SÜRTÜNME KAYNAK MAKİNASI OTOMATİK KUMANDA DEVRESİ TASARIMI VE UYGULAMASI

Benzer belgeler
PLC KONTROLLÜ SÜRTÜNME KAYNAK CİHAZI TASARIMI VE UYGULAMASI

Elektromekanik Kumanda Sistemleri / Ders Notları

ASENKRON MOTORLARI FRENLEME METODLARI

AA Motorlarında Yol Verme, Motor Seçimi Yrd. Doç. Dr. Aytaç Gören

Elektrik. Alternatif Akım Motorlarının Kumanda Teknikleri Kumanda Elemanları

ELEKTRİK MAKİNALARI VE KUMANDA 4.1.ASENKRON MOTORLARA DİREKT YOL VERME VE DEVRE ŞEMALARI

6. ENVERSÖR PAKET ŞALTER

Elektrik Kumanda Devreleri Dersleri. Tablo 1.1: Kumanda Devre Sembolleri

SIEMENS LOGO KULLANIMI VE UYGULAMALAR

3 Fazlı Motorların Güçlerinin PLC ile Kontrolü. Doç. Dr. Ramazan BAYINDIR

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

5.Butonlar. Resim 1: Değişik yapıdaki buton resimleri. Tablo 1 Tahrik türleri ve sembolleri. Şekil 3 Çok tahrikli üniteler

formülü zamanı da içerdiği zaman alttaki gibi değişecektir.

BİR SÜRTÜNME KAYNAK MAKİNESİ İÇİN PIC KONTROLLÜ KONTROL ÜNİTESİNİN TASARIM VE UYGULAMASI

CETP KOMPOZİTLERİN DELİNMELERİNDEKİ İTME KUVVETİNİN ANFIS İLE MODELLENMESİ MURAT KOYUNBAKAN ALİ ÜNÜVAR OKAN DEMİR

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

ÜÇ FAZLI ASENKRON MOTORLARA BUTON VE KONTAKTÖRLE YOL VERME

KAYNAK UYGULAMASI DİFÜZYON KAYNAĞI

BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ

= σ ε = Elastiklik sınırı: Elastik şekil değişiminin görüldüğü en yüksek gerilme değerine denir.

JOMINY DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ

KUMANDA DEVRELERİ Örnek 1: Stop öncelikli Start Stop Devresi (Klasik Mühürleme Devresi):

SÜRTÜNME KAYNAĞIYLA BİRLEŞTİRİLMİŞ AISI 1040/DUPLEX PASLANMAZ ÇELİK ÇİFTİNDE SÜRTÜNME SÜRESİNİN MİKROYAPI VE MEKANİK ÖZELLİKLERİNE ETKİSİ

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

KILAVUZ. Perçin Makineleri KILAVUZ

SÜRTÜNME KARIŞTIRMA KAYNAĞI İLE BİRLEŞTİRİLMİŞ ALÜMİNYUM ALAŞIMLARININ MEKANİK ÖZELLİKLERİNİN İSTATİSTİKSEL OLARAK İNCELENMESİ

Sürtünme Kaynak Makinasında Kaynak Parametrelerinin Kapabiliteye Etkisinin İncelenmesi

Burma deneyinin çekme deneyi kadar geniş bir kullanım alanı yoktur ve çekme deneyi kadar standartlaştırılmamış bir deneydir. Uygulamada malzemelerin

PLASTİK ŞEKİLLENDİRME YÖNTEMLERİ

TEKNOLOJİK ARAŞTIRMALAR

LABORATUVAR TİPİ BASINÇLI HAVA BESLEMELI SÜRTÜNME KAYNAK TESİSATI GELİŞTİRİLMESİ ÜZERİNE BİR ÇALIŞMA

SERVO KONTROLLÜ PLASTİK ENJEKSİYON MAKİNASI TASARIMI

PLC kontrollü sürekli tahrikli sürtünme kaynak makinesinin tasarım ve imalatı

TERMOPLASTİK POLİMERLERİN SÜRTÜNME KARIŞTIRMA NOKTA KAYNAĞINA BAKALİT ARA TABAKA TOZUNUN ETKİSİ

ASENKRON MOTORLARA YOL VERME METODLARI

DİŞLİ ÇARKLAR II: HESAPLAMA

TAHRİBATLI MALZEME MUAYENESİ DENEYİ

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİKFAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI

BÖLÜM 1. ASENKRON MOTORLAR

Basınç deneyi sonrası numunelerdeki uygun kırılma şekilleri:

ÇİVİ MAKİNASI TEKNİK ÖZELLİKLERİ

İmal Usulleri. Fatih ALİBEYOĞLU -8-

TEKNOLOJİK ARAŞTIRMALAR

Kesit Tesirleri Tekil Kuvvetler

3 FAZLI ASENKRON MOTORLAR

MAK-LAB017 HİDROLİK SERVO MEKANİZMALAR DENEYİ 1. DENEYİN AMACI 2. HİDROLİK SİSTEMLERDE KULLANILAN ENERJİ TÜRÜ

YAYLAR. Bu sunu farklı kaynaklardan derlenmiştir.

ÇİVİ MAKİNASI TEKNİK ÖZELLİKLERİ

MOTOR KORUMA RÖLELERİ. Motorların şebekeden aşırı akım çekme nedenleri

ELEKTRİK MAKİNELERİ (MEP 112) (ELP211) Yazar: Yrd. Doç. Dr. Mustafa Turan S1

OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR


Hidrostatik Güç İletimi. Vedat Temiz

ZTM 431 HİDROLİK VE PNÖMATİK SİSTEMLER Prof. Dr. Metin Güner

SEMBOL OKUMA TEKNİĞİ

UYGULAMA 1 24V START CPU V LO. Verilen PLC bağlantısına göre; START butonuna basıldığında Q0.0 çıkışını aktif yapan PLC programını yazınız.

MAKİNE MÜHENDİSLİĞİNE GİRİŞ Ders 4

İleri Teknoloji Bilimleri Dergisi Journal of Advanced Technology Sciences ISSN:

14. ÜNİTE GERİLİM DÜŞÜMÜ

CALLİSTER FAZ DÖNÜŞÜMLERİ

KOCAELİ TEKNİK LİSESİ ELEKTRİK ELEKTRONİK BÖLÜMÜ OTOMASYON ATÖLYESİ EKTS (Elektrik Kumanda Teknikleri Simülatörü ) DERS NOTU. Kaynak :

Dr. F. Can Akbaşoğlu, Serhat Adışen, Uğur Gürol, Eylem Subaşı (Akmetal) Prof. Dr. S. Can Kurnaz (Sakarya Üni.)

Nida Katı Sermin Ozan Fırat University, Elazığ-Turkey

HOŞGELDİNİZ MIG-MAG GAZALTI KAYNAK PARAMETRELERİ. K ayna K. Sakarya Üniversitesi Teknik Eğitim Fakültesi. Teknolojisi. Teknolojisi

4 SİLİNDİR BENZİNLİ MOTOR COK-G.ENRJ.005

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü

DOĞAL KURŞUN METALİK KURŞUN PLAKALAR

DİŞLİ ÇARKLAR I: GİRİŞ

Kovan. Alüminyum ekstrüzyon sisteminin şematik gösterimi

1.CİHAZ ÖLÇÜLERİ 2.CİHAZ BAĞLANTI ŞEMASI

PROSES KONTROL DENEY FÖYÜ

Malzemelerin Mekanik Özellikleri

Sürtünme Kaynaklı Bakır ve AISI 1040 Çeliğinin Mekanik ve Mikroyapı Özelliklerinin İncelenmesi

ÇELİK YAPILARDA BİRLEŞİM ARAÇLARI

BİLGİSAYAR DESTEKLİ TASARIM VE ANALİZ (ANSYS)

2 MALZEME ÖZELLİKLERİ

YENİLENEBİLİR ENERJİ KAYNAKLARI RÜZGAR ENERJİSİ SİSTEMLERİ Eğitim Merkezi Projesi

BURSA TECHNICAL UNIVERSITY (BTU) 2 DİŞLİ ÇARKLAR I: GİRİŞ

YORULMA HASARLARI Y r o u r l u m a ne n dir i?

Faz dönüşümünün gelişmesi, çekirdeklenme ve büyüme olarak adlandırılan iki farklı safhada meydana gelir.

19 (4), , (4), , 2007

İÇİNDEKİLER ÖNSÖZ Bölüm 1 DAİRESEL HAREKET Bölüm 2 İŞ, GÜÇ, ENERJİ ve MOMENTUM

MMT310 Malzemelerin Mekanik Davranışı Mukavemet ve deformasyon özelliklerinin belirlenmesi - Sürünme, eğme ve burma deneyleri

SpeedMIG. Sinerjik Kaynak Makineleri Serisi! MIG/ MAG

PROGRAMLANABİLİR LOJİK DENETLEYİCİ İLE DENEYSEL ENDÜSTRİYEL SİSTEMİN KONTROLÜ

(Mekanik Sistemlerde PID Kontrol Uygulaması - 3) HAVA KÜTLE AKIŞ SİSTEMLERİNDE PID İLE SICAKLIK KONTROLÜ. DENEY SORUMLUSU Arş.Gör.

ASİSTAN ARŞ. GÖR. GÜL DAYAN

METAL KAYNAĞI METALİK MALZEMELERİ,

İngiliz Bilim Müzesinde gösterimde olan orijinal AC Tesla İndüksiyon Motorlarından biri.

Prof. Dr. HÜSEYİN UZUN KAYNAK KABİLİYETİ

SÜLEYMAN DEMİ REL ÜNİ VERSİ TESİ MÜHENDİ SLİ K-Mİ MARLIK FAKÜLTESİ MAKİ NA MÜHENDİ SLİĞİ BÖLÜMÜ MEKANİK LABORATUARI DENEY RAPORU

MALZEMELERİN MUKAVEMETİNİ ARTIRICI İŞLEMLER

PASLANMAZ ÇELİK BORU DİREKLERİN İMALİNE AİT TEKNİK ŞARTNAME 1. GENEL

HİDROLİK TAHRİKLİ KABLO KILAVUZU İTME-ÇEKME-SARMA MAKİNESİ

ELEKTRİK GRUBU ELEKTRİK MAKİNELERİ EĞİTİM SETİ ELECTRICAL MACHINERY TRAINING SET

ROAD BLOCKER TEKNİK KLAVUZU

ELEKTRİK MOTORLARI VE SÜRÜCÜLER ELEKTRİK MOTORLARINDA DENETİM PRENSİPLERİ

ÇÖKELME SERTLEŞTİRMESİ

Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması

BSE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates And Logic Circuits)

Transkript:

PMUKKLE ÜNİVERSİTESİ MÜHENDİ SLİK FKÜLTESİ PMUKKLE UNIVERSITY ENGINEERING COLLEGE MÜHENDİSLİK BİLİMLERİ DERGİSİ JOURNL OF ENGINEERING SCIENCES YIL CİLT SYI SYF : 3 : 9 : 2 : 201-206 SÜRTÜNME KYNK MKİNSI OTOMTİK KUMND DEVRESİ TSRIMI VE UYGULMSI Hakan TEŞ*, Ramazan BYINDIR** *Gazi Üniversitesi, Teknik Eğitim Fakültesi, Metalurji Eğitimi Bölümü, Teknikokullar/nkara **Gazi Üniversitesi, Teknik Eğitim Fakültesi, Elektrik Eğitimi Bölümü, Teknikokullar/nkara Geliş Tarihi : 09.05.2 ÖZET Bu çalışmada laboratuar boyutlu sürtünme kaynak cihazının otomatik olarak kumanda edilebilmesi araştırılmıştır. Laboratuar boyutlarında geliştirilmiş olan sürtünme kaynak cihazı tahrik motoru, fren, dönen ve sabit parça aynaları ile hidrolik ünite gibi ana elemanlardan oluşmaktadır. Sürtünme süresi, sürtünme basıncı, yığma süresi ve yığma basıncı gibi kaynak parametreleri kullanılan zaman röleleri ve kontaktörler yardımıyla otomatik olarak hassas bir şekilde uygulanmıştır. Yapılan çalışma sonunda otomatik kontrollü kumanda devresinin başarı ile çalıştığı sürtünme kaynaklı birleştirme sonuçlarından da görülmüştür. nahtar Kelimeler : Sürtünme kaynağı, Düşük karbonlu çelik, Otomatik kontrol FRICTION - WELDING MCHINE UTOMTIC CONTROL CIRCUIT DESIGN ND PPLICTION BSTRCT In this work, automatic controllability of a laboratory-sized friction-welding machine has been investigated. The laboratory-sized friction-welding machine was composed of motor, brake, rotary and constant samples late pliers, and hydraulic unit. In automatic method, welding parameters such as friction time, friction pressure, forge time and forge pressure can be applied sensitively using time relays and contactors. t the end of the experimental study it s observed that automatic control system has been worked successfully. Key Words : Friction welding, Low alloy steel, utomatic control 1. GİRİŞ Genel anlamda eksenel simetriye sahip parçaların kaynaklanmasında kullanılan sürtünme kaynağı gelişen teknolojiye ve malzeme özelliklerinin korunması ilkesine dayalı olarak son zamanlarda artan bir kullanım alanına sahiptir. Otomatik kontrol imkanlarının gelişmesi ile daire kesitli olmayan parçaların birleştirilmelerinde de kullanılmaktadır. İleri teknolojiye sahip ülkelerde bilgisayar ve değişik kumanda sistemleri ile sürtünme kaynak parametreleri çok hassas bir şekilde uygulanmaktadır. Böylece sürtünme kaynaklı birleştirmeler tasarım, mekanik ve mikro yapı özellikleri bakımından istenilen özelliklere daha uygun olarak gerçekleştirilmektedir (Grewe, 1997). Sürtünme kaynağı, birleştirilecek parçalarının ara yüzeylerinde mekanik olarak oluşturulan sürtünme ile üretilen mekanik enerjinin ısı enerjisine dönüşmesiyle yapılan bir katı hal kaynak tekniğidir (Sluzalec, 1990; Sluzalec and Sluzalec, 1993). Mekanik enerjinin ısı enerjisine dönüşmesi ile malzeme ve enerjiden tasarruf sağlamakta mümkündür. Şekil 1 de basit bir sürtünme kaynak makinesi donanım şeması verilmiştir. Şekil üzerine deneysel çalışmada kullanılacak semboller ilave edilmiştir. 201

Döndürülen iş parçası aynası Sabit iş parçası aynası Tahrik Motoru () Kasnak kayış sistemi Küçük Silindir (M2) Hidrolik Silindir () İş Parçası Büyük Silindir (M1) (M1I) (M1G) (M2I) (M2G) : Hidrolik motoru kontaktörünü; M1I : Büyük silindir ileri sürme kontaktörünü; M1G: Büyük silindir geri çekme kontaktörünü; M2I: Küçük silindir ileri sürme kontaktörünü ; M2G : Küçük silindir geri çekme kontaktörünü; : Tahrik motoru kontaktörünü Şekil 1. Basit bir sürtünme kaynak makinesi donanımı Sürekli tahrikli, volan tahrikli ve kombine yöntemler olmak üzere sürtünme kaynağı üç değişik şekilde kullanılmaktadır. Direk sürtünme kaynağı olarak da bilinen sürekli tahrikli sürtünme kaynağı tekniğinde, gerekli olan enerji sürekli bir tahrik grubu tarafından sağlanır. Parçalardan biri enerji kaynağı olan motor ünitesine bağlı iken önceden belirlenen sabit bir hızda döndürülür, diğer parça eksenel bir basınçla temas ettirilir. Yeterli derecede ısı girdisi sağlandığında dönme frenleme ile mümkün olan en kısa sürede durdurulur. Uygulanan kaynak kuvveti yığma yapmak amacıyla artırılır ve daha sonra numune soğumaya bırakılır. Sürekli tahrikli sürtünme kaynağı vrupa'da yaygın olarak kullanılmaktadır (non., 1993; teş ve ark., 1999). Sürekli tahrikli sürtünme kaynağı özellikleri Şekil 2 de görülmektedir (Spindler, 1994). Burada dönme hızı ve eksenel basınç zamanın fonksiyonu olarak görülmektedir. Durdurma için gerekli zaman önemli bir değişkendir. Çünkü kaynak sıcaklığı ve yığma kuvvetinin zamanlaması bununla belirlenmektedir. Volan tahrikli (atalet) sürtünme kaynağında parçalardan biri volana bağlanır ve diğer parça sabit tutulur. Kaynak bölgesine enerji girişini volan kontrol eder. Burada volanın atalet momenti önemli bir değişkendir. Volanda biriktirilen enerji miktarı volanın hızı ile kontrol edilir. Volan önceden belirlenen dönme hızında döndürülür ve gerekli enerji volan üzerinde depolanır. Motor serbest bırakılarak dönen volan kütlesi ayrılır ve eksenel olarak uygulanan sürtünme kaynak kuvveti ile parçalar bir araya getirilir. Bu arada parçaların birbirlerini frenlemesiyle yük iş parçalarına iletilmiş olur. Numuneler basınç altında sürtünmeye başlar. Dönen volandaki depo edilmiş kinetik enerji, kaynak ara yüzeylerinde sürtünme vasıtasıyla ısı olarak dağılır ve volanın hızı düşer. Dönme durdurulduktan veya kısmen yavaşladıktan sonra yığma kuvveti uygulanır. Yığma kuvveti önceden belirlenen bir süre boyunca uygulanır (non., 1993; teş ve ark., 1999). Bu teknik özellikle.b.d de uzay ve uçak sanayiinde kullanılmıştır. Volan tahrikli sürtünme kaynak özellikleri Şekil 3 de verilmiştir (Spindler, 1994). Şekil 3. Volan tahrikli sürtünme kaynak özellikleri Şekil 2. Sürekli tahrikli sürtünme kaynak özellikleri Kombine kaynak yöntemi ise direk sürtünme kaynağı ile atalet kaynağının ortaklaşa kullanıldığı Mühendislik Bilimleri Dergisi 3 9 (2) 201-206 202 Journal of Engineering Sciences 3 9 (2) 201-206

bir metottur. Büyük boyutlu parçaların birleştirilmesinde kullanılır. Kombine kaynak işlemiyle mükemmel kalitede katı hal birleştirmeleri elde edilir. yrıca yeni gelişmelerle bilgisayarla kumanda edilebilen radyal, yörüngesel titreşimli, köşeli karşılıklı hareket eden, doğrusal karşılıklı hareket eden sürtünme kaynağı ve sürtünerek yüzey işleme yöntemleri göze çarpmaktadır. Bu çalışmada laboratuar boyutlarında imal edilen sürtünme kaynak makinesinin otomatik kumanda edilmesi sağlanacaktır. Elde edilen sistemle düşük karbonlu çelik malzeme birleştirilecek ve çekme mukavemetleri ile sertlik değerleri belirlenecektir. 2. DENEYSEL ÇLIŞM 2. 1. Sistemin Otomatik Kumanda ile Çalıştırılması Bütün endüstri dallarında temel amaç, otomasyonu sağlayarak üretimi artırmak ve maliyeti düşürmektir. Otomatik kumanda sistemlerinin tasarımı, çalıştırılması ve bağlantısının yapılabilmesi için öncelikle tasarımı yapılacak sistemin şemasının çizilmesi gerekir. Devre şemaları genel olarak iki bölümde çizilir. Kumanda devre şeması Güç devre şeması Bu çalışmada sistemin tek hat kumanda şeması çizilerek en basit şekilde elektriksel devre verilmiştir. Pratikte tek hat kumanda şemaları kumanda şeması olarak ifade edilir. Bu devrelerde elemanlar gerçek fiziksel boyutlarında gösterilmezler, bunun yerine elemanları temsil eden uluslararası semboller ile ifade edilir (lerich, 1988). Devrede kullanılacak elemanların sembolleri iki dikey çizgi arasına yerleştirilir ve devrenin çalışmasına uygun olarak bağlantısı yapılır. Bu çizgiler kumanda devresinin besleme geriliminin verildiği hattı ifade etmektedir. Kumanda şemaları devrenin kontrol ve bakımında, arıza yerinin bulunmasında en önemli yardımcıdır. Bu çalışmada Kumanda devresi bir faz 220 volt alternatif akım ile beslendiği için bu hatlardan biri faz (R), iken diğeri nötr (Mp) olarak ifade edilmiştir (Türkmen ve Gençtan, 1998). Kumanda şemasındaki genel uygulamada da besleme gerilimi 220 volt alternatif gerilim olarak seçilir. Kumanda devresinin tüm özellikleri kumanda şeması üzerinde görülebilir. Güç devre şeması, güç devresindeki motorun yol verme ve devrenin özelliklerine uygun olarak çizilir. Güç devresinin tüm özellikleri güç devre şeması üzerinde görülebilir. Kullanılan motorun etiket değerlerine göre güç devresi bir fazlı veya üç fazlı olarak çizilebilir. Güç devresinin üç fazlı veya bir fazlı olmasının elektriki olarak kumanda devresi üzerinde herhangi bir etkisi yoktur. Sadece kumanda devresinde kullanılan elemanların fiziksel büyüklükleri değişir. 2. 2. Sisteme it Kumanda Devre Şeması Sistemin otomatik olarak çalıştırılmasına ait kumanda devre şeması Şekil 4 de verilmiştir. M2 ileri ve M2 geri butonları küçük silindiri ileri ve geri hareket ettirmektedir. Böylece kaynak yapılacak parça makineye istenildiği zaman bu butonlar yardımıyla takılıp çıkarılabilmektedir. M2 ileri manual olarak parçayı bıraktırmaya, M2 geri parçayı takmaya yaramaktadır. M2 ileriye basıldığında kontaktörü enerjilenmektedir. çık kontaklar kapanmakta, kapalı kontaklar açılmaktadır. nın kapanan kontakları üzerinden M2I kontaktörü enerjilenmektedir. nın kapalı kontakları açılarak, devredeki diğer elemanların enerjilenmesini önlemektedir. M2 geriye basıldığında M2G kontaktörü enerjilenmektedir. Böylece parça makineye takılmaktadır. R Stop M2 ileri M2 geri Start ZR5 ZR1 M2I M1G Şekil 4. Kumanda devre şeması ZR1 M1I M2I MIG ZR5 M2G Mp Mühendislik Bilimleri Dergisi 3 9 (2) 201-206 203 Journal of Engineering Sciences 3 9 (2) 201-206

Parçayı makineye taktıktan sonra sistem start butonuna basılarak çalıştırıldığında, hidrolik motoru ve aynı anda ZR1 ve çalışmaktadır. M1I yardımıyla büyük silindir ileri hareket etmektedir. kontaktörü yardımıyla motor dönmeye başlamıştır. yarlanan süre sonunda ZR1 kontağını gecikme ile açıp (ZR1/) büyük silindirin ilerlemesini durdurmaktadır ve kaynak yapılacak iş parçaları kafa kafaya dönmeye başlamaktadır. Bir süre sonra kontağını açmakta ve durmaktadır. kontağını gecikme ile kapatıp, dinamik frenleme () devreye girmekte, aynı anda M1I ileri sürülerek ikinci yük uygulanmaktadır. gecikme ile kontağını açmakta, dinamik frenleme ve ek yük kalkmaktadır. gecikme ile kontağını kapatıp, (M2I) küçük silindir ileri sürmekte, parçayı bırakmaktadır. devreye girip kontağını açmaktadır. M2I devreden çıkıp, gecikme ile kontağını kapatmaktadır. Büyük silindir (M1G) yardımıyla geriye çekilmeye başlayıp geriye çekme işlemi tamamlandığında ZR5 yardımıyla sistem tamamen durdurulmaktadır. Sistemdeki kontaktör ve zaman rölelerinin çalışmasına ait akış diyagramı Şekil 5 de verilmiştir. kış diyagramında hangi elemanın ne zaman ve hangi sıra ile devreye girdiği ve çıktığı gözlenebilmektedir. M1G M2I ZR5 M1I ZR1 STRT t Şekil 5. Sistemin çalışmasına ait akış diyagramı 2. 3. Sisteme it Güç Devre Şeması Şekil 6 da sisteme ait güç devre şeması verilmiştir. Hidrolik motor üç faz, 1.5 kw; tahrik motoru ise 3 faz 7.5 kw dır. Motorları kontrol edebilmek amacıyla motorlara seri olarak kontaktörünün ve kontaktörünün kontakları seri olarak bağlanmıştır. R S T 15 kw 3 M 3 M 7.5 kw Hidrolik Motoru Tahrik Motoru Kontaktörler enerjilendiğinde kapanan kontaklar üzerinden motorlar enerjilenmekte, kontaktörlerin enerjisi kesildiğinde motorların çalışması durmaktadır. 2. 4. Sürtünme Kaynağı ve Testler Sürtünme kaynak işlemleri kimyasal bileşimi Tablo 1 de verilen düşük karbonlu çeliğe Tablo 2 de verilen kaynak parametreleri çerçevesinde gerçekleştirilmiştir. Burada yığma süresi ve yığma basıncı (t2=3 s, p2=25 Mpa) sabit olarak kullanılmıştır. Sürtünme kaynağıyla birleştirilen parçalara çekme ve sertlik testleri (HV) uygulanmıştır. Otomatik kumanda sistemiyle kaynaklanan numunelerin çekme deney sonuçları Şekil 7 ve 8 de ve sertlik deney sonuçları ise Şekiller 9-11 de grafik olarak verilmiştir. Elle kumanda edilerek elde edilen sürtünme kaynaklı numunelerin çekme deneyi ve sertlik test sonuçları otomatik sistemle elde edilen numunelerinkine büyük ölçüde benzerlik gösterdiğinden burada verilmemiştir. Şekil 6. Güç devre şeması Mühendislik Bilimleri Dergisi 3 9 (2) 201-206 204 Journal of Engineering Sciences 3 9 (2) 201-206

Tablo 1. Kaynaklanacak na Malzemenin Kimyasal Bileşimi Element C Cr Ni Mn Si Cu Fe %ğırlık 0.07 0.02 0.10 0.70 0.40 0.10 Kalan Tablo 2. Birleştirme İşlemlerinde Kullanılan Kaynak Parametreleri Numune Sürtünmesüresi (s) Sürtünme basıncı (Mpa) 1 5 15 2 5 20 3 5 25 4 5 30 5 5 35 6 5 40 7 3 30 8 8 30 3. DENEY SONUÇ VE İRDELEMESİ Deneysel çalışma bölümünde çalışma şekli açıklanan otomatik kumanda sistemiyle yapılan sürtünme kaynaklı birleştirme işlemleri sonunda elde edilen numunelerin çekme dayanımı ve sertlik değerleri grafik haline getirilerek Şekiller 7-11 de sunulmuştur. Elde edilen eğrilerin denklemleri de daha sonraki çalışmalara temel olması için verilmiştir. Şekil 7-8 incelendiğinde birleştirmenin çekme dayanımı sürtünme süresi ve sürtünme basıncının artması ile birlikte artmaktadır. yrıca sürtünme kaynaklı birleştirmelerin çekme dayanımları birleştirme yapılmaksızın hazırlanan numunelerle de yakınlık gösterdiği literatürden anlaşılmaktadır (non., 1985). Elle ve otomatik kumanda sistemleriyle sürtünme kaynaklanan numunelerin en iyi kaynak parametrelerinin (t1=5s, p1=30mpa) olduğu görülmektedir. Bu en ideal değer aşıldığında numunelerin çekme dayanımlarının düştüğü grafikten de görülmektedir. İdeal kaynak parametrelerinin üzerinde numunelerin aşırı ısınmalarından dolayı çapak yükseklikleri ve boyca kısalmalarının da artmakta olduğu deneylerde gözlenmiştir. Çekme Dayanımı (Mpa) 700 650 600 550 500 450 400 350 300 250 150 100 y = 0,0005x 5-0,076x 4 + 4,28x 3-119,9x 2 + 1689,7x - 9070 0 5 10 15 20 25 30 35 40 45 Sürtünme Basıncı (Mpa) Şekil 7. Sürtünme kaynaklı birleştirmede sürtünme basıncının çekme dayanımına etkisi Çekme Dayanımı (Mpa) 750 700 650 600 550 500 450 400 350 300 250 150 100 y = -41,667x 2 + 518,33x - 880 0 1 2 3 4 5 6 7 8 9 Sürtünme Süresi (sn) Şekil 8. Sürtünme kaynaklı birleştirmede sürtünme süresinin çekme dayanımına etkisi t1=5s ve p1=30mpa kaynak parametreleri altında birleştirilen bir sürtünme kaynaklı numunenin birleşme yüzeyinden uzaklıkla sertlik değerindeki değişimi gösteren grafik Şekil 9 da verilmiştir. Birleşme yüzeyinden 0.1 mm mesafe ile alınan sertlik değerlerine bakıldığında mesafe arttıkça sertlikteki düşme açık bir şekilde görülmektedir. Sertlik (HV) 210 190 180 170 160 150 140 130 120 110 y = 3333,3x 3-1500x 2 + 16,667x + 0 0,1 0,2 0,3 0,4 Birleşme Yüzeyinden mesafe (mm) Şekil 9. t1=5s, p1=30mpa da elde edilen sürtünme kaynaklı birleştirmede sertlik dağılımı Şekil 9 incelendiğinde ısı tesiri altında kalan bölgedeki sertliklerde bir miktar artış olduğu görülmektedir. Özellikle kaynak ara yüzeyine doğru sertlikteki artış malzeme içerisindeki sert tane yapılarının artmasından kaynaklanmaktadır. Birleşme yüzeyleri etrafında sertlik artışı ise sürtünme ve yığma basınçlarının sebep olduğu plastik deformasyon sonucu olduğu söylenebilir. Çünkü alın alına gelen yüzeyler daha ısınma istenen düzeye gelmeden önce sürtünme basıncının etkisi ile bir miktar deformasyona uğrayacaktır. Benzer şekilde düşük sürtünme basıncı ve sürtünme sürelerinde yine ısınma düşükken yüksek yığma basınçlarından dolayı da deformasyon meydana gelebilir. Meydana gelen bu tip olaylar kaynaklanan numunelerin birleştirme bölgeleri etrafında sertlik değişikliklerine de sebep olabilmektedir (Bhole, 1991). Mühendislik Bilimleri Dergisi 3 9 (2) 201-206 205 Journal of Engineering Sciences 3 9 (2) 201-206

Şekil 10 ve Şekil 11 incelendiğinde sürtünme süresi ve sürtünme basıncının belirli bir değere kadar artmasıyla birlikte sertlikte artma, daha sonra ise bir miktar düşme açık bir şekilde görülmektedir. Kaynak parametrelerinin belli bir değere kadar artması ile numunelerin ısı girdisi de artmaktadır. Bu durumdan numunelerin soğuma hızları da etkilenerek sertliği de artmaktadır. Fazla yüksek parametrelerle çalışma durumlarında ise fazla ısınma numunelerin diğer bölgelerinin de bir miktar ısınmaları sağlayacağından soğuma hızlarını artırıcı yönde etki yapmayacak ve sertlikte artma olmayacaktır. Tane ebadı ve mikro yapıda meydana gelen değişikliklerin elde edilen sonuçlar üzerinde etkili olduğu düşünülmektedir. Optik mikroskop çalışmaları da tamamlandığında meydana gelen bu değişikliklerin mikro yapı bakımından sebepleri de daha net bir şekilde açıklanabilecektir. 4. SONUÇ 1. Otomatik kumanda ile çalıştırılan sürtünme kaynak cihazı laboratuar şartlarında çalışmıştır. 2. Yapılan çekme ve sertlik değerleri ana malzemenin çekme ve sertlik değerleri ile paralellik göstermektedir. 3. Kullanılan malzeme için en ideal kaynak parametreleri çalışmalarımızdan (t1=5 s, p1=30 Mpa) olarak anlaşılmıştır. 4. Yapılan çalışmanın otomatik kumandasının PLC (Programmable Logic Controller) ve PIC (Peripheral Interface Controller) tabanlı olarak uygulandığında daha hassas kontrol sağlanabileceği düşünülmek-tedir. 5.KYNKLR Sertlik (HV) 208 206 204 202 198 196 y = -1,2x 2 + 13,6x + 168 0 1 2 3 4 5 6 7 8 9 Sürtünme Süresi (sn) Şekil 10. Sürtünme kaynaklı birleştirmede sürtünme süresinin sertliğe etkisi Sertlik (HV) 210 205 195 190 185 180 175 y = 0,0001x 5-0,0144x 4 + 0,7507x 3-18,92x 2 + 232,37x - 934 0 5 10 15 20 25 30 35 40 45 Sürtünme Basıncı (Mpa) Şekil 11. Sürtünme kaynaklı birleştirmede sürtünme basıncının sertliğe etkisi Elde edilen sonuçlar göz önünde bulundurulduğunda, hazırlanan otomatik kontrollü sürtünme kaynak sisteminin benzer çalışmalar için uygun olabileceği söylenebilir. nonymous, 1985. Metals Handbook Mechanical Properties. nonymous, 1993. SM Handbook,, Welding, Brazing and Soldering, V. 6. lerich, W. N. 1988. Electric Motor Control, Delmar Publishers, New York. teş, H., Kurt,., Türker, M. Kasım 1999. Sürtünme Kaynağı, TMMOB Kaynak Teknolojisi II. Kongre ve Sergisi, nkara. Bhole, S.D. July 1991. Interface Properties in Friction Welding, 168s 170s, Welding Journal. Grewe, K, J. Sept. 1997. Friction Welding Takes on New pplication, p. 39-40, Welding Journal. Sluzalec.. 1990. Thermal Effects in Friction Welding, Vol. 32, No. 6, p. 467-478, Int. J. Mech. Sci. Sluzalec,., Sluzalec,. 1993. Solution of Thermal Problems in Friction Welding, Int. J. Heat Mass Transfer, V6, N6, p. 1583-1587. Spindler, D.E. March 1994. What Industry Needs To Know bout Friction Welding, Welding Journal, p. 34-42. Türkmen, Y., Gençtan, C. Ekim 1998. Kumanda Devreleri 1,Yeniyol Matbaası, İzmir. Mühendislik Bilimleri Dergisi 3 9 (2) 201-206 206 Journal of Engineering Sciences 3 9 (2) 201-206