI

Yapay Sinir Ağları. (Artificial Neural Networks) DOÇ. DR. ERSAN KABALCI Yapay Sinir Ağları (Artificial Neural Networks) J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Yapay Sinir Ağları Tarihçe Biyolojik

Detaylı

İnsan beyni, birbiri ile karmaşık ilişkiler içinde bulunan nöron hücreleri kitlesidir. Tüm aktivitelerimizi kontrol eder, yaradılışın en görkemli ve

İnsan beyni, birbiri ile karmaşık ilişkiler içinde bulunan nöron hücreleri kitlesidir. Tüm aktivitelerimizi kontrol eder, yaradılışın en görkemli ve YAPAY SİNİRAĞLARI İnsan beyni, birbiri ile karmaşık ilişkiler içinde bulunan nöron hücreleri kitlesidir. Tüm aktivitelerimizi kontrol eder, yaradılışın en görkemli ve gizemli harikalarından biridir. İnsan

Detaylı

Esnek Hesaplamaya Giriş

Esnek Hesaplamaya Giriş Esnek Hesaplamaya Giriş J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Esnek Hesaplama Nedir? Esnek hesaplamanın temelinde yatan

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü 3.2. Raster Veriler Satırlar Piksel/hücre büyüklüğü Sütunlar 1 Görüntü formatlı veriler Her piksel için gri değerleri kaydedilmiştir iki veya üç bant (RGB) çok sayıda bant Fotoğraf, uydu görüntüsü, ortofoto,

Detaylı

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Akış Makine Öğrenmesi nedir? Günlük Hayatımızdaki Uygulamaları Verilerin Sayısallaştırılması Özellik Belirleme Özellik Seçim Metotları Bilgi Kazancı (Informaiton Gain-IG) Sinyalin Gürültüye Oranı: (S2N

Detaylı

KLASİK FRAKTALLAR FRAKTAL ÖZELLİKLERİ VE BOYUT

KLASİK FRAKTALLAR FRAKTAL ÖZELLİKLERİ VE BOYUT KLASİK FRAKTALLAR FRAKTAL ÖZELLİKLERİ VE BOYUT.. KENDİNE BENZERLİK VE AFİNİTE Fraktal özelliklerinden bir diğeri de kendine benzerlikdir. Geometrik açıdan, aynı şekle sahip olan geometrik şekiller birbirine

Detaylı

FRAKTAL VE FRAKTAL GEOMETRİ KAVRAMI

FRAKTAL VE FRAKTAL GEOMETRİ KAVRAMI FRAKTAL VE FRAKTAL GEOMETRİ KAVRAMI Fraktal geometri, yaklaşık çeyrek asırdır bilim dünyasının gündeminde olan ve doğadaki karmaşık biçim ve süreçleri gittikçe daha iyi anlamamıza yardımcı olan özel bir

Detaylı

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Akış Makine Öğrenmesi nedir? Günlük Hayatımızdaki Uygulamaları Verilerin Sayısallaştırılması Özellik Belirleme Özellik Seçim Metotları Bilgi Kazancı (Informaiton Gain-IG) Sinyalin Gürültüye Oranı: (S2N

Detaylı

Metin Sınıflandırma. Akış

Metin Sınıflandırma. Akış Metin Sınıflandırma Mehmet Fatih AMASYALI BLM 5212 Doğal Dil İşlemeye Giriş Ders Notları Akış Görev Eğiticili Eğiticisiz Öğrenme Metin Özellikleri Metin Kümeleme Özellik Belirleme Çok Boyutlu Verilerle

Detaylı

Yapay Bağışık Sistemler ve Klonal Seçim. Bmü-579 Meta Sezgisel Yöntemler Yrd. Doç. Dr. İlhan AYDIN

Yapay Bağışık Sistemler ve Klonal Seçim. Bmü-579 Meta Sezgisel Yöntemler Yrd. Doç. Dr. İlhan AYDIN Yapay Bağışık Sistemler ve Klonal Seçim Bmü-579 Meta Sezgisel Yöntemler Yrd. Doç. Dr. İlhan AYDIN Bağışık Sistemler Bağışıklık sistemi insan vücudunun hastalıklara karşı savunma mekanizmasını oluşturan

Detaylı

Büyük boyutun laneti (Curse of Dimensionality)

Büyük boyutun laneti (Curse of Dimensionality) Büyük boyutun laneti (Curse of Dimensionality) p Veri boyutu arttıkça örnekler (noktalar) uzay içinde çok fazla dağınık hale gelir. p Noktaların yoğunluğu ya da aralarındaki uzaklık bir çok problem için

Detaylı

KLASİK FRAKTALLAR, FRAKTAL ÖZELLİKLERİ VE BOYUT ( C L A S S I C A L F R AC TA L S, F R AC TA L P R O P E R T I E S AND D I M E N S I O N )

KLASİK FRAKTALLAR, FRAKTAL ÖZELLİKLERİ VE BOYUT ( C L A S S I C A L F R AC TA L S, F R AC TA L P R O P E R T I E S AND D I M E N S I O N ) KLASİK FRAKTALLAR, FRAKTAL ÖZELLİKLERİ VE BOYUT ( C L A S S I C A L F R AC TA L S, F R AC TA L P R O P E R T I E S AND D I M E N S I O N ) KENDİNE BENZERLİK VE AFİNİTE (SELF SIMILARITY AND AFFINITY) Mandelbrot

Detaylı

Görüntü Sınıflandırma

Görüntü Sınıflandırma Görüntü Sınıflandırma Chapter 12 https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0 CBwQFjAA&url=http%3A%2F%2Ffaculty.une.edu%2Fcas%2Fszeeman%2Frs%2Flect%2FCh%2 52012%2520Image%2520Classification.ppt&ei=0IA7Vd36GYX4Uu2UhNgP&usg=AFQjCNE2wG

Detaylı

2. Topolojik Uzaylarda Ba¼glant l l k Ba¼glant l Topolojik Uzaylar. Tan m (X; ) topolojik uzay n n her biri boş kümeden farkl olan ayr k

2. Topolojik Uzaylarda Ba¼glant l l k Ba¼glant l Topolojik Uzaylar. Tan m (X; ) topolojik uzay n n her biri boş kümeden farkl olan ayr k 2. Topolojik Uzaylarda Ba¼glant l l k 2.1. Ba¼glant l Topolojik Uzaylar Tan m 2.1.1. (X; ) topolojik uzay n n her biri boş kümeden farkl olan ayr k iki aç ktan oluşan bir örtüsü yok ise, (X; ) topolojik

Detaylı

Eskişehir Teknik Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması Güz Dönemi

Eskişehir Teknik Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması Güz Dönemi Eskişehir Teknik Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2018-2019 Güz Dönemi 2 1. Tek noktada yoğunlaşmış tesisler 2. Alana düzgün dağılmış

Detaylı

MATEMATİK VE FEN BİLİMLERİ EĞTİMİ ANABİLİM DALI MATEMATİK EĞİTİMİ BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI

MATEMATİK VE FEN BİLİMLERİ EĞTİMİ ANABİLİM DALI MATEMATİK EĞİTİMİ BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI I.YARIYIL MATEMATİK VE FEN BİLİMLERİ EĞTİMİ ANABİLİM DALI MATEMATİK EĞİTİMİ BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI 3715055832012 Z Uzmanlık Alan Dersi 3715055702017 Z Bilimsel Araştırma Yöntemleri ve

Detaylı

K En Yakın Komşu Methodu (KNearest Neighborhood)

K En Yakın Komşu Methodu (KNearest Neighborhood) K En Yakın Komşu Methodu (KNearest Neighborhood) K-NN algoritması, Thomas. M. Cover ve Peter. E. Hart tarafından önerilen, örnek veri noktasının bulunduğu sınıfın ve en yakın komşunun, k değerine göre

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 6 Kenar, Köşe, Yuvarlak Tespiti Alp Ertürk [email protected] KENAR TESPİTİ Kenar Tespiti Amaç: Görüntüdeki ani değişimleri / kesintileri algılamak Şekil bilgisi elde

Detaylı

Mekatronik Mühendisliği Uygulamalarında Yapay Zekâ. Ders 1- Yapay Zekâya Giriş. Erhan AKDOĞAN, Ph.D.

Mekatronik Mühendisliği Uygulamalarında Yapay Zekâ. Ders 1- Yapay Zekâya Giriş. Erhan AKDOĞAN, Ph.D. Mekatronik Mühendisliği Uygulamalarında Yapay Zekâ Ders 1- Yapay Zekâya Giriş Erhan AKDOĞAN, Ph.D. Yapay Zekâ nedir?! İnsanın düşünme ve karar verme yeteneğini bilgisayarlar aracılığı ile taklit etmeye

Detaylı

Koordinat Referans Sistemleri

Koordinat Referans Sistemleri Koordinat Referans Sistemleri Harita yapımında geometrik süreç Küre Referans yüzeyin seçimi Elipsoit Ölçek küçültme Dünya/Jeoit Harita düzlemine izdüşüm Harita Fiziksel yer yüzünün belli bir şekli yok,

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

Dr.Eyyüp GÜLBANDILAR Dr.Eyyüp GÜLBANDILAR

Dr.Eyyüp GÜLBANDILAR Dr.Eyyüp GÜLBANDILAR YAPAY SĐNĐR AĞLARI BĐYOLOJĐK SĐNĐR SĐSTEMĐ Biyolojik sinir sistemi, merkezinde sürekli olarak bilgiyi alan, yorumlayan ve uygun bir karar üreten beynin (merkezi sinir ağı) bulunduğu 3 katmanlı bir sistem

Detaylı

İlk Yapay Sinir Ağları. Dr. Hidayet Takçı

İlk Yapay Sinir Ağları. Dr. Hidayet Takçı İlk Yapay Sinir Ağları Dr. Hidayet [email protected] http://htakci.sucati.org Tek katmanlı algılayıcılar (TKA) Perceptrons (Rosenblat) ADALINE/MADALINE (Widrow and Hoff) 2 Perseptron eptronlar Basit bir

Detaylı

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 Görüntü İşleme K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 İçerik Görüntü İşleme Nedir? Görüntü Tanımlamaları Görüntü Operasyonları Görüntü İşleme

Detaylı

1- Geometri ve Öklid

1- Geometri ve Öklid GEOMETRİ ÖĞRETİMİ 1- Geometri ve Öklid Matematik ve Geometri Bir çok matematikçi ve matematik eğitimcisi matematiği «cisimler, şekiller ve sembollerle ilişkiler ve desenler inşa etme etkinliği» olarak

Detaylı

Büyük Veri İçin İstatistiksel Öğrenme (Statistical Learning for Big Data)

Büyük Veri İçin İstatistiksel Öğrenme (Statistical Learning for Big Data) Büyük Veri İçin İstatistiksel Öğrenme (Statistical Learning for Big Data) M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Bu dersin sunumları, The Elements of Statistical Learning: Data

Detaylı

Stokastik Süreçler. Bir stokastik süreç ya da rastgele süreç şöyle tanımlanabilir.

Stokastik Süreçler. Bir stokastik süreç ya da rastgele süreç şöyle tanımlanabilir. Bir stokastik süreç ya da rastgele süreç şöyle tanımlanabilir. Zamanla değişen bir rastgele değişkendir. Rastgele değişkenin alacağı değer zamanla değişmektedir. Deney çıktılarına atanan rastgele bir zaman

Detaylı

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında ucuz ve hızlı sonuç alınabilen uzaktan algılama tekniğinin, yenilenebilir

Detaylı

Destekçi Vektör Makineleri. Destekçi Vektör Makineleri(Support Vector Machines)

Destekçi Vektör Makineleri. Destekçi Vektör Makineleri(Support Vector Machines) Destekçi Vektör Makineleri Destekçi Vektör Makineleri(Support Vector Machines) Değişkenler arasındaki örüntülerin bilinmediği veri setlerindeki sınıflama problemleri için önerilmiş bir makine öğrenmesi

Detaylı

Gök Mekaniği: Eğrisel Hareket in Kinematiği

Gök Mekaniği: Eğrisel Hareket in Kinematiği Gök Mekaniği: Eğrisel Hareket in Kinematiği Bundan bir önceki giriş yazımızda Kepler yasaları ve Newton ın hareket kanunlarını vermiş, bunlardan yola çıkarak gök mekaniklerini elde edeceğimizi söylemiştik.

Detaylı

Makine Öğrenmesi 2. hafta

Makine Öğrenmesi 2. hafta Makine Öğrenmesi 2. hafta Uzaklığa dayalı gruplandırma K-means kümeleme K-NN sınıflayıcı 1 Uzaklığa dayalı gruplandırma Makine öğrenmesinde amaç birbirine en çok benzeyen veri noktalarını aynı grup içerisinde

Detaylı

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun.

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Doç.Dr.Mehmet MISIR-2013 TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında

Detaylı

Makine Öğrenmesi 8. hafta

Makine Öğrenmesi 8. hafta Makine Öğrenmesi 8. hafa Takviyeli Öğrenme (Reinforcemen Learning) Q Öğrenme (Q Learning) TD Öğrenme (TD Learning) Öğrenen Vekör Parçalama (LVQ) LVQ2 LVQ-X 1 Takviyeli Öğrenme Takviyeli öğrenme (Reinforcemen

Detaylı

PARÇACIK SÜRÜ OPTİMİZASYONU BMÜ-579 METASEZGİSEL YÖNTEMLER YRD. DOÇ. DR. İLHAN AYDIN

PARÇACIK SÜRÜ OPTİMİZASYONU BMÜ-579 METASEZGİSEL YÖNTEMLER YRD. DOÇ. DR. İLHAN AYDIN PARÇACIK SÜRÜ OPTİMİZASYONU BMÜ-579 METASEZGİSEL YÖNTEMLER YRD. DOÇ. DR. İLHAN AYDIN 1995 yılında Dr.Eberhart ve Dr.Kennedy tarafından geliştirilmiş popülasyon temelli sezgisel bir optimizasyon tekniğidir.

Detaylı

Muhammet Fatih AKBAŞ, Enis KARAARSLAN, Cengiz GÜNGÖR

Muhammet Fatih AKBAŞ, Enis KARAARSLAN, Cengiz GÜNGÖR Yazılım Tanımlı Ağların Güvenliğinde Yapay Zeka Tabanlı Çözümler: Ön İnceleme Muhammet Fatih AKBAŞ, Enis KARAARSLAN, Cengiz GÜNGÖR İzmir Katip Çelebi Üniversitesi, Muğla Sıtkı Koçman Üniversitesi, Ege

Detaylı

Ders Adı : Nesne Tabanlı Programlama-I Ders No : Teorik : 3 Pratik : 1 Kredi : 3.5 ECTS : 4. Ders Bilgileri.

Ders Adı : Nesne Tabanlı Programlama-I Ders No : Teorik : 3 Pratik : 1 Kredi : 3.5 ECTS : 4. Ders Bilgileri. Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : Nesne Tabanlı Programlama-I Ders No : 0690130114 Teorik : 3 Pratik : 1 Kredi : 3.5 ECTS : 4 Ders Bilgileri Ders Türü Öğretim

Detaylı

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21 İçindekiler Önsöz İkinci Basım için Önsöz Türkçe Çeviri için Önsöz Gösterim xiii xv xvii xix 1 Giriş 1 1.1 Yapay Öğrenme Nedir?......................... 1 1.2 Yapay Öğrenme Uygulamalarına Örnekler...............

Detaylı

Kümeleme Algoritmaları. Tahir Emre KALAYCI

Kümeleme Algoritmaları. Tahir Emre KALAYCI Tahir Emre KALAYCI 2010 Gündem En önemli gözetimsiz öğrenme (unsupervised learning) problemi olarak değerlendirilmektedir Bu türdeki diğer problemler gibi etiketsiz veri kolleksiyonları için bir yapı bulmakla

Detaylı

COĞRAFİ BİLGİ SİSTEMLERİ VE UZAKTAN ALGILAMA

COĞRAFİ BİLGİ SİSTEMLERİ VE UZAKTAN ALGILAMA Coğrafi Bilgi Sistemleri ve Uzaktan Algılama Taşınmaz Değerleme ve Geliştirme Tezsiz Yüksek Lisans Programı COĞRAFİ BİLGİ SİSTEMLERİ VE UZAKTAN ALGILAMA 1 Coğrafi Bilgi Sistemleri ve Uzaktan Algılama İçindekiler

Detaylı

sonlu altörtüsü varsa bu topolojik uzaya tıkız diyoruz.

sonlu altörtüsü varsa bu topolojik uzaya tıkız diyoruz. Ders 1: Önbilgiler Bu derste türev fonksiyonunun geometrik anlamını tartışıp, yalnız R n nin bir açık altkümesinde değil, daha genel uzaylarda tanımlı bir fonksiyonun türevi ve özel noktalarının nasıl

Detaylı

Gelin bugün bu yazıda ilkokul sıralarından beri bize öğretilen bilgilerden yeni bir şey keşfedelim, ya da ne demek istediğini daha iyi anlayalım.

Gelin bugün bu yazıda ilkokul sıralarından beri bize öğretilen bilgilerden yeni bir şey keşfedelim, ya da ne demek istediğini daha iyi anlayalım. Kristal Yapılar Gelin bugün bu yazıda ilkokul sıralarından beri bize öğretilen bilgilerden yeni bir şey keşfedelim, ya da ne demek istediğini daha iyi anlayalım. Evrende, kimyasal özellik barındıran maddelerin

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

Mekatronik Mühendisliği Uygulamalarında Yapay Zekâ. Makine Öğrenmesi. Erhan AKDOĞAN, Ph.D.

Mekatronik Mühendisliği Uygulamalarında Yapay Zekâ. Makine Öğrenmesi. Erhan AKDOĞAN, Ph.D. Mekatronik Mühendisliği Uygulamalarında Yapay Zekâ Makine Öğrenmesi Erhan AKDOĞAN, Ph.D. Bu ders notunun hazırlanmasında Dr. U.Orhan ve Banu Diri nin ders notlarından yararlanılmıştır. Makine öğrenmesi

Detaylı

İLERİ ALGORİTMA ANALİZİ TABU ARAMA ALGORİTMASI (TABU SEARCH)

İLERİ ALGORİTMA ANALİZİ TABU ARAMA ALGORİTMASI (TABU SEARCH) İLERİ ALGORİTMA ANALİZİ TABU ARAMA ALGORİTMASI (TABU SEARCH) Tabu Arama Algoritması, optimizasyon problemlerinin çözümü için F.Glover tarafından geliştirilmiş iteratif bir araştırma algoritmasıdır. Temel

Detaylı

A 11. A) Olayın karışık ve anlaşılması zor bir ifadeyle yazılmış. Bu ön koşul işlemiyle ilgili olarak,

A 11. A) Olayın karışık ve anlaşılması zor bir ifadeyle yazılmış. Bu ön koşul işlemiyle ilgili olarak, 43. Bir öğretim programına öğrenci seçmek için mülakat yapılacaktır. Bu mülakata bir genel yetenek testinden 0 ve daha üstü standart T puanı alanlar başvurabilecektir. Yetenek testinden elde edilen puanlar

Detaylı

Mekanizma Tekniği DR. ÖĞR. ÜYESİ NURDAN BİLGİN

Mekanizma Tekniği DR. ÖĞR. ÜYESİ NURDAN BİLGİN Mekanizma Tekniği DR. ÖĞR. ÜYESİ NURDAN BİLGİN Ders Politikası Öğretim Üyesi: Dr. Öğr. Üyesi Nurdan Bilgin, Oda No: 309, e-mail:[email protected] Ders Kitabı: Mekanizma Tekniği, Prof. Dr. Eres Söylemez

Detaylı

Yapay Sinir Ağları GİRİŞ

Yapay Sinir Ağları GİRİŞ Yapay Sinir Ağları GİRİŞ Akıl kelimesi genellikle zeka kavramıyla karıştırılmaktadır.oysa akıl düşünme, kavrama,idrak etme ve karar verme yeteneklerini kapsar.akıl genetik olarak ve çevresel faktörler

Detaylı

1.3. Normal Uzaylar. Bu bölümde; regülerlikten daha kuvvetli bir ay rma aksiyomu tan mlanarak. baz temel özellikleri incelenecektir.

1.3. Normal Uzaylar. Bu bölümde; regülerlikten daha kuvvetli bir ay rma aksiyomu tan mlanarak. baz temel özellikleri incelenecektir. 1.3. Normal Uzaylar Bu bölümde; regülerlikten daha kuvvetli bir ay rma aksiyomu tan mlanarak baz temel özellikleri incelenecektir. Tan m 1.3.1. (X; ) bir Hausdor uzay olsun. E¼ger, 8F; K 2 F; F \ K = ;

Detaylı

Boyut: Belirli bir doğrultuda ölçülmüş bir büyüklüğü ifade etmek için kullanılan geometrik bir terim.

Boyut: Belirli bir doğrultuda ölçülmüş bir büyüklüğü ifade etmek için kullanılan geometrik bir terim. FRAKTALLAR 1 2 * 3 Boyut: Belirli bir doğrultuda ölçülmüş bir büyüklüğü ifade etmek için kullanılan geometrik bir terim. Bir nokta «sıfır boyutlu» ludur. Doğrusal nokta toplulukları «bir boyutlu» bir doğru

Detaylı

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur.

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur. Görüntü İşleme Görüntü işleme, dijital bir resim haline getirilmiş olan gerçek yaşamdaki görüntülerin bir girdi resim olarak işlenerek, o resmin özelliklerinin ve görüntüsünün değiştirilmesidir. Resimler

Detaylı

Ders 10: Düzlemde cebirsel eğriler

Ders 10: Düzlemde cebirsel eğriler Ders 10: Düzlemde cebirsel eğriler İzdüşümsel geometride bir doğruyu derecesi 1 olan homojen bir polinomun sıfırları kümesi olarak tarif ettik. Bir kuadrik, derecesi 2 olan homojen bir polinomla anlatılıyordu

Detaylı

Gelişim Psikolojisi Ders Notları

Gelişim Psikolojisi Ders Notları Gelişim Psikolojisi Ders Notları Doç. Dr. Şaziye Senem BAŞGÜL www.gunescocuk.com Tanımlar Büyüme: Organizmada meydana gelen sayısal (hacimsel) değişiklikler Olgunlaşma: Potansiyel olarak var olan işlevin

Detaylı

Veri ve Metin Madenciliği

Veri ve Metin Madenciliği Veri ve Metin Madenciliği Zehra Taşkın Veri Madenciliği Bir kutu toplu iğne İçine 3 boncuk düşürdünüz Nasıl alacağız? Fikirler? Veri Madenciliği Data Information Knowledge Veri madenciliği; Büyük yoğunluklu

Detaylı

Veri ve Metin Madenciliği. Zehra

Veri ve Metin Madenciliği. Zehra Veri ve Metin Madenciliği Zehra Taşkın @zehrataskin Büyük Veri https://www.youtube.com/watch?v=tzxmjbl-i4y Veri Madenciliği Bir kutu toplu iğne İçine 3 boncuk düşürdünüz Nasıl alacağız? Veri Madenciliği

Detaylı

ArcGIS ile Su Yönetimi Eğitimi

ArcGIS ile Su Yönetimi Eğitimi ArcGIS ile Su Yönetimi Eğitimi http://facebook.com/esriturkey https://twitter.com/esriturkiye [email protected] Kursun Süresi: 5 Gün 30 Saat ArcGIS ile Su Yönetimi Genel Bir platform olarak ArcGIS,

Detaylı

EĞİTİM ÖĞRETİM YILI İLKOKULU 1/. SINIFI GÖRSEL SANATLAR YILLIK PLANI

EĞİTİM ÖĞRETİM YILI İLKOKULU 1/. SINIFI GÖRSEL SANATLAR YILLIK PLANI EYLÜL 25 EYLÜL 29 EYLÜL (2. Hafta) EYLÜL 18 EYLÜL 22 EYLÜL (1. Hafta) 2017-2018 EĞİTİM ÖĞRETİM YILI İLKOKULU 1/. SINIFI GÖRSEL SANATLAR YILLIK PLANI ÖĞRENME ALANI: 1.1. Görsel İletişim ve Biçimlendirme

Detaylı

Görüntü Segmentasyonu (Bölütleme)

Görüntü Segmentasyonu (Bölütleme) Görüntü Segmentasyonu (Bölütleme) Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. 20 Aralık 2014 Cumartesi 1 Görüntü Segmentasyonu 20 Aralık 2014 Cumartesi 2 Gestalt kanunları Görüntü

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 10 Nesne / Yüz Tespiti ve Tanıma Alp Ertürk [email protected] Nesne Tespiti Belirli bir nesnenin sahne içindeki konumunun tespitidir Tespit edilecek nesne önceden

Detaylı

EĞİTİM-ÖĞRETİM YILI MATEMATİK ANABİLİM DALI DERS PLANI Güz Yarı yılı HAFTALIK DERS

EĞİTİM-ÖĞRETİM YILI MATEMATİK ANABİLİM DALI DERS PLANI Güz Yarı yılı HAFTALIK DERS DERSİN KODU 2016-2017 EĞİTİM-ÖĞRETİM YILI MATEMATİK ANABİLİM DALI DERS PLANI Güz Yarı yılı HAFTALIK DERSİN ADI DERS T U L Topl. AKTS SAATİ FMT5101 Topoloji I 3 3 0 0 3 6 FMT5102 Fonksiyonel Analiz I 3

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

Kareköklü Sayılar. sayısını en yakın onda birliğe kadar tahmin edelim.

Kareköklü Sayılar. sayısını en yakın onda birliğe kadar tahmin edelim. 1 2 sayısını en yakın onda birliğe kadar tahmin edelim. 3 sayısını en yakın onda birliğe kadar tahmin edelim. 28 sayısına en yakın tam kare sayılar 25 ve 36 dır. 4 sayısını en yakın onda birliğe kadar

Detaylı

GÖRSEL YAZILIM GELİŞTİRME ORTAMI İLE BERABER BİR YAPAY SİNİR AĞI KÜTÜPHANESİ TASARIMI VE GERÇEKLEŞTİRİMİ

GÖRSEL YAZILIM GELİŞTİRME ORTAMI İLE BERABER BİR YAPAY SİNİR AĞI KÜTÜPHANESİ TASARIMI VE GERÇEKLEŞTİRİMİ EGE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ (YÜKSEK LİSANS TEZİ) GÖRSEL YAZILIM GELİŞTİRME ORTAMI İLE BERABER BİR YAPAY SİNİR AĞI KÜTÜPHANESİ TASARIMI VE GERÇEKLEŞTİRİMİ Ahmet Cumhur KINACI Bilgisayar Mühendisliği

Detaylı

T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ

T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ T.C. KOCAELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ Yrd. Doç. Dr. Mustafa Hikmet Bilgehan UÇAR 1 3. HAFTA Yrd. Doç. Dr. Mustafa Hikmet Bilgehan UÇAR Karnaugh Haritaları Karnaugh

Detaylı

Coğrafi Bilgi Sistemlerine Giriş

Coğrafi Bilgi Sistemlerine Giriş Coğrafi Bilgi Sistemlerine Giriş İçerik Mekansal veri ve bileşenleri Mekansal verinin CBS ortamında sunumu ve Vektör Model Hücresel Model Modeller arası dönüşüm ve temel karşılaştırmalar Mekansal veri

Detaylı

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 2. Konu BAĞIL HAREKET ETKİNLİK VE TEST ÇÖZÜMLERİ

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 2. Konu BAĞIL HAREKET ETKİNLİK VE TEST ÇÖZÜMLERİ 11. SINIF ONU ANATIMI 1. ÜNİTE: UVVET VE HAREET 2. onu BAĞI HAREET ETİNİ VE TEST ÇÖZÜMERİ 2 Bağıl Hareket 1. Ünite 2. onu (Bağıl Hareket) A nın Çözümleri 1. do u 2 ektörünü 2 nin ucuna ekleyip bileşke

Detaylı

Çekişmeli Üretici Ağlar Kullanarak Dış Mekan Görüntülerinin Geçici Niteliklerini Düzenleme

Çekişmeli Üretici Ağlar Kullanarak Dış Mekan Görüntülerinin Geçici Niteliklerini Düzenleme Çekişmeli Üretici Ağlar Kullanarak Dış Mekan Görüntülerinin Geçici Niteliklerini Düzenleme Adjusting Transient Attributes of Outdoor Images using Generative Adversarial Networks Levent Karacan, Aykut Erdem,

Detaylı

SAYISAL KARARLILIK. Zaman Uzayı Sonlu Farklar Yöntemi

SAYISAL KARARLILIK. Zaman Uzayı Sonlu Farklar Yöntemi Dr. Serkan Aksoy SAYISAL KARARLILIK Sayısal çözümlerin kararlı olması zorunludur. Buna göre ZUSF çözümleri de uzay ve zamanda ayrıklaştırma kapsamında kararlı olması için kararlılık koşullarını sağlaması

Detaylı

Makine Öğrenmesine Giriş (Machine Learning ML)

Makine Öğrenmesine Giriş (Machine Learning ML) Makine Öğrenmesine Giriş (Machine Learning ML) Doç.Dr.Banu Diri Doğal Dil Đşlemede Eğilimler Önce : Yapay Zeka Tabanlı, Tam olarak anlama Şimdi : Külliyat(Corpus)-tabanlı, Đstatistiki, Makine Öğrenmesi

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Ders 8: Verilerin Düzenlenmesi ve Analizi

Ders 8: Verilerin Düzenlenmesi ve Analizi Ders 8: Verilerin Düzenlenmesi ve Analizi Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler Bir kitlenin tamamını, ya da kitleden alınan bir örneklemi özetlemekle (betimlemekle)

Detaylı

A. ATOMUN TEMEL TANECİKLERİ

A. ATOMUN TEMEL TANECİKLERİ ÜNİTE 3 MADDENİN YAPISI VE ÖZELLİKLERİ 1. BÖLÜM MADDENİN TANECİKLİ YAPISI 1- ATOMUN YAPISI Maddenin taneciklerden oluştuğu fikri yani atom kavramı ilk defa demokritus tarafından ortaya atılmıştır. Örneğin;

Detaylı

Robot Yaz Okulu 1. DÖNEM 21 Haziran 9 Temmuz 2010

Robot Yaz Okulu 1. DÖNEM 21 Haziran 9 Temmuz 2010 Robot Yaz Okulu Diğer Dönemler: 2. Dönem : 12 Temmuz- 30 Temmuz 3. Dönem : 2 Ağustos- 20 Ağustos 4. Dönem : 23 Ağustos - 10 Eylül Robot Eğitim Paketleri Eğitim Paketi 1: Başlangıç Eğitim Paketi 2: Temel

Detaylı

Kültür Varlıklarının Web Otomasyonu

Kültür Varlıklarının Web Otomasyonu Kültür Varlıklarının Web Otomasyonu SUNUM İÇERİĞİ PROJE GEREKLİLİĞİ PROJE İHTİYAÇLARI SİSTEM TASARIMINA GÖRE TEKNOLOJİK ALT YAPI DÜZENLENEN SİSTEMİN GETİRDİĞİ AVANTAJLAR PROJE GEREKLİLİĞİ Taşınmaz kültür

Detaylı

ÖZEL ÖĞRETİMİ YÖNTEMLERİ. Öğretmenlik Alan Bilgisi Testi (ÖABT)

ÖZEL ÖĞRETİMİ YÖNTEMLERİ. Öğretmenlik Alan Bilgisi Testi (ÖABT) ÖZEL ÖĞRETİMİ YÖNTEMLERİ Öğretmenlik Alan Bilgisi Testi (ÖABT) Öğretmenlik Alan Bilgisi Testi (ÖABT) Çıkmış sorular Okulöncesi Öğretmenliği Sınıf Öğretmenliği İlköğretim Matematik Öğretmenliği Matematik

Detaylı

ÖZET...V ABSTRACT...VII TEŞEKKÜR... IX ŞEKİLLER DİZİNİ... XIV SÖZLÜK... XIX

ÖZET...V ABSTRACT...VII TEŞEKKÜR... IX ŞEKİLLER DİZİNİ... XIV SÖZLÜK... XIX XI İÇİNDEKİLER ÖZET...V ABSTRACT...VII TEŞEKKÜR... IX ŞEKİLLER DİZİNİ... XIV SÖZLÜK... XIX 1. GİRİŞ... 1 2. PLANLAMANIN TARİHÇESİ... 7 2.1 Literatürdeki Planlayıcılar ve Kullandıkları Problem... Gösterimi

Detaylı

Eski Yunanca'dan batı dillerine giren Fotogrametri sözcüğü 3 kök sözcükten oluşur. Photos(ışık) + Grama(çizim) + Metron(ölçme)

Eski Yunanca'dan batı dillerine giren Fotogrametri sözcüğü 3 kök sözcükten oluşur. Photos(ışık) + Grama(çizim) + Metron(ölçme) FOTOGRAMETRİ FOTOGRAMETRİ Eski Yunanca'dan batı dillerine giren Fotogrametri sözcüğü 3 kök sözcükten oluşur. Photos(ışık) + Grama(çizim) + Metron(ölçme) Buna göre ışık yardımı ile ölçme (çizim yapabilme)

Detaylı

DİNAMİK (4.hafta) İKİ PARÇACIĞIN BAĞIMLI MUTLAK HAREKETİ (MAKARALAR) Örnek 1

DİNAMİK (4.hafta) İKİ PARÇACIĞIN BAĞIMLI MUTLAK HAREKETİ (MAKARALAR) Örnek 1 DİNAMİK (4.hafta) İKİ PARÇACIĞIN BAĞIMLI MUTLAK HAREKETİ (MAKARALAR) Bazı problemlerde bir cismi hareket ettirdiğimizde ona halatla bağlı başka bir cisimde farklı bir konumda hareket edebilir. Bu iki cismin

Detaylı

Cebir 1. MIT Açık Ders Malzemeleri

Cebir 1. MIT Açık Ders Malzemeleri MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

FRAKTAL VE TARİHÇESİ. Benoit Mandelbrot

FRAKTAL VE TARİHÇESİ. Benoit Mandelbrot FRAKTAL VE TARİHÇESİ Matematiksel gerçeklerin niteliğinde var olan kesinliğin özetinde aksiyomatik yapılar vardır. Öklid geometrisi, matematik tarihinde bunun önde gelen örneğidir. Matematiksel doğruların,

Detaylı

A; e A; A kümelerini tan mlay n z. (x) = fb 2 B : x 2 Bg

A; e A; A kümelerini tan mlay n z. (x) = fb 2 B : x 2 Bg Genel Topolojiye Giriş I Ara S nav Sorular 30 Kas m 2010 1 (X; T ) bir topolojik uzay ve A X olsun. 2 (a) Ikinci say labilir topolojik uzay ne demektir? Tan mlay n z. A; e A; A ve @A kümelerini tan mlay

Detaylı

Çok Katmanlı Algılayıcı (Multilayer Perceptron) DOÇ. DR. ERSAN KABALCI

Çok Katmanlı Algılayıcı (Multilayer Perceptron) DOÇ. DR. ERSAN KABALCI Çok Katmanlı Algılayıcı (Multilayer Perceptron) J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Perceptron Rosenblatt (1962): İlk

Detaylı

Bekleme Hattı Teorisi

Bekleme Hattı Teorisi Bekleme Hattı Teorisi Sürekli Parametreli Markov Zincirleri Tanım 1. * +, durum uzayı * +olan sürekli parametreli bir süreç olsun. Aşağıdaki özellik geçerli olduğunda bu sürece sürekli parametreli Markov

Detaylı

... ROBOTİK VE KODLAMA EĞİTİMİ ÇERÇEVESİNDE ÖĞRETİM YILI BİLİŞİM TEKNOLOJİLERİ DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI

... ROBOTİK VE KODLAMA EĞİTİMİ ÇERÇEVESİNDE ÖĞRETİM YILI BİLİŞİM TEKNOLOJİLERİ DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI ... ROBOTİK VE KODLAMA EĞİTİMİ ÇERÇEVESİNDE 2018 2019 ÖĞRETİM YILI BİLİŞİM TEKNOLOJİLERİ DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI Hazırlayan : Özel Öğretim Kurumları Birliği (ÖZKURBİR) Dersin Adı : Bilişim

Detaylı

YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ

YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ Bu ders 1. Sınıf güz döneminden 2. Sınıf güz dönemine alınmıştır. gerektiği halde alamayan öğrenciler 2010-2011 öğretim yılı

Detaylı

VERİ MADENCİLİĞİ (Veri Ön İşleme-2) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Veri Ön İşleme-2) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Veri Ön İşleme-2) Yrd.Doç.Dr. Kadriye ERGÜN [email protected] Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma Kümeleme

Detaylı

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS DİSKRİMİNANT ANALİZİ (AYIRIM) Emre KUZUGÜDENL DENLİ Doç.Dr.Serdar CARUS Bu analiz ile; Bir bireyin hangi gruptan geldiği (p değişkeni kullanarak, bireyi uygun bir gruba atar ) Her bir değişkenin atama

Detaylı