Evrenimizdeki karanlık maddenin 3 boyutlu olarak modellenmesi Karanlık maddenin evrende ne şekilde dağıldığı hala cevabı bulunmamış sorulardan

Benzer belgeler
Parçacıkların Standart Modeli ve BHÇ

Doğayı anlamak için, Parçacıkları, Kuvvetleri ve Kuralları Bilmemiz gerekir. Gordon Kane,Süpersimetri

Maddenin içine yaptığımız yolculukta...

Atlas detektörünün A kısmının yapılandırılması LHD nin yapımı için 6.4 milyar dolara yakın bir para harcandı

STANDART MODEL VE ÖTESİ. Güncel sorunlar ve çözüm arayışı. A. Zorluer Türk Öğretmen Çalıştayı 8 Ocak 2018

CERN VE HİGGS HİGGS PARÇACIĞI NEDİR? Tuba KÖYLÜ Bilişim Teknolojileri Öğretmeni Şanlıurfa İl Milli Eğitim Müdürlüğü 27 Haziran 2017

STANDART MODEL ÖTESİ YENİ FİZİK

SU Lise Yaz Okulu. Evrenin Başlangıcı ve Enflasyon Teorisi

Hazırlayan: Ayten İLHAN Branşı: Bilişim Teknolojileri Görev Yaptığı Okul: EMİNE ÖZCAN ANADOLU LİSESİ

ATLAS Dünyası. Standart Model. ATLAS ağ sayfası Karşımadde

Yıldızların: Farklı renkleri vardır. Bu, onların farklı sıcaklıklarda olduklarını gösterir. Daha sıcak yıldızlar, ömürlerini daha hızlı tüketirler.

Parçacık Fiziği Söyleşisi

ATLAS Higgs Araştırmalarında En Yeni Sonuçlar

Murat ŞENER Bursa Sınav Fen Lisesi

Güncel sorunlar ve çözüm arayışı. Sezen Sekmen CERN CERN Türk Öğretmenler Programı Şubat 2014

HIGGS HAKKINDA. STANDART MODEL HIGGS BOZONU ve ALANI HIGGS İ BULMAK İÇİN: HIZLANDIRICILAR PEKİ YA SONRA?

HİGGS??? STANDART MODEL HIGGS BOZONU ve ALANI HIGGS İ BULMAK İÇİN: HIZLANDIRICILAR PEKİ YA SONRA?

STANDART MODEL VE ÖTESİ. : Özge Biltekin

Var Olabilen Şeyler ve Var Olması Gereken Şeyler

Higgs bozonu nedir? Hasan AVCU

HİGGS HAKKINDA NAZLI FANUS FEN BİLİMLERİ ÖĞRETMENİ ULUPAMİR ORTAOKULU (CERN TÜRK ÖĞRETMEN ÇALIŞTAYI-7)

Yapıtaşları: Kuarklar ve Leptonlar örn: u,d,.. Elektron(e)..

Simetri ve Süpersimetri. Spot: Kerem Cankoçak. Simetri nedir?

RADYASYON FİZİĞİ 1. Prof. Dr. Kıvanç Kamburoğlu

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Temel kavramlar Atomsal yapı

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri

Güncel sorunlar ve çözüm arayışı. Sezen Sekmen CERN Türk Öğretmenler Çalıştayı Ocak 2015

Theory Tajik (Tajikistan)

CERN'deki Büyük Hadron Çarpıştırıcısı ve LCG (LHC Computing Grid) Projesi

CERN BÖLÜM-3 İZAFİYET TEORİSİNDE SONUN BAŞLANGICI MI?

125 GeV Kütleli Yeni bir Parçacığın Gözlenmesi

Proton, Nötron, Elektron

ATOM ATOMUN YAPISI 7. S I N I F S U N U M U. Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir.

Doğal Süreçler. yıldız, gezegen, meteor, nebula (ışık enerjisi yayarak görünür haldeki gaz ve toz bulutları) bulunur.

6.HAFTA BÖLÜM 3: ÇEKİRDEK KUVVETLERİ VE ÇEKİRDEK MODELLERİ

En Küçüklerin Fiziği, CERN ve BHÇ 22 Mayıs Doç. Dr. Altuğ Özpineci ODTÜ Fizik Bölümü

KMB405 Kimya Mühendisliği Laboratuvarı I IŞINIMLA ISI İLETİMİ. Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1

Radyoaktif elementin tek başına bulunması, bileşik içinde bulunması, katı, sıvı, gaz, iyon halinde bulunması radyoaktif özelliğini etkilemez.

Not: Bu yazımızın video versiyonunu aşağıdan izleyebilirsiniz. Ya da okumaya devam edebilirsiniz

EĞİTİM-ÖĞRETİM YILI 12 SINIF FİZİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

SU Lise Yaz Okulu. Hubble Yasası, Evrenin Genişlemesi ve Büyük Patlama

CERN NEDİR? NE ZAMAN VE NİÇİN KURULDU?

ALIfiTIRMALARIN ÇÖZÜMÜ

Madde Dünya. Molekül Atom. Atomlar Elektron. Kuark

Gelin bugün bu yazıda ilkokul sıralarından beri bize öğretilen bilgilerden yeni bir şey keşfedelim, ya da ne demek istediğini daha iyi anlayalım.

SU Lise Yaz Okulu. Hubble Yasası, Evrenin Genişlemesi ve Büyük Patlama

2.2 Alt Devler Kolu, Kırmızı Devler Kolu ve Yatay Kol

Bize En Yakın Yıldız. Defne Üçer 30 Nisan 2011

ATLAS DENEYİ BOYAMA KİTABI

ÖĞRENME ALANI : DÜNYA VE EVREN ÜNİTE 8 : DOĞAL SÜREÇLER

FİZİK II - Final UYGULAMA

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

Herbir kuarkın ters işaretli yük ve acayipliğe sahip bir anti kuarkı vardır: TİP (ÇEŞNİ,flavor) YÜK ACAYİPLİK. u (up, yukarı) 2/3 0

1. ÜNİTE FİZİĞİN DOĞASI

NÜKLEER FİSYON Doç. Dr. Turan OLĞAR

Atomun Yapısı Boşlukta yer kaplayan, hacmi, kütlesi ve eylemsizliği olan her şeye madde denir. Maddeyi (elementi) oluşturan ve maddenin (elementin)

Kadri Yakut

STOKİYOMETRİ: SABİT ORANLAR YASASI

Çağının ötesinde işleri yapma gücünü ve kararlılığını kendinde bulan insanları, belki şu an aramızda olmasalar da, herzaman hatırlayalım.

Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz.

BİYOLOJİK MOLEKÜLLERDEKİ

SU Lise Yaz Okulu 2. Ders, biraz (baya) fizik. Dalgalar Elektromanyetik Dalgalar Kuantum mekaniği Tayf Karacisim ışıması

Atomun Tarihsel Gelişimi

SU Lise Yaz Okulu. Karanlık Madde

J.J. Thomson (Ġngiliz fizikçi, ), 1897 de elektronu keģfetti ve kütle/yük oranını belirledi da Nobel Ödülü nü kazandı.

Dönme. M. Ali Alpar. Galileo Öğretmen Eğitimi Programı. Sabancı Üniversitesi Nesin Matematik Köyü Şirince

1. Hafta. İzotop : Proton sayısı aynı nötron sayısı farklı olan çekirdeklere izotop denir. ÖRNEK = oksijenin izotoplarıdır.

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

Temel Parçacık Dinamikleri. Sunum İçeriği

MIT 8.02, Bahar 2002 Ödev # 2 Çözümler

Kütlesel çekim kuvveti nedeniyle cisimler bir araya gelme eğilimi gösterirler, birbirlerine

Higgs ve Higgs Buluşu. Sezen Sekmen CERN Türk Öğretmenler Çalıştayı Ocak 2015

İçindekiler: CERN Globe Binası ve Micro Cosmos Müzesi

DEMOCRİTUS. Atom hakkında ilk görüş M.Ö. 400 lü yıllarda Yunanlı filozof Democritus tarafından ortaya konmuştur.

Şekil: LHC hızlandırıcısında hızlandırılan protonların CMS deneyinde çarpışması sonucu gözlemlenen olaylar

Higgs ve Higgs Buluşu. Sezen Sekmen CERN Türk Öğretmenler Çalıştayı 26 Haziran 1 Temmuz 2016

GÜNEŞİMİZ. Ankara Üniversitesi Kreiken Rasathanesi

ELEKTRİKSEL POTANSİYEL

Bugün Evreni oluşturan tüm enerji toplu iğne ucu büyüklüğünden LHC. Zaman, uzay ve madde Büyük Patlama sırasında ortaya çıktı.

Temel Sabitler ve Birimler

TAM SAYILARLA TOPLAMA İŞLEMİ

Fen ve Mühendislik Bilimleri için Fizik

KUVVET BÖLÜM 2 MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ 1. F 1 = 30N. Net kuvvet x yönünde 5 N olduğuna göre, cisme uygulanan 3. kuvvet, + F 3 = R = 5

Yıldızımız GÜNEŞ. Serdar Evren. Ege Üniversitesi Astronomi ve Uzay Bilimleri Bölümü

Fen ve Mühendislik Bilimleri için Fizik

Atomlar ve Moleküller

Kuarkların kendiliğinden macerasında Simetri ve simetri kırınımı. Giriş

3- KİMYASAL ELEMENTLER VE FONKSİYONLARI

Temel Sabitler ve Birimler

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri Elektronik kutuplaşma

, (Compton Saçılması) e e, (Çift Yokoluşu) OMÜ_FEN

Karanlık Madde Karanlık Enerji. Sabancı Üniversitesi

FİZ314 Fizikte Güncel Konular

T. C. GAZİ ÜNİVERSİTESİ GAZİ EĞİTİM FAKÜLTESİ FİZİK EĞİTİMİ A. B. D. PROJE ÖDEVİ

Güncel sorunlar ve çözüm arayışı. Sezen Sekmen CERN Türk Öğretmenler Çalıştayı 4 Temmuz 2015

ÇALIŞMA YAPRAĞI (KONU ANLATIMI)

4.1 denklemine yakından bakalım. Tanımdan α = dω/dt olduğu bilinmektedir (ω açısal hız). O hâlde eğer cisme etki eden tork sıfır ise;

Doğanın Geometrisi: Herşeyin Kuramına doğru

HIZLANDIRICI FİZİĞİ. Doğru Akım Hızlandırıcıları. Semra DEMİRÇALI Fen Bilimleri Öğretmeni DENİZLİ (TTP-7 Katılımcısı) 05/03/2018

KÜMELER. Serdar Evren Astronomiye Giriş II

Transkript:

CERN BÖLÜM-2 1970 lerin sonlarına doğru bugün hala tam olarak açıklayamadığımız inanılmaz bir keşif yapıldı. Bu keşfe göre evrendeki toplam kütlenin yüzde doksana yakını görünmezdi! Bu heyecan verici keşfin gizemi aradan geçen kırk yıl sonra yavaş yavaş aralanmaya başladı. CERN de LHD de yapılan deneylerde Higgs Parçacığı yla birlikte karanlık maddenin de izlerine rastlanılmaya başlandı. Bugüne kadar var olduğundan emin olduğumuz ama asla göremediğimiz ve kaynağını bilmediğimiz bu madde evrendeki birçok cevabı bilinmeyen sorunun da aydınlatılmasının yanında evrenimizin eşsiz yapısını anlamamıza bir adım daha yaklaşmamızı sağlayabilir. Karanlık maddenin var olduğunu en kolay bir biçimde görebileceğimiz yerlerinde başında Güneş geliyor. Güneş civarındaki madde yoğunluğu diskin oldukça dışına çıkan etkin ışıma yapabilen yıldızların gruplanmasıyla ölçülmekte. Bu yıldızların ortalama uzaklıkları ve diskten olan dik uzaklık bu yıldızları diskin içinde tutan kuvvetin bir ölçüsüdür. Bu kuvvetin ölçülmesiyle kütle çekimi uygulayan maddenin yoğunluğuna bulabiliriz. Yapılan hesaplamalarda ise bulunan yoğunluğun var olan yıldızların ancak yarısıyla elde edebileceği tespit edilmiştir. İşte bu farkı kapatan madde Güneş çevresinde var olan karanlık maddedir. Benzer şekilde bir diğer olgu tüm evrende var olan yer çekimi kuvvetini yaratabilmek için evrenin toplam kütlesinin 9 katına daha ihtiyaç duyduğumuzdur. Bu ihtiyacımızı şu ana kadar görmediğimiz karanlık madde bizim adımıza sağlıyor. Bu madde en kolay çekimsel etkilerle fark edebiliyor, çünkü madde hiçbir şeklide elektromanyetik ışıma yapmıyor.

Evrenimizdeki karanlık maddenin 3 boyutlu olarak modellenmesi Karanlık maddenin evrende ne şekilde dağıldığı hala cevabı bulunmamış sorulardan CERN deki deneylerde karanlık maddeyle birlikte karanlık enerjinin de varlığı sorgulanıyor. Evrendeki enerji yoğunluğunun yüzde %23 ünü karanlık madde yüzde 73 ünü karanlık enerji sağlamakta. Evrenin sürekli genişlediği gerçeğini göz önünde bulundurduğumuzda evrenin bu genişlemesini sağlayan enerjinin karanlık enerji tarafından sağlandığı düşünülmekte. Bu genişlemenin ne kadar süreceğini ise tam bir muamma.bilim insanlarına göre bu süreyi karanlık maddeyle karanlık enerjinin birbirine göre oranları belirleyecek. Birinci durum karanlık maddenin fazla olduğu ikinci durumsa karanlık enerjinin fazla olduğu durum. Son durumdaysa karanlık maddeyle karanlık enerjinin birbirine eşit olduğu evren. Eğer birinci durum gerçekleşirse evrenimizdeki büyük parçalanma devam edecek, ikinci durum gerçekleşirse evren içine doğru çökmeye başlayacak, 3.durum gerçekleşirse

evrenimiz şu andaki hızıyla genişlemeye devam edecek. CERN deki deneylerde bu oran doğru bir şeklide tahmin edilmeye çalışılıyor böylece evreni nasıl bir son beklediği hakkında bir bilgiye sahip olabileceğiz. Öte yandan evrenimiz oluşumunu anlayabilmemiz için önemli noktalardan biride simetri ve anti madde kavramı. Yine evrenin genişlediği gerçeğinden yola çıkarak söyleyebiliyoruz ki başlangıçta evrende hiç madde yoktu ve bugün 4 temel kuvvet olan kütle çekim kuvveti, elektromanyetik kuvvet, zayıf ve güçlü kuvvet bir aradaydılar. Noktasal teklikten gelen evrenimizde sıcaklık o derece yüksekti ki tüm maddeler bir kuark madde halindeydi. Bu ilk aşamada kütle çekim diğer kuvvetlerden ayrıldı. Daha sonraki soğuma evresinde ise diğer 3 kuvvet birbirinden ayrıldı. Böylece Higgs mekanizmasına benzer şekilde kendiliğinden gerçekleşen süreç simetri kırınımı olarak adlandırıldı. Bu olguya göre evrende başlangıçta eşit miktarda madde ve anti madde vardı. Evrenin soğumasıyla birlikte bu simetri de yavaş yavaş bozulmaya başladı. Elektronlar, protonlar, nötrinolar, anti nötrinolar ve fotonlardan oluşan başlangıç anı maddeleri bu simetri kırınımıyla karşılıklı bir yok ediliş ve yaratılışa başladılar. Bu süreçle birlikte galaksiler, yıldızlar ve dünyamız meydana geldi. Konuyu biraz daha iyi anlamak için evrendeki enerji yoğunluğuna bakalım Enerjinin E=m^2h^2+X*h^4 olduğunu varsayalım. Burada h Higgs alanı, X değeri belli olmayan bir sayıdır. M^2 ide Higgs bozonlarının kütlesidir. Buradan gördüğümüz gibi Higgs alanı sıfırken evrendeki eneri yoğunluğu sıfırdı, yani evren bir simetri halindeydi dolasıyla hiçbir şey evrende gerçekleşmemekteydi.

m^2 negatif değerler aldığı durumlardaki diyagram bu durumda ise evrendeki en düşük enerji yoğunluğu Higgs alanında gerçekleşmez Bu olay ise kendiliğinden simetri kırılmasıyla gerçekleşir. Yine bu teoriye göre Higgs alanıda hiçbir zaman sıfır olamaz çünkü enerji yoğunluğunun en düşük olduğu nokta da değişmiştir; yani evrenimiz boşken bile Higgs alanıyla doludur. Higgs parçacığının tespiti madde anti madde kavramını anlamamızda büyük yardımcı olacağı muhakkak. Cern de bu konuda çalışmalar 1995 e kadar dayanıyor. İlk defa o yıl 9 tane antihidrojen atomu üretildi, ancak ömürleri maddeden dolayı sadece 40 nano saniye oldu. Bu tarihten sonra 2002 yılında ATHENA ve ATRAP deneylerinde büyük miktarda anti madde üretilebileceği gösterildi. 2010 yılının sonlarına doğru ise bu konudaki en büyük gelişmelerden biri yaşandı. Daha önceki deneylerde de anti madde üretilmiş fakat bunlar madde ile çevreli olduğundan dolayı üzerinde çalışma olanağı bulunamamıştı. Bu çalışmada ise madde anti madde sönümlenmesi saniyenin onda biri kadar daha uzatıldı. Bu süre anti maddeler üzerinde çalışmak için yeterli süreyi oluşturdu. Hükmedilen anti proton sayısı da bin kadardı ki oldukça iyi bir sayı olarak değerlendirilebilirdi. Bu çalışmalardan sadece 9 ay kadar sonra 5 Haziran 2011 tarihinde Nature Pyhsics de yayınlanan makalede CERN de yapılan deneylerde hükmedilen anti protonların madde tarafından yok edilmeden 16 dakikanın üzerinde tutulabildiğinin açıklanmasıyla anti maddeler üzerinde detaylı olarak çalışabilme imkanın doğduğu tüm dünyaya duyurulmuş oldu.

Evrenimizin maddeden meydana geldiğini bilsek de evrenin oluşumunda neden anti maddenin değil de maddenin öncelikli tercih edildiği yönünde kuvvetli delillerimiz yok. ALPHA deneylerinde bir sonraki amaç doğru frekanstaki mikrodalgalarla bu anti maddeleri görselleştirmek. 28 Temmuz 2011 tarihinde yapılan CERN den yapılan açıklamada ise anti maddenin şu ana kadar başarılmamış ölçüde doğru olarak tespit edildiği açıklandı. Doğruluğun milyarda bir oranında sapmayla hesaplandığı belirtilirken bu oranda bir doğruluğun madde anti madde tercihinin neden madde yönünde olduğunu araştıran çalışmalara kaynak olabileceği belirtildi.

Cern deki deneylerde sadece kuvvetli hızlandırıcılar değil üstün yetenekli yavaşlatıcılar da kullanılıyor. Henüz yeni başlayan ELANA projesinde anti proton yavaşlatıcılar kullanılıyor. 2016 yılında eklenmesi beklenen yeni halkayla düşük enerji seviyesinde daha fazla anti proton üretilmesi hedefleniyor. CERN de yapılan deneylerde şu an için geçmişe göre çok ilerde olsak da birçok konuda henüz daha yolun başındayız. Karanlık madde ve anti madde bu konulardan sadece birkaçı. Bu konudaki deneylerin önümüzdeki 15-20 yıl daha süreceği tahmin ediliyor. Tabi bu konuda CERN de yapılan çalışmaların birçoğunun teorik hesaplamalar temel alındığı düşünüldüğünde bize bu bütün bildiklerimizde(daha doğrusu bildiğimizi düşündüğümüz) başa dönmemize neden olabilecek sonuçlarda alınabilir. Bunun en çarpıcı örneğini geçtiğimiz aylarda yaşadık. Işık hızının aşıldığı yönünde CERN den gelen haberler büyük heyecan yaratmakla beraber kafalarda yeni sorular oluşturdu. Serinin son yazısında bu konunun arka planını ele almaya çalışacağım. Mehmet Cem Ateş Kaynaklar http://public.web.cern.ch/public/ http://press.web.cern.ch/press/ http://web.itu.edu.tr/~kcankocak/docs/kerem-cankocak-lhc-simetri.pdf http://j-walkblog.com/index.php?/weblog/comments/29347 http://derman.science.ankara.edu.tr/ogrenci_tezleri/senay/karanlik_madde.pdf http://imagine.gsfc.nasa.gov/docs/science/know_l1/dark_matter.html