Eşanlı Denklem Modelleri



Benzer belgeler
Eşanlı Denklem Modelleri

Eşanlı Denklem Modelleri

Eşanlı Denklem Modelleri

Zaman Serileri Ekonometrisine Giriş

SEK Tahmincilerinin Türetilmesi. SEK Tahmincilerinin Türetilmesi. Ekonometri 1 Konu 8 Sürüm 2,0 (Ekim 2011)

Nitel Tepki Bağlanım Modelleri

Zaman Serileri Ekonometrisine Giriş

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi

İki Değişkenli Bağlanım Çıkarsama Sorunu

İstatistiksel Kavramların Gözden Geçirilmesi

İki Değişkenli Bağlanım Modelinin Uzantıları

Temel Kavramlar. Bağlanım Çözümlemesi. Temel Kavramlar. Ekonometri 1 Konu 6 Sürüm 2,0 (Ekim 2011)

Ekonometrik Modelleme

Çoklu Bağlanım Çıkarsama Sorunu

Ekonometri 1 Ders Notları

Ekonometri Ders Notları İçin Önsöz

Ekonometrinin Konusu ve Yöntembilimi. Ekonometri Nedir? Ekonometrinin Konusu ve Yöntembilimi. Ekonometri 1 Konu 4 Sürüm 2,0 (Ekim 2011)

Zaman Serileri Ekonometrisine Giriş

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı

Uygulama: Keynesçi Tüketim Kuramı. Ekonometri Nedir? Uygulama: Keynesçi Tüketim Kuramı. Ekonometri 1 Konu 5 Sürüm 2,0 (Ekim 2011)

İki Değişkenli Bağlanım Modelinin Uzantıları

Ekonometrik Modelleme

Kukla Değişkenlerle Bağlanım. Ekonometri 1 Konu 30 Sürüm 2,0 (Ekim 2011)

Rasyonel Beklentiler Teorisinin Politika Yansımaları ve Enflasyonla Mücadele

Dizey Cebirinin Gözden Geçirilmesi

TOBB Ekonomi ve Teknoloji Üniversitesi İKT352 Ekonometri II, Dönem Sonu Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı

Dizey Cebirinin Gözden Geçirilmesi

Neden Ayrı Bir Bilim Dalı? Ekonometri; kuramsal iktisat, matematiksel iktisat ve iktisadi istatistikten ayrı bir bilim dalıdır çünkü:

EŞANLI DENKLEM MODELLERİ

Nitel Tepki Bağlanım Modelleri

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı

Bölüm 6. Ekonometrik Modelleme. 6.1 Belirtim Hatalarının Niteliği

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi

Döviz Kurunun Belirlenmesi

Kukla Değişkenlerle Bağlanım

Doğrusal Bağlanım Modeline Dizey Yaklaşımı

Farklıserpilimsellik

Ekonometri 2 Ders Notları

İki Değişkenli Bağlanım Modelinin Uzantıları

Çoklu Bağlanım Çözümlemesi

İngilizce regression teriminin sözcük anlamı, istatistikteki sıradanlığa doğru çekilme (regression toward mediocrity) olgusundan gelmektedir.

Ekonometrik Modelleme

Para Teorisi ve Politikası Ders Notları

Ev sahibi olup olmamayı belirleyen etmenler. Bir kredi başvurusunun reddedilip reddedilmeyeceği

Özilinti. Hatalar İlintili ise Ne Olur? Yrd. Doç. Dr. A. Talha YALTA Ekonometri 2 Ders Notları Sürüm 2,0 (Ekim 2011)

Bölüm 3. Çoklueşdoğrusallık. 1. Çoklueşdoğrusallığın niteliği nedir? Çoklueşdoğrusallık Kavramı

Zaman Serileri Ekonometrisine Giriş

Nitel Tepki Bağlanım Modelleri

Bölüm 7. Uzantıları. 7.1 Sıfır Noktasından Geçen Bağlanım. Kuram bazen modelde sabit terimin bulunmamasını öngörür: Y i = ˆβ 2 X i + û i

İki Değişkenli Bağlanım Modelinin Uzantıları

Ekonometri 2 Ders Notları

Çoklu Bağlanım Çözümlemesi

Yrd. Doç. Dr. A. Talha YALTA Ekonometri 1 Ders Notları Sürüm 2,0 (Ekim 2011)

Bölüm 9. Çoklu Bağlanım Çözümlemesi - Çıkarsama Sorunu. 9.1 T Sınamaları Çoklu Bağlanımda Önsav Sınaması

Bölüm 6. Çıkarsama Sorunu. 6.1 Aralık Tahmini Bazı Temel Noktalar

Nitel özellikleri nicel olarak gösterebilmek için, niteliğin varlık ya da yokluğunu gösteren 1 ve 0 değerlerini alırlar.

Çıkarsama Sorunu. Yrd. Doç. Dr. A. Talha YALTA Ekonometri 1 Ders Notları Sürüm 2,0 (Ekim 2011)

İstatistiksel Kavramların Gözden Geçirilmesi

Bölüm 7. Para Talebi. 7.1 Klasik İktisat ve Paranın Miktar Teorisi

Ekonometri Nedir? Yrd. Doç. Dr. A. Talha YALTA Ekonometri 1 Ders Notları Sürüm 2,0 (Ekim 2011)

Bağlanım Çözümlemesi. Yrd. Doç. Dr. A. Talha YALTA Ekonometri 1 Ders Notları Sürüm 2,0 (Ekim 2011) Temel Kavramlar Varsayımsal Bir Örnek

DİNAMİK PANEL VERİ MODELLERİ. FYT Panel Veri Ekonometrisi 1

SIRADAN EN KÜÇÜK KARELER (OLS)

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011)

Zaman Serileri Ekonometrisine Giriş

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

Ekonometri 1 Ders Notları

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

İstatistiksel Kavramların Gözden Geçirilmesi

Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT

Ch. 12: Zaman Serisi Regresyonlarında Ardışık Bağıntı (Serial Correlation) ve Değişen Varyans

17 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

Rasyonel Beklentiler Teorisi

Zaman Serileri Ekonometrisine Giriş

İstatistiksel Kavramların Gözden Geçirilmesi

İstatistiksel Kavramların Gözden Geçirilmesi

7.Ders Bazı Ekonometrik Modeller. Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla.

14 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

ÜSTEL DÜZLEŞTİRME YÖNTEMİ

14 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

BİRDEN ÇOK BAĞIMLI DEĞİŞKENİ OLAN MODELLER

İstatistik ve Olasılık

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

11. BÖLÜM: EŞANLI DENKLEM SİSTEMLERİ

9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir?

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS

DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR DOĞRUSAL OLMAYAN SINIRLAMALARIN TESTİ

BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız.

1. KEYNESÇİ PARA TALEBİ TEORİSİ

KONULAR. 14 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler

Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ

Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

Transkript:

Eşanlı Denklem Modelleri Tek Denklemli Modellerde Eşanlılık Ekonometri 2 Konu 22 Sürüm 2,0 (Ekim 2011)

UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) lisansı altında bir açık ders malzemesi olarak genel kullanıma sunulmuştur. Eserin ilk sahibinin belirtilmesi ve geçerli lisansın korunması koşulu ile özgürce kullanılabilir, çoğaltılabilir ve değiştirilebilir. Creative Commons örgütü ve CC-BY-NC-SA lisansı ile ilgili ayrıntılı bilgi http://creativecommons.org adresinde bulunmaktadır. Bu ekonometri ders notları setinin tamamına adresinden ulaşılabilir. A. Talha Yalta TOBB Ekonomi ve Teknoloji Üniversitesi Ekim 2011

Ders Planı Tek Denklemli Modellerde Eşanlılık 1 Tek Denklemli Modellerde Eşanlılık

Tek Denklemli Modellerde Eşanlılık Eşanlı denklem modellerinin temel özelliğinin birden fazla nedensel bağlantıyı anlatan birden fazla denklemden oluşmaları olduğunu biliyoruz. Uygulamada ise sistemi bütün olarak ele almak yerine yalnızca bir denkleme odaklanan tek denklem yöntemleri sıkça kullanılır. Denklem sisteminin sakıncası, bir denklemde yanlış işlev biçimi kullanıldığında bunun diğer denklemlere taşınarak ciddi model belirtim hatalarına yol açabilmesidir. Tek denklem yaklaşımı bu zorluktan kaçınmakla kalmaz, aynı zamanda uygulama kolaylığı da sağlar.

Talep İşlevi Örneği Tek denklem yaklaşımında diğer denklemler için açıkça belirtim yapılmaz ama bunları göz ardı etmenin eşanlılık yanlılığına yol açacağı da unutulmaz. Örnek olarak, bir ürüne olan talebi tahmin etmek istiyor olalım. Bunun için aşağıdaki gibi bir model belirtebiliriz. Burada P t malın fiyatını, Q t ise tüketilen miktarı göstermektedir. Q t = β 1 + β 2 P t + u t Talep ile fiyat arasındaki ilişki ters yönlü olduğu için β 2 nin eksi değerli olmasını bekleriz.

Talep İşlevi Örneği Elimizdeki modelde Q t ile P t nin ortak bağımlı değişkenler olduğunu görmek güç değildir. İktisat kuramından, fiyat ve miktarın arz ve talep eğrileri tarafından ortaklaşa belirlendiğini biliyoruz. Dolayısıyla, fiyattaki bir değişim ürün miktarını etkilerken üretim maliyetlerinin artması gibi bir nedenden dolayı miktardaki bir değişiklik de fiyatı etkileyecektir. Demek ki elimizdeki model, daha önce gördüğümüz tek denklemli modellerden farklı olarak çözülmesi gereken bir eşanlılık sorunu içermektedir. Sorunun niteliğini net bir şekilde görmek için varsayımsal fiyat-miktar verilerini serpilim çizimi üzerinde gösterebiliriz.

Talep İşlevi Örneği 10 VARSAYIMSAL BİR ÜRÜNE AİT FİYAT VE MİKTAR İLİŞKİSİ 8 6 Fiyat 4 2 0 0 2 4 6 8 10 Tüketilen miktar

Talep İşlevi Örneği 10 VARSAYIMSAL BİR ÜRÜNE AİT FİYAT VE MİKTAR İLİŞKİSİ S1 8 S2 S3 6 Fiyat 4 D3 2 D1 D2 0 0 2 4 6 8 10 Tüketilen miktar

Talep İşlevi Örneği Çizitlerden anlaşıldığı gibi, elimizdeki fiyat-miktar verileri gerçekte farklı arz ve talep eğrilerinin kesişmesi sonucu ortaya çıkan denge noktalarından başka birşey değildir. Dolayısıyla, bu verilere bir doğru yakıştırarak ne talep ne de arz işlevini tahmin etmiş oluruz. Başta da göstermiş olduğumuz gibi SEK yöntemi burada yanlı ve tutarsız katsayı tahminleri üretecektir. Sorununun farklı bir yaklaşım gerektirdiği açıktır. Bize gereken şey talep sabitken arzın değişmesi sonucu ortaya çıkan fiyat-miktar çiftleridir. Sabit bir talep eğrisi üzerindeki noktalardan yararlanarak talep eğrisinin eğimini doğru bir şekilde tahmin edebiliriz.

Talep İşlevi Örneği 10 VARSAYIMSAL BİR ÜRÜNE AİT FİYAT VE MİKTAR İLİŞKİSİ S1 8 S2 S3 6 Fiyat 4 2 D1 0 0 2 4 6 8 10 Tüketilen miktar

Araç Değişkenler Modeli P t ve Q t arasındaki eşanlılık sorununu çözebilmek için araç değişkenler modeli (instrumental variables model, kısaca IV model) adı verilen yaklaşımı izleriz. IV modelinde bilindik bağımlı ve açıklayıcı değişkenlerin yanı sıra yeni bir değişken türü olarak Z t araç değişkenleri bulunur. Z t, geçerli bir araç olmak için iki koşulu sağlamalıdır: 1 İlgililik (relevance): corr(z t,p t ) 0. 2 Dıştürellik (exogeneity): corr(z t,u t ) = 0. Kısaca, bu değişken fiyattaki arz eğrisinden kaynaklı değişimi yakalayabilmeli ancak talep tarafından etkilenmeyerek hata terimi ile ilintisiz de kalabilmelidir. Elimizdeki talep işlevi modeli örneğinde üretim maliyetlerini ya da tarımsal bir ürün için hava koşullarını uygun bir araç olarak düşünebiliriz.

Araç Değişkenler Modelinin Genel Gösterimi Araç değişkenler modelinin genel gösterimi şöyledir: Araç değişkenler modeli Y i = β 0 + β 1 Y 1i + + β r Y ri + β r+1 X 1i + + β r+k X ki + u i Burada Y i bağımlı değişkeni, Y 1i,..., Y ri içtürel açıklayıcı değişkenleri X 1i,..., X ki dıştürel açıklayıcı değişkenleri, göstermektedir. Dıştürel değişkenler u i ile ilintisizdir. İçtürel değişkenler ise u i ile ilintilidir ve eşanlılık yanlılığına yol açmaktadır. Ayrıca Z 1i,..., Z si biçiminde s sayıda araç değişken vardır. Z i ler Y i leri açıklayıcıdır ama hata terimi ile de ilintisizdir. Araç değişken sayısı içtürel değişken sayısından azsa, model eksik özdeşlemeli demektir. Araç sayısı eşitse tam özdeşlemeli, fazlaysa da aşırı özdeşlemeli model olur.

Tek Denklem ile Eşanlı Denklemler İlişkisi Elimizdeki talep işlevi modelinin ve bu modeli doğru tahmin edebilmek için önerdiğimiz araç değişkenler yaklaşımının temelinde eşanlı denklemler olduğuna dikkat edelim. P t ve Q t arasında iki yönlü bir bağlantı olduğunu biliyoruz. Bu durum aslında iki denklemli bir modeli göstermektedir. Tek denklem yaklaşımını benimsemek yerine ilişkiyi bütün olarak ele alsaydık, aşağıdakine benzer bir eşanlı denklem modelimiz olacaktı: Talep işlevi: Q d t = β 1 + β 2 P t + u 2t Arz işlevi: Q s t = α 1 + α 2 P t + α 3 Z t + u 1t Öyleyse Z t gerçekte açıkça belirtmediğimiz arz işlevindeki bağımsız bir açıklayıcı değişkenden başka birşey değildir.

Tek Denklem ile Eşanlı Denklemler İlişkisi Eşanlı denklemlerde bir denklemi diğerlerinden ayırt ederek tahmin edebilmek için özdeşleme kurallarından yararlandığımızdan söz etmiştik. Sıra koşuluna göre bu iki denklemli örnekte talep işlevi bir değişkeni dışladığı için tam özdeşlemeli, arz işlevi ise en az bir değişkeni dışlayamadığı için eksik özdeşlemelidir. Diğer bir deyişle, Z t değişkeni arz işlevini denetim altında tutarak talep işlevini özdeşlemekte ve böylece tahmin edilebilir olmasını sağlamaktadır. Sonuç olarak, araç değişkenler eşanlı denklemlerdeki tek bir denkleme odaklanan kestirme bir yoldur diyebiliriz. Tek denklemli modellerde tüm ilişkileri açıkça modellemek gerekmiyor. Ancak, diğer denklemlerdeki değişkenlerden araç değişken olarak yararlanıyoruz.

Eşanlılık Yanlılığını Saptama Gereği Eşanlı denklemler ya da eşanlılık sorunu yokken SEK tahmincileri yansız ve enaz varyanslıdır. Eşanlılık altında ise SEK tahmincileri tutarlı bile değildirler ve bu nedenle yerlerini almaşık tahmincilere bırakırlar. Ancak bu almaşık tahminciler eğer eşanlılık sorunu yokken kullanılacak olurlarsa enaz varyanslı olmayan tahminler üretmektedirler. Bu nedenle, almaşık yöntemleri kullanmak üzere SEK ten vazgeçmeden önce örneklemde eşanlılık sorununun olup olmadığı sınanmalıdır. Bu doğrultuda sıklıkla kullanılan sınama ise 1978 yılında Jerry A. Hausman tarafından geliştirilen ve bir tahminciyi bir diğerine göre değerlendiren Hausman sınamasıdır.

Hausman Sınaması Bir içtürel ve bir dıştürel değişkeni olan şu modeli ele alalım: Y i = β 0 + β 1 Y i + β 2 X 1i + u i Z 1i,..., Z si ise araç değişkenler olsun. Hausman sınamasının eşanlılığa bakmak için kullanılabilecek basit bir şekli şöyledir: nin birtek araç değişkenlere göre aşağıdaki bağlanımı hesaplanır ve kalıntılar kaydedilir: 1 Y i Y i = ˆα 0 + ˆα 1 Z 1i + + ˆα s Z si + ˆv i 2 Kalıntılar özgün modele eklenir ve SEK tahmini yapılır: Y i = β 0 + β 1 Y i + β 2 X 1i + β 3 ˆv i + u i 3 Eşanlılık yoksa, ˆv i ve u i arasındaki ilinti de kavuşmazsal olarak sıfır olmalıdır. Bu nedenle ˆv i nın katsayısına bakılır. β 3 eğer t sınamasına göre anlamlı bulunursa, eşanlılık olmadığını söyleyen sıfır önsavı reddedilir.

Önümüzdeki Dersin Konusu Önümüzdeki ders İki aşamalı enküçük kareler tahmini