FZM450 Elektro-Optik



Benzer belgeler
Ankara Üniversitesi Mühendislik Fakültesi Fizik Mühendisliği Bölümü FZM450. Elektro-Optik. Doç. Dr. Hüseyin Sarı

Ankara Üniversitesi Mühendislik Fakültesi Fizik Mühendisliği Bölümü Bahar Dönemi. Optoelektronik. Doç. Dr. Hüseyin Sarı

Optoelektronik. Doç. Dr. Hüseyin Sarı. Ankara Üniversitesi Mühendislik Fakültesi Fizik Mühendisliği Bölümü

bilgisi ht () kanalından iletilmek istenmektedir. Aşağıda filtre çıkışlarından hangisi iletilmek istenen işarete (veriye) ait olabilir.

Bölüm 5 DSB-SC ve SSB Modülatörleri

SÜPER HETERODİN (HETERODYNE) ALICI PRENSİBİ (FREKANS DEĞİŞTİRMELİ ALICI)

Ç A L I Ş M A N O T L A R I. Haberleşme Teknolojileri Dr.Aşkın Demirkol İşaret tipleri

C L A S S N O T E S SİNYALLER. Sinyaller & Sistemler Sinyaller Dr.Aşkın Demirkol

Mobil ve Kablosuz Ağlar (Mobile and Wireless Networks)

Dalgalar. Matematiksel olarak bir dalga, hem zamanın hem de konumun bir fonksiyonudur: İlerleyen bir dalganın genel bağıntısı (1- boyut ): y f ( x t)

10. SINIF FİZİK DERSİ 2. DÖNEM 1. YAZILIYA HAZIRLIK SORULARI

DİCLE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM309 SAYISAL ELEKTRONİK LABORATUARI

GEBZE TEKNİK ÜNİVERSİTESİ

10. SINIF KONU ANLATIMLI

GEFRAN PID KONTROL CİHAZLARI

NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜH. BÖLÜMÜ HABERLEŞME TEORİSİ FİNAL SINAVI SORU-CEVAPLARI

DENEY 7: Darbe Kod ve Delta Modülasyonları (PCM, DM)

ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II DENEY ZAMANLAMA DEVRESİ

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II

DA-DA DÖNÜŞTÜRÜCÜLER (DA Kıyıcı, DA Gerilim Ayarlayıcı) DA gerilimi bir başka DA gerilim seviyesine dönüştüren devrelerdir.

BOBĐNLER. Bobinler. Sayfa 1 / 18 MANYETĐK ALANIN TEMEL POSTULATLARI. Birim yüke elektrik alan içerisinde uygulanan kuvveti daha önce;

Bölüm 3. Işık ve Tayf

Optoelektronik Tümleşik Devreler HSarı 1

MİKRODALGA TEKNİĞİ GİRİŞ

ELM201 ELEKTRONİK-I DERSİ LABORATUAR FÖYÜ

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 3.

Mobil ve Kablosuz Ağlar (Mobile and Wireless Networks)

DENEY 5: FREKANS MODÜLASYONU

ANALOG HABERLEŞME (GM)

Data Communications. Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü. 5. Analog veri iletimi

EET349 Analog Haberleşme Güz Dönemi. Yrd. Doç. Dr. Furkan Akar

Doç. Dr. A. Oral Salman Kocaeli Üniversitesi Elektronik ve Haberleşme Mühendisliği

KABLOSUZ SERĐ HABERLEŞME UYGULAMALARI VE RF KONTROL

ANALOG HABERLEŞME. Taşıyıcı işaretin genliği bilgi işaretine göre değiştirilirse genlik modülasyonu elde edilir.

Elektromanyetik dalgalar kullanılarak yapılan haberleşme ve data iletişimi için frekans planlamasının

DUMLUPINAR ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ 9. BÖLÜM ANALOG SİSTEMLER

İletişim en genel tanımı ile; bir mesaj alışverişidir. Ancak iletişim yapı gereği bir sistemdir. İletişim sisteminin bileşenleri:

İletişim Ağları Communication Networks

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ

Profesyonel Haberleşme Tekrarlayıcı Telsiz Ailesi.

Kızılötesi. Doğrudan alınan güneşışığı %47 kızılötesi, %46 görünür ışık ve %7 morötesi ışınımdan oluşur.

Aviyonik Sistemler Bakımı (AEE402) Ders Detayları

KABLOSUZ İLETİŞİM

Taşıyıcı İşaret (carrier) Mesajın Değerlendirilmesi. Mesaj (Bilgi) Kaynağı. Alıcı. Demodulasyon. Verici. Modulasyon. Mesaj İşareti

ANALOG HABERLEŞME Alper

Register your product and get support at SDV5118/12. TR Kullanim talimatlari

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği

İletim Ortamı. 5. Ders. Yrd. Doç. Dr. İlhami M. ORAK

Lazer Sistemleri.

KARADENİZ TEKNİK ÜNİVERSİTESİ Deney No: 7 Mühendislik Fakültesi Elektrik-Elektronik Müh. Bölümü Mikrodalga ve İletişim Lab. OPTİK FİBERLERDE ÖLÇMELER

RF Kovukları ve RF Enerji Geri Kazanımı Projesi. Veli YILDIZ

ANALOG HABERLEŞME A GRUBU İSİM: NUMARA

Bölüm 17 Manchester CVSD

Register your product and get support at SDV5225/12. TR Kullanim talimatlari




MÜHENDİSLİK ve MİMARLIK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUVARI DENEY FÖYÜ 4

Gama ışını görüntüleme: X ışını görüntüleme:

4.1 FM ve FzM İŞARETLERİN GÖSTERİMİ

DENEY 5: GENLİK KAYDIRMALI ANAHTARLAMA (ASK) TEMELLERİNİN İNCELENMESİ

SİSTEMLER. 1 Sistem Sistem x T y T h. Şekil 3 Tek giriş-çıkışlı ve çok giriş-çok çıkışlı sistemler

kpss Önce biz sorduk 50 Soruda SORU Güncellenmiş Yeni Baskı ÖABT FİZİK Tamamı Çözümlü DENEME

DENEY 8: SAYISAL MODÜLASYON VE DEMODÜLASYON

Antenler, Türleri ve Kullanım Yerleri

T.C. MİLLÎ EĞİTİM BAKANLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜDÜRLÜĞÜ Ölçme Değerlendirme ve Açıköğretim Kurumları Daire Başkanlığı

BÖLÜM 7 GÜÇ (POWER) YÜKSELTECİ KONU: GEREKLİ DONANIM: ÖN BİLGİ: DENEYİN YAPILIŞI:

UBOT Serisi. Optik Transmitter RF + IF (2 GHz)

EEM211 ELEKTRİK DEVRELERİ-I

DENEY 3 TRANZİSTORLU KUVVETLENDİRİCİ DEVRELER

Lazer Sistemleri.


Çocuk, Ergen ve Genç Yetişkinler İçin Kariyer Rehberliği Programları Dizisi

Optik Haberleşme (EE 539) Ders Detayları

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ


Register your product and get support at SDV6224/12. TR Kullanim talimatlari

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 2.


ALETLİ ANALİZ YÖNTEMLERİ

DENEY 3. Tek Yan Bant Modülasyonu

Optik Filtrelerde Performans Analizi Performance Analysis of the Optical Filters

Bölüm 12 PWM Demodülatörleri

Sayısal Radyo Yayıncılığı

NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

Demodülasyon Algoritmaları İçin En İyilenmiş Windows İşletim Sistemi Uygulamaları

İletişim Ağları Communication Networks

DENEY-6 LOJİK KAPILAR VE İKİLİ DEVRELER

Salim OĞUR. SPP Takımı Adına. SPP de RF Mühendisliği: Güç Kaynağı, İletim Hattı ve Dolaştırıcı

ELEKTRONLAR ve ATOMLAR

Optik Haberleşme Sistemleri (EE 406) Ders Detayları

Waveguide to coax adapter. Rectangular waveguide. Waveguide bends

RADYO ASTRONOMİ. Nazlı Derya Dağtekin

Sağlık Kurumları Yönetimi (HAS 501) Ders Detayları

HP Designjet L65500 yazıcı serisi Yer hazırlama kontrol listesi (ikinci sürüm)

SEYRÜSEFER VE YARDIMCILARI

Uzaktan Algılama Teknolojileri

Bilişim Teknolojilerini Kullanarak İletişim Kurma, Bilgi Paylaşma ve Kendini İfade Etme

Işık hızının ölçümü

Deprem Kaynaklarının ve Saha Koşullarının Tanımlanması. Dr. Mustafa Tolga Yılmaz

Transkript:

Ankara Üniversiesi Mühendislik Fakülesi Fizik Mühendisliği Bölümü 2007-08 Bahar Dönemi FZM450 Elekro-Opik Yrd. Doç. Dr. Hüseyin Sarı 11 Şuba-24 Mayıs 2008 Tandoğan, Ankara 2008 HSarı 1

2. Hafa Ders İçeriği Opoelekronik Teknolojisi-Moivasyon Tanımlar Elekro-Opik Opoelekronik Foonik Elekromanyeik Spekrum İleişim Teknolojisi Modülasyon Neden ışık (Opoelekronik)? 2008 HSarı 2 Ban Genişliği

Opoelekronik Teknolojisi-Moivasyon Opoelekronik, ileişim sekörü başa olmak üzere hızla büyüyen ve her geçen gün hayaımızda önemi aran bir eknoloji Günlük Hayaa» Bar kod okuyucular Eğlence Sekörü» Manyeik CD, VCD, DVD Savunma Sanayi» Takip sisemleri, gece görüş cihazları İleişim Sekörü» Bakır el Opik fiberler» Modülaörler Sağlık Sekörü» Neşer lazer Bilimsel Araşırmalar» Soğuma.Ve Türk Külüründe Opoelekronik 2008 HSarı 3

Tanımlar Elekro-Opik (Magneo-Opik, Akuso-Opik) Opoelekronik Foonik 2008 HSarı 4

Tanımlar-2 Elekro-Opik Elekromanyeik (opik) ve elekrik (elekronik) durumlar arasındaki ekileşmeye dayanarak asarlanmış bileşen, ale ve sisemleri birleşiren eknoloji (DOD, NATO) Örneğin sıvı krisaller (gerilim alında polarizasyon ekisini değişiren krisalleri içermekedir) elekro-opik ilkeye göre çalışan bileşenlerdir Ancak bir yarıileken lazeri bu kaegoriye koyamayız! n n+δn 2008 HSarı 5 V=0 V 0

Opoelekronik Tanımlar-3 Opoelekronik (OE), ışıkla ekileşen elekronik alelerin incelenmesi ve bu alelerin praiğe uygulamasıdır. Burada kasedilen ışık, elekromanyeik spekrumun görünür bölge de dahil olmak üzere, kızıl öesi ve mor öesi bölgesidir. Alernaif bir anım ise: elekriği ışığa (elekronu foona) veya ışığı elekriğe (foonu elekrona) dönüşürme işlevini gerçekleşiren herhangi bir ale. Opoelekronik, ışığın yarıileken malzeme içersinde ve çoğunlukla da elekrik alanın varlığında kuanum mekaniksel özelliği emeline dayanır. Örneğin, opoelekronik dediğimizde opik mikroskop veya dürbünü kasemiyoruz! Yarıileken lazerler, LED, CCD, foon dedekörleri opoelekronik özellik göseren alelerdir. ışık ışık 2008 HSarı 6 V V

Tanımlar-4 Foonik (Phoonics) Mor ve kızıl öesi bölgeler arasındaki dalgaboylarındaki ışık ve foonu kapsayan elekronik eknolojisine verilen isimdir. Opoelekronik ile eş anlamlı olarak kullanılmakadır. 2008 HSarı 7

Frekans ν Frekans (Hz) Elekromanyeik Spekrum λ Dalgaboyu (m) 10 22 10-13 γ-ışını Işınımsı 1 Α 10-10 1 nm 10-9 x-ışını 10 15 10 14 1 μ 10-6 Mor öesi Işıksı Opoelekronik / Foonik 1 THz 10 12 Kırmızı alı 1 cm 10-2 Mikrodalga 1 GHz 1 MHz 10 9 10 6 1 m 10 0 10 2 UHF VHF TV Radar FM Radyo Dalgamsı Elekronik 1 km 10 3 Radyo Frekansı 1 KHz 10 3 10 5 Elekrik Haı 2008 HSarı 8

İleişim Teknolojisi İleişim, bir A nokasındaki bilginin başka bir B nokasına aşınmasıdır. Taşıma işleminde mesafeler cm (elekronik yongalar) merebesinden binlerce km ye kadar (kıalar arası ileişim) uzanabilir. Bilgi A Bilgi B Bilgi aşınırken yapılması gereken bilgiyi oram koşullarından ekilenmeden en doğru bir şekilde (kayıpsız) ilemekir. Bunun için bilgi, farklı işlemlerden geçirilerek değişik sinyal formuna dönüşürülür (Modülasyon) 2008 HSarı 9

İleişim Teknolojisi-2 Bilgi Kodlayıcı Modülaör Taşıyıcı Oram DeModülaör Kod Çözücü Bilgi Gönderici Alıcı İleilecek bilgi (ki bu sayısal veya analog olabilir) öncelikle bir kodlama işlemine abi uulur Kodlanan bilgi daha sonra bu bilgiyi uzak mesafelere kadar aşıyacak olan peryodik bir sinyalin (aşıyıcı sinyal) üzerine bindirilerek (modülasyon) aşıyıcı oram boyunca ileimi sağlanır (örneğin anen) Taşıyıcı oram boyunca ilerleyen bilgiyi içeren sinyal uygun alıcı arafından algılanır. Algılanan sinyal bindirme işleminin ersi bir işlemle (demodülasyon) bilgi ve aşıyıcı sinyali ayrışırılarak bilginin kodu çözülür. 2008 HSarı 10

Modülasyon Modülasyon, bir dalganın değişik paramerelerini (örneğin genlik, frekans, faz gibi) konrollü olarak değişirerek bilgi yükleme işlemine denir. aşıyıcı dalga modülaör modüle edilmiş dalga ν=sb ν(v()) bilgi V() 2008 HSarı 11

Modulasyon Teknikleri-1 Modülasyon, bir dalganın değişik paramerelerini (örneğin genlik, frekans, faz gibi) konrollü olarak değişirerek bilgi yükleme işlemine denir. Bu işlem eğer dalganın; Genliği değişirilerek yapılıyor ise Genlik Modülasyonu (Ampliude Modulaion-AM), Frekansı değişirilerek yapılıyor ise Frekans Modülasyonu (Frequency Modulaion-FM), Faz açısı değişirilerek yapılıyor ise Faz Modülasyonu (Phase Modulaion-PM) denir. 2008 HSarı 12

Modulasyon Teknikleri-2 Genlik modülasyonu(am) Taşıyıcı dalganın genliği bilgi sinyali ile oranılı olarak değişirilerek oluşurulan modülasyon ekniğidir e() Taşıyıcı sinyal v() Bilgi sinyali e().v() Ban aralığı daha az Sinyal/gürülü oranı FM modülasyonuna göre daha küçükür 2008 HSarı 13

Modulasyon Teknikleri-3 Frekans Modülasyonu(FM) Taşıyıcı dalganın frekansı bilgi sinyali ile oranılı olarak modüle edilerek oluşurulan modülasyon ekniğine denir. e() Taşıyıcı sinyal v() Bilgi sinyali e().v() Ban aralığı daha fazla Sinyal/Gürülü oranı AM modülasyonuna göre daha büyükür 2008 HSarı 14

Modulasyon Teknikleri-4 Faz Modülasyonu (PM) Taşıyıcı dalganın fazı bilgi sinyali ile oranılı olarak modüle edilerek oluşurulan modülasyon ekniğine denir. e() Taşıyıcı sinyal v() Bilgi sinyali e().v() E() 2008 HSarı 15

Neden ışık (Opoelekronik)? Sinyal Kaliesi Lazerlerle birlike (ek renkli ışık) opik sinyalin bozunmadan opik fiberler içersinde uzun mesafeler boyunca gimesi mümkündür Yüksek ban genişliği Opik fiberler içinden ışık dalgası (10 14 Hz) ile meal ellere göre daha fazla bilgi aşıma yapılabilir. Opik fiberler yaklaşık GHz merebesinde (yüksek band aralığı) bilgi aşıma kapasiesine sahipirler ve mealik elefon halarına göre 100 milyon kez daha fazla bilgi aşıyabilmekedirler. (Tipik bir elevizyon kanalının frekansının 4 MHz olduğunu düşünürsek, opik dalgalarla yaklaşık 75 milyon TV kanalı ileilebilir) 2008 HSarı 16

Yandaki aşıyıcı dalgalardan her biri farklı frekanslara sahipir. Bu aşıyıcı dalgaları kullanarak verilen bir bilgi sinyalini en iyi hangisi ile modüle edilip aşınabilir? Frekansı en küçük olan birinci sinyal (a) verilen zaman aralığında bilgi sinyalini aşımaya yeecek kadar ireşim yapamamakadır! Frekansı en yüksek olan sinyal (c) ise birim zamanda çok sayıda bilgiyi aşıyabilecekir çünkü bilgi sinyalinin salınımından daha fazla salınım yapmakadır Bu özelliğe aşıyıcı dalganın ban genişliği denir Ban Genişliği Bilgi sinyali d 1 d 2 d 5 d 8 1 0 1 000 1 0 Modüle edilmiş sinyal Örneğin TV yayınlarını radyo frekansı (KHz) ile göndermek sıkını yaraır. Çünkü TV τ τ b yayınında radyo yayınına(ses) ek olarak (c) görünü bilgisi de ileileceğinden birim zamanda ileilecek bilgi sayısı radyoya göre çok daha 2008 fazladır. HSarı 17 τ b Farklı frekansaki (1/τ ) aşıyıcı sinyaller (a) (b) τ τ = = = d 1 d 1 d 1 d 2 d 3 d 4 τ b d 2 d 3 d 4 τ b d 2 d 3 d 4 τ τ τ

Opik İleişim ışık kaynağı (lazer) opik modülaör (elekro-opik krisal) aşıyıcı oram (fiber, dalga klavuzu) ν(v) opik dedekör (p-i-n diyo) DeModülaör aşıyıcı dalga (ışık) modüle edilmiş dalga (ışık) elekronik sinyal (akım) V() V() bilgi (elekronik) bilgi (elekronik) 2008 HSarı 18

Veri Saklama Geniş ban genişliğinin yanısıra bilgi depolamada da ışığın sunduğu birçok üsünlükler vardır lazer λ okuma manyeik kafa lazer lazer manyeik oram opik oram opik oram (a) manyeik kayı (2B) (b) opik kayı (2B) (c) holografik kayı (3B) 2008 HSarı 19

Opoelekronik Tümleşik Devreler farklı frekans bileşenleri içeren RF sinyal λ 2 λ 1 radar ransducer (ses dalga dönüşürücü) mercek mercek fooalgılayıcı dizisi I lazer λ 1 λ 2 λ ses dalgası 2008 HSarı 20

Elekromanyeik Dalganın Özellikleri 1) Frekans ν 2) Dalgaboyu λ 3) Hız a) faz hızı c=v p b) grup hızı vg 4) Şidde, I 5) Polarizasyon (s veya p) I, E λ, T v x, Bir EM dalga olan ışığın hangi özelliklerini konrol edebiliriz? Frekans, dalgaboyu ve hız arasındaki bağını v=ν.λ Frekans, sadece ışık kaynağına bağlıdır ve değişiremeyiz (oramın doğrusal olduğunu kabül ediyoruz) Hız, ışığın yayıldığı orama bağlıdır Dalgaboyu, hıza bağlı paramere olup dalganın yayıldığı orama bağlıdır Şidde, değişirilebilir Polarizasyon, değişirilebilir 2008 HSarı 21

FZM450 Elekro-Opik Dersinin İçeriği Bu ders sonunda ışığın modülasyon işleminin nasıl yapıldığını, bunu opik sisemin hangi paramerelerinin değişirerek yapılabileceği öğrenilmiş olacak Elekromanyeik dalganın (ışık) genel özellikleri Boşluka Madde Oramında Anizoropik Oramda Deme Özelliği Kuupluluk Frekansa Bağlılık E() V() ν(v) Elekro-opik krisal Dış ekiler: Elekro-Opik ( Kerr ve Pockel eki) Akuso-Opik 2008 HSarı Magneo-Opik Eki 22

FZM450 Elekro-Opik Ders Planı Elekromanyeik (Işık) Dalganın Özellikleri (3 hafa) Boşluka EM Dalga Madde içinde EM dalga İzoropik Oram Anizoropik (Krisal) Oram Anizoropik Oram (2 hafa) Deme Opiği (1 Hafa) Işığın Kuuplanması(1 hafa) Fresnel Eşilikleri (1 hafa) Opik Sabilerin Frekansa Bağlılığı (1 hafa) Elekro-Opik (1 hafa) Elekro-Opik Eki Akuso-Opik Eki Magneo-Opik Eki Işığın Modülasyonu (1 hafa) Elekro-Opik Modülasyon Akuso-Opik Modülasyon Magneo-Opik Modülasyon Opoelekronik(1 hafa) 2008 HSarı Öğrenci Sunumları (2 hafa) 23