PROTEİNLERİN 3 BOYUTLU YAPISI



Benzer belgeler
AMİNO ASİTLER. COO - H 3 N + C a H R

PROTEİNLERİN GÖREVLERİ

Proteinlerin Primer & Sekonder Yapıları. Dr. Suat Erdoğan

Amino Asitler. Amino asitler, yapılarında hem amino grubu ( NH 2 ) hem de karboksil grubu ( COOH) içeren bileşiklerdir.

8. Hafta Amino Asitler, Peptidler ve Proteinler: Prof. Dr. Şule PEKYARDIMCI PEPTİT BAĞI

1. PROTEİNLERİN GENEL YAPI VE ÖZELLİKLERİ

BİYOLOJİK MOLEKÜLLERDEKİ

Canlıların yapısına en fazla oranda katılan organik molekül çeşididir. Deri, saç, tırnak, boynuz gibi oluşumların temel maddesi proteinlerdir.

PROTEİNLERİN GENEL ÖZELLİKLERİ VE İŞLEVLERİ. Doç. Dr. Nurzen SEZGİN

Aminoasitler ve proteinler. Assist. Prof.Dr. Sema CAMCI ÇETİN

Yard.Doç.Dr. Gülay Büyükköroğlu

AMİNO ASİTLER. Yard.Doç. Dr. Melike BARAN EKİNCİ MAKÜ Gıda Kimyası Ders Notları

Aminoasitler proteinleri oluşturan temel yapı taşlarıdır. Amino asitler, yapılarında hem amino grubu (-NH2) hem de karboksil grubu (-COOH) içeren

Biochemistry Chapter 4: Biomolecules. Hikmet Geçkil, Professor Department of Molecular Biology and Genetics Inonu University

Güz Yarı Dönemi

Proteinlerin Tersiyer & Kuaterner Yapıları. Dr. Suat Erdoğan

PROTEİN. Mısırdan. İzolasyon Kiti. Öğretmen Kılavuzu. Öğrenci Kılavuzu

% C % 6-8 H %15-18 N

Amino asitlerin sınıflandırılması

BİYOBENZER ÜRÜNLERDE KALİTE KONTROLÜ. Biyofarmasötikler ve Biyobenzerler 7 Mayıs 2012, Ege Palas, İzmir

Hafta 7. Mutasyon ve DNA Tamir Mekanizmaları

Her madde atomlardan oluşur

Peptitler Proteinler

Güz Yarı Dönemi

5.111 Ders Özeti #12. Konular: I. Oktet kuralından sapmalar

Genetik Bilgi: DNA Yapısı, Fonksiyonu ve Replikasyonu. Dr. Mahmut Çerkez Ergören

BİYOKİMYAYA GİRİŞ: ATOM, MOLEKÜL, ORGANİK BİLEŞİKLER

Kloroform, eter ve benzen gibi organik çözücülerde çözünen bunun yanı sıra suda çözünmeyen veya çok az çözünen organik molekül grubudur.

AMİNO ASİTLER. Amino asitlerin Genel Yapısı

HISTOLOJIDE BOYAMA YÖNTEMLERI. Dr. Yasemin Sezgin. yasemin sezgin

TIBBİ BİYOLOJİ YAĞLARIN VE PROTEİNLERİN OKSİDASYONU

Proteinler. Fonksiyonlarına göre proteinler. Fonksiyonlarına göre proteinler

Paylaşılan elektron ya da elektronlar, her iki çekirdek etrafında dolanacaklar, iki çekirdek arasındaki bölgede daha uzun süre bulundukları için bu

PROTEĐNLERĐN FONKSĐYONEL YAPISI VE BĐYOFĐZĐKSEL ÖZELLĐKLERĐ

ayxmaz/biyoloji Adı: 1.Aşağıda verilen atomların bağ yapma sayılarını (H) ekleyerek gösterin. C N O H

PEPTİDLER ve PROTEİNLERİN ÖZELLİKLERİ

İnorganik Kimya Atomun Yapısı ve Kimyasal Bağlanma

Atomlar ve Moleküller

1. Öğretmen Kılavuzu. 2. Öğrenci Kılavuzu

Soygazların bileşik oluşturamamasının sebebi bütün orbitallerinin dolu olmasındandır.

III-Hayatın Oluşturan Kimyasal Birimler

BİLEŞİKLER VE FORMÜLLERİ

GENEL KİMYA. 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar

Suyun Fizikokimyasal Özellikleri

MALZEME BİLGİSİ DERS 4 DR. FATİH AY.

AMİNO ASİTLER. Yrd. Doç. Dr. Osman İBİŞ

GENEL KİMYA. 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar

ATOMLAR ARASI BAĞLAR

FZM 220. Malzeme Bilimine Giriş

Hafta V Translasyon TRANSLASYON

Atomlar birleştiği zaman elektron dağılımındaki değişmelerin bir sonucu olarak kimyasal bağlar meydana gelir. Üç çeşit temel bağ vardır:

KARBON ve CANLILARDAKİ MOLEKÜL ÇEŞİTLİLİĞİ

Tüm yaşayan organizmalar suya ihtiyaç duyarlar Çoğu hücre suyla çevrilidir ve hücrelerin yaklaşık %70 95 kadarı sudan oluşur. Yerküre içerdiği su ile

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1

Amino Asitler. ) hem de karboksil grubu ( COOH) içeren bileşiklerdir. Amino asitler, yapılarında hem amino grubu ( NH 2. Prof. Dr.

FONKSİYONLU ORGANİK BİLEŞİKLER I

Atomların bir arada tutulmalarını sağlayan kuvvetlerdir Atomlar daha düşük enerjili duruma erişmek (daha kararlı olmak) için bir araya gelirler

SU VE HÜCRE İLİŞKİSİ

2. Histon olmayan kromozomal proteinler

Örnek : 3- Bileşiklerin Özellikleri :

Ders 8 trna-rrna yapısı, İşlenmesi ve İşlevleri

KAS DOKUSU. Prof.Dr. Ümit TÜRKOĞLU

o Serin o Triyonin o Sistein o Metiyonin o Arjinin o Histidin

KİMYA-IV. Yrd. Doç. Dr. Yakup Güneş

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI VE ATOMLAR ARASI BAĞLAR. Aytekin Hitit

11. Hafta: Prof. Dr. Şule PEKYARDIMCI NÜKLEOTİDLER

PROTEĠNLERĠN YAPISAL ORGANĠZASYONU. Birincil yapı Ġkincil yapı Üçüncül yapı Dördüncül yapı (oligomerik proteinler için)

ATOMLAR ARASI BAĞLAR Doç. Dr. Ramazan YILMAZ

İki ve üç kovalent bağa sahip moleküller doymamış olarak isimlendirilirler.

Günümüzde bilinen 117 element olmasına rağmen (92 tanesi doğada bulunur) bu elementler farklı sayıda ve şekilde birleşerek ve etkileşerek farklı

GIDALARIN YÜZEY ÖZELLİKLERİ DERS-9

İ. Ü İstanbul Tıp Fakültesi Tıbbi Biyoloji Anabilim Dalı Prof. Dr. Filiz Aydın

BAKTERİLERİN GENETİK KARAKTERLERİ

Yasemin Budama Kılınç1, Rabia Çakır Koç1, Sevim Meşe2, Selim Badur2,3

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

KANTİTATİF YAPI-ETKİ İLİŞKİLERİ ANALİZİNDE KULLANILAN FİZİKOKİMYASAL PARAMETRELER (QSAR PARAMETRELERİ)

KİMYASAL TÜRLER ARASI ETKİLEŞİMLER

Elementlerin büyük bir kısmı tabiatta saf hâlde bulunmaz. Çoğunlukla başka elementlerle bileşikler oluşturmuş şekilde bulunurlar.

HÜCRENİN KİMYASAL YAPISI PROF. DR. SERKAN YILMAZ

ALKOLLER ve ETERLER. Kimya Ders Notu

SU VE KİMYASAL BAĞLAR. Yrd. Doç. Dr. Osman İBİŞ

Toprağın Katı ve Sıvı Fazı Arasındaki Etkileşimler

15- RADYASYONUN NÜKLEİK ASİTLER VE PROTEİNLERE ETKİLERİ

MOLEKÜLER BİYOLOJİ DOÇ. DR. MEHMET KARACA

HPLC ile Gübre Numunelerinde Serbest Aminoasitlerin Tayini

Amino Asitler, Peptitler, Proteinler. Dr. Fatih Büyükserin

ANADOLU ÜNİVERSİTESİ ECZACILIK FAKÜLTESİ FARMASÖTİK KİMYA ANABİLİMDALI GENEL KİMYA II DERS NOTLARI (ORGANİK KİMYAYA GİRİŞ)

AMİNOASİTLER Proteinlerin Genel Biyolojik Fonksiyonları. Amino Asitler. Tarihçesi AMĐNOASĐTLER

TİTRASYON. 01/titrasyon.html

ATOMLAR ARASI BAĞLARIN POLARİZASYONU. Bağ Polarizasyonu: Bağ elektronlarının bir atom tarafından daha fazla çekilmesi.

Serbest radikallerin etkileri ve oluşum mekanizmaları

Yrd.Doç.Dr. Yosun MATER

Ders #15 için okuma: Bölümler 3.4, 3.5, 3.6 ve 3.7 (3.baskıda, Bölümler 3.4, 3.5, 3.6, 3.7 ve 3.8) Değerlik Bağı Teorisi.

MADDENİN YAPISI VE ÖZELLİKLERİ ATOM

PROTEİNLER. -Proteinlerin Yapısında Bulunan Elementler. -Aminoasitler. --Kimyasal Yapılarına Göre Amino Asitlerin Sınıflandırılması

VİRUSLARIN SINIFLANDIRILMASI

CANLILARIN KİMYASAL İÇERİĞİ

KOVALENT BAĞLARDA POLARLIK. Bileşikler 5. Bölüm

Biyokimya. Biyokimyanın tanımı ve önemi Organizmanın elementer yapısı Canlılık Su Kovalent olmayan bağlar (intermoleküler etkileşimler)

Transkript:

PROTEİNLERİN 3 BOYUTLU YAPISI

PROTEİNLERİN 3 BOYUTLU YAPISI

PROTEİNLERİN 3 BOYUTLU YAPISI 1-Primer Yapı (1 o ) 2-Sekonder Yapı (2 o ) -Alfa heliks -Beta kırmalı tabaka -Beta bendler (kıvrım, dirsek) -Tesadüfi kıvrılmalar(random coil) 3-Tersiyer Yapı (3 o ) 4-Kuarterner Yapı (4 o )

1-Primer Yapı (1 o ) H 2 N ( Amino asitler ) n COOH Protein yapısında bir düzen yer alan AA lerin, cins sayı sıra içerisinde peptid bağları ile bağlanması Protein sekansı

Primer Yapı = Protein Sekansı AMĠNO ASĠT SIRALAMASI Her protein için spesifik DNA nın nükleotid sekansı (genetik bilgi) na göre belirlenir AA dizileri N-terminal C-terminal yönünde okunur

2- Sekonder Yapı (2 o ) (PAULING ve COREY, 1951) Primer yapıda birbirine yakın olan AAlerin, molekül içindeki düzenli ya da düzensiz ilişkileri

Düzenli ilişkiler: periyodik olarak tekrarlanan yapılar -heliks -kırmalı tabaka Düzensiz ilişkiler: random coil (tesadüfi kıvrılmalar)

Sekonder Yapıyı Oluşturan Bağlar - Disülfid Bağları - Hidrojen Bağları Disülfid Bağı: Sistein rezidüleri arasında kovalent bağ R CH 2 S S CH 2 R Cys Cys

Hidrojen Bağları () H atomları ile (-) O atomları arasındaki elektrostatik çekim gücü Polipeptid zincirleri içinde veya arasında, polar ve yüksüz, -OH, -NH, -NH 2 grupları ile -C=O arasında medana gelir Protein yüzeyinde bulunan polar gruplar ile su molekülleri arasında da oluşabilir Düşük enerjili zayıf bağlar ömrü kısa( 1x10-9 sn) Sayıları çok stabilite

yan zincir -Heliks Yapısı Çubuğa benzer bir yapı Polipeptid zinciri bir ana eksen etrafında kıvrılarak devam eder Peptid bağları ve -Catomu (eksene paralel) polipeptid zincirin iskeletini oluşturur -C üzerindeki R grupları, heliksin merkezinden dışına

H bağı -Heliks in Özellikleri 3.6 AA rezidü 5.4 A o AA Rezidü = 1.5 A Her AA,heliks ekseni boyunca birbirinden 1.5 A uzaklıkta bulunur 3.6 AA Rezidü / Dönüş Her AA, 100 açı yapar Heliksin her dönüşünde (360 ), 3.6 AA bulunur Heliks Yüksekliği = 5.4 A Heliksin bir tam dönüş yapmasıyla gidilen uzaklık 1.5 A x 3.6 AA = 5.4 A

-Heliks Eksenine Üst Bakış 1.5 A 5.4 A Primer yapıda aralarında 3-4 AA lik uzaklık bulunan AAler, -heliks ekseninde birbirine en yakındır

-Heliks Yapısında Hidrojen Bağları H bağı H bağı H bağı Hidrojen bağları, zincir içinde oluşur Heliks zincirindeki tüm peptid bağları hidrojen bağı oluşumuna katılır O 1.AA rezidü-nh 4.AA rezidü-c=o Ardışık olarak H bağları oluşur (- N -C-) H

-Heliks Yapısında Stabilite Bir polipeptid zinciri için: - en düşük enerjili - en kararlı - en dayanıklı yapı -Heliks (spontan oluşur) G = negatif H bağları, sayılarının çokluğu nedeniyle heliksin dayanıklılığını artırır Heliks zincirinin iç kısmında su molekülü yoktur

-Heliks Yapısında Stabilite Stabiliteyi artıran AAler Nötral AAler Stabiliteyi Azaltan AAler Yüklü/büyük yapılı AAler Stabiliteyi sonlandıran AAler GLY:küçük yapı ALA ASN ARG VAL PRO: Sert-yarı katı CYS GLN LYS LEU HIS MET GLU ILE PHE TRP ASP TYR SER /THR

Süper-sekonder Yapı Sarılmış Sarmal(Coiled Coil)Protein Ġki ya da daha çok -heliks zincirinin birbirlerine sarılması - Stabil, - Enerjetik olarak protein yapısına uygun

Beta kırmalı tabaka ( konfigürasyon) 2 5 polipeptid zincirinin paralel ya da antiparalel birleşmesiyle oluşur Zincirler, tabaka/levha halindedir R grupları tabaka düzleminin altında ya da üstünde yer alırlar

Beta kırmalı tabaka 7.0 A Polipeptid zinciri, gergin-gerilmiş durumdadır. AA Rezidü = 3.5 A Her AA, -kırmalı tabaka boyunca birbirinden 3.5 A uzaklıkta bulunur

Beta kırmalı tabaka HĠDROJEN BAĞLARI zincirler arasında oluşur Stabilite, sayılarının çokluğu nedeniyle, H bağları ile sağlanır

Beta bendler (kıvrım, dirsek) Proteinlerdeki -heliks ve -kırmalı tabaka yapıları, -bendler ile birbirine bağlanırlar -bendler, zincirin yönünü değiştirir( menteşe bölgeleri) -bendlerin varlığı, polipeptidlerin globüler kütleler oluşturmasını sağlar. -bend bölgelerindeki 1-4 AA artıkları arasında H bağları oluşur. Pro ve Gly sıklıkla bulunur

Tesadüfi kıvrılmalar ((Random coil) Proteinlerin, heliks, kırmalı tabaka veya -bend yapmayan bölgeleri, gelişi güzel helezonlar, kıvrılmalar şeklindedir. Düzlemler arasında belirli bir ilişki ve H bağları yoktur Biyolojik fonksiyon bakımından, diğer sekonder yapılarla aynı öneme sahiptir

3 -Tersiyer Yapı -Heliks / -kırmalı tabaka yapıları, üstüste katlanarak, sarılarak veya kendi etrafında kıvrılarak yuvarlak şekillerde Tersiyer Yapıyı elipsoid oluşturur

Tersiyer Yapı Primer yapıda birbirinden uzakta bulunan AAler, tersiyer yapıda komşu olabilirler Tersiyer yapı, proteinin fonksiyonel karakterini belirler Mevcut proteinlerin çok büyük kısmı tersiyer yapıya sahiptir

Polipeptid zincirinin katlanarak tersiyer yapıyı oluşturması Albumin: -kırmalı tabaka 200 x 0.5 nm Albumin: -heliks 90 x 1.1 nm Albumin:Tersiyer yapı (gerçek yapı) 13 x 3 nm

Tersiyer yapıyı oluşturan bağlar Hidrojen bağları (12-30 kj/mol) Disülfid bağları ( 460 kj/mol) İyonik (tuz) bağlar (20 kj/mol) (elektrostatik etkileşimler) nonpolar etkileşimler (<40 kj/mol) van der Waals bağları (0.4-4 kj/mol)

Polipeptid zincirin hücre içinde (sulu ortamda ) katlanması çok hızlıdır? dakikalar minutes primer 100 nm x 0.5 nm, ~ 200 nm 2 Su molekülleri tersiyer 3.45 nm ~ 37 nm 2 Çok sayıda hidrojen bağı

Elektrostatik Etkileşimler (Ġyonik Bağlar) R O C O H 3 N R q 1 q F = 2 r 2 D Yan zincirde bulunan ve zıt elektrik yükü taşıyan gruplar (asidik ve bazik amino asitler ) arasında oluşan tuz bağları

Elektrostatik Etkileşimler (Ġyonik Bağlar) G = negatif

Nonpolar yan zincirli AA ler, tersiyer yapının iç kısmında bulunurlar ve su ile temas etmezler Ala Ala O Asp C C H Val C H C H H H O Ala H H van der Waals ve nonpolar etkileşimler

Nonpolar etkileşimler: Nonpolar yan zincirler arasında van der Waals bağları: Birbirine yakın iki atom arasında Birbirine yaklaşan 2 nötr atomun etrafındaki e - bulutları bir diğerini etkiler zıt elektrik dipolü

van der Waals etkileşimi: Zıt dipollerin birbirini çekerek nükleusları yaklaştırması Nükleuslar yaklaşırken, atomların kendi e - bulutları birbirini iter Çekim ve itim gücü dengelenir 2 nükleus daha fazla yaklaşamaz

Tersiyer yapıyı oluşturan bağlar -

4 - Kuarterner Yapı Primer, sekonder ve tersiyer yapıları bulunan polipeptid zincirlerinin nonkovalent bağlarla bir arada tutulması Proteinlerin polimerizasyonu Protein-protein kompleksi: OLİGOMER

Oligomer multimer monomer protomer subünite kuarterner yapıda protein oligomeri oluşturan polipeptidlerin her biri dimer 2 polipeptid içeren oligomer homodimer aynı 2 polipeptid heterodimer farklı 2 polipeptid tetramer 4 polipeptid içeren oligomer (homo- veya hetero-)

Kuarterner Yapıda Protein Ör: Hemoglobin zincir modeli dış görünüş modeli Hem 4 Globin Zinciri (tetramer) protein-protein bağlanma bölgesi

aynı 2 alfa globin zinciri Hb i oluşturmak üzere globin kompleksi bağlanır aynı 2 beta globin zinciri 2 2 -Tetramer

Kuarterner Yapıyı Oluşturan Bağlar 4 monomer Protein-Protein kompleksi Non-kovalent bağlar hidrojen bağları iyonik bağlar Hidrofobik etkileşimler

PROTEĠNLERĠN FĠZĠKSEL VE KĠMYASAL ÖZELLĠKLERĠ Proteinlerin Ġyonizasyonu Asidik ve bazik AAler nedeniyle, AMFOTERĠK Asidik ph Net yük OH- OH - ph = pi Net yük 0 Tüm özellikler minimal seviyede Proteinler presipite edilebilir Bazik ph Net yük -

Proteinlerin Titrasyon Eğrileri 3 ph bölgesinde incelenebilir ph 1.5-6.0 : Karboksil ( -COOH, R- COOH) ph 6.0-8.5 : Histidin ve -NH 3 grubu ph 8.5 : Lys de -NH 3 grubu Tyr de fenolik OH grubu Cys de SH grubu Arg de guanido grubu Proteinler fizyolojik şartlarda tamponlayıcı özelliğini His (imidazol) ile gösterir

Proteinlerin Titre edilebilen Grupları grup pk ph 7 de yük - COOH 3.5-4.0 - R - COOH 4.0-4.8 - - NH 3 8.0-9.0 İmidazol 6.5-7.4 0 Guanido 12 Tiyol 8.5-9.0 0 Fenol 9.5-10.5 0

DENATURASYON Proteinlerin primer yapısı değişmez (peptid bağları mevcut) Diğer yapılar bozulur(nonkovalent bağlar kopar) Biyolojik aktivite kaybolur Kuarterner Yapıda denaturasyon: Subüniteler birbirinden ayrılır Subünitelerin tersiyer yapıları bozulur, tesadüfü kıvrılmalar, bükülmeler meydana gelir

Denaturasyona neden olan faktörler 50-60º C nin üstünde sıcaklık ph 4 ve ph 10 ; asitler, bazlar Alkol, aseton, eter gibi organik çözücüler Üre, guanidin HCl, vb kaotropik maddeler (H bağları kopar) Ağır metaller u.v. fiziksel etkenler İyonik deterjanlar (SDS) RENATURASYON: Reversibl Denaturasyon Biyolojik aktivitenin yeniden kazanılması KOAGÜLASYON: Ġrreversibl Denaturasyon