Değişken Doğru Akım Zaman göre yönü değişmeyen ancak değeri değişen akımlara değişken doğru akım denir.

Benzer belgeler
Doğru Akım Devreleri

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

DENEY FÖYÜ 2: Doğru Akım ve Gerilimin Ölçülmesi

DENEY FÖYÜ 2: Doğru Akım ve Gerilimin Ölçülmesi

DENEY 1- LABORATUAR ELEMANLARININ TANITIMI VE DC AKIM, DC GERİLİM, DİRENÇ ÖLÇÜMLERİ VE OHM KANUNU

ELEKTRİK DEVRE TEMELLERİ DENEY FÖYÜ

DENEY 9: THEVENİN VE NORTON TEOREMİ UYGULAMALARI

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 1

KIRCHHOFF YASALARI VE WHEATSTONE(KELVİN) KÖPRÜSÜ

Şekil 1. R dirençli basit bir devre

Ölçme ve Devre Laboratuvarı Deney: 1

T.C. ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI I DENEY FÖYLERİ

13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ

OHM KANUNU DENEY 1 OHM KANUNU 1.1. DENEYİN AMACI

12. DC KÖPRÜLERİ ve UYGULAMALARI

DEVRE TEORİSİ VE ÖLÇME LAB DENEY-3 FÖYÜ

DENEY 9: THEVENİN VE NORTON TEOREMİ UYGULAMALARI

Breadboard: Elektrik devrelerinin üzerine kurulmasını sağlayan en temel deney ekipmanıdır.

ELEKTRİK DEVRELERİ UYGULAMALARI

DENEY NO: 7 OHM KANUNU

V R. Devre 1 i normal pozisyonuna getirin. Şalter (yukarı) N konumuna alınmış olmalıdır. Böylece devrede herhangi bir hata bulunmayacaktır.

DC Akım/Gerilim Ölçümü ve Ohm Yasası Deney 2

Osiloskop ve AC Akım Gerilim Ölçümü Deney 3

DENEY-4 WHEATSTONE KÖPRÜSÜ VE DÜĞÜM GERİLİMLERİ YÖNTEMİ

DENEY NO:6 DOĞRU AKIM ÖLÇME

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü

YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ Enerji Sistemleri Mühendisliği Bölümü ESM 413 Enerji Sistemleri Laboratuvarı-I

DENEY 2: TEMEL ELEKTRİK YASALARI-GERİLİM VE AKIM ÖLÇÜMLERİ

OHM KANUNU DĠRENÇLERĠN BAĞLANMASI

DENEY 0: TEMEL BİLGİLER

DENEY 2: TEMEL ELEKTRİK YASALARI (OHM, KİRCHOFF AKIM VE GERİLİM)

Şekil 1: Diyot sembol ve görünüşleri

Şekil 1: Zener diyot sembol ve görünüşleri. Zener akımı. Gerilim Regülasyonu. bölgesi. Şekil 2: Zener diyotun akım-gerilim karakteristiği

EEME210 ELEKTRONİK LABORATUARI

EEME 210 ELEKTRONİK LABORATUARI

Bir devrede dolaşan elektrik miktarı gibi elektriksel ifadelerin büyüklüğünü bize görsel olarak veren bazı aletler kullanırız.

T.C HİTİT ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DEVRE ANALİZİ 1 LAB. DENEY FÖYÜ. DENEY-1: TEMEL BİLGİLER ve KIRCHOFF YASALARI

TOPLAMSALLIK ve ÇARPIMSALLIK TEOREMLERİNİN İNCELENMESİ

DEVRE ANALİZİ LABORATUARI. DENEY 1 ve 2 İSTATİSTİK ÖRNEKLEME VE ÖLÇME HATALARI

ELEKTRİK DEVRELERİ-2 LABORATUVARI II. DENEY FÖYÜ

7. Hareketli (Analog) Ölçü Aletleri

DEVRE ANALİZİ LABORATUARI. DENEY 3 ve 4 SERİ, PARALEL VE KARIŞIK BAĞLI DİRENÇ DEVRELERİ

DĐRENÇ DEVRELERĐNDE KIRCHOFF UN GERĐLĐMLER ve AKIMLAR YASASI

: HEE 226 Temel Elektrik I Laboratuvarı. : Laboratuvar Elemanları Tanıtımı

DİRENÇ ELEMANLARI, 1-KAPILI DİRENÇ DEVRELERİ VE KIRCHHOFF UN GERİLİMLER YASASI

T.C HİTİT ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRONİK DEVRELER 1 LAB. DENEY FÖYÜ DENEY-1:DİYOT

ELEKTRONİK DEVRE ELEMANLARI

DENEY TARİHİ RAPOR TESLİM TARİHİ NOT

Elektrik Devre Temelleri 3

Uygulama kağıtları ve Kısa Sınav kağıtlarına; Ad, Soyad, Numara ve Grup No (Ör: B2-5) mutlaka yazılacak.

1.1. Deneyin Amacı Temel yarı iletken elemanlardan, diyot ve zener diyotun tanımlanması, test edilmesi ve bazı karakteristiklerinin incelenmesi.

DENEY-3 AKIM VE GERİLİM BÖLME KIRCHOFF AKIM VE GERİLİM KANUNLARININ İNCELENMESİ

DENEY 6: SERİ/PARALEL KARIŞIK DEVRELERİN ANALİZİ

7. ÜNİTE AKIM, GERİLİM VE DİRENÇ

DENEY DC GERİLİM ÖLÇÜMÜ DENEYİN AMACI

DENEY NO: 2 KIRCHHOFF UN AKIMLAR YASASI. Malzeme ve Cihaz Listesi:

DENEY 2. Şekil KL modülünü, KL ana ünitesi üzerine koyun ve a bloğunun konumunu belirleyin.

Bu deneyde lab cihazlarının kullanımı için 4 uygulama yapılacaktır.

Çözüm: Çözüm: Çözüm: Elektrik Ölçme Ders Notları-Ş.Kuşdoğan&E.Kandemir Beşer 16

Ölçü Aletlerinin Tanıtılması

DENEY 5 ÖN HAZIRLIK RAPORU

6. DİRENÇ ÖLÇME YÖNTEMLERİ VE WHEATSTONE KÖPRÜSÜ

DENEY FÖYÜ 5: THEVENİN VE NORTON TEOREMLERİNİN İNCELENMESİ

R 1 R 2 R L R 3 R 4. Şekil 1

ÖLÇME VE DEVRE LABORATUVARI DENEY: 6. --Thevenin Eşdeğer Devresi--

K.T.Ü Elektrik-Elektronik Müh.Böl. Temel Elektrik Laboratuarı II

DENEY 1 DİYOT KARAKTERİSTİKLERİ

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI

Bölüm 4 Doğru Akım Devreleri. Prof. Dr. Bahadır BOYACIOĞLU

DENEY 1: MULTİMETRE VE TEMEL ÖLÇÜMLER

Bölüm 1 Temel Ölçümler

DENEY 1: DĠRENÇLERĠN SERĠ/PARALEL/KARIġIK BAĞLANMASI VE AKIM, GERĠLĠM ÖLÇÜLMESĠ

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

DENEY 7: GÖZ ANALİZİ METODU UYGULAMALARI

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI

4. 8 adet breadboard kablosu, 6 adet timsah kablo

DENEY-4 RL DEVRE ANALİZİ. Alternatif akım altında seri RL devresinin analizi ve deneysel olarak incelenmesi.

kdeney NO:1 OSİLASKOP VE MULTİMETRE İLE ÖLÇME 1) Osiloskop ile Periyot, Frekans ve Gerlim Ölçme

DENEY 1: SERİ VE PARALEL BAĞLI DİRENÇ ELEMANLARI

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ

Selçuk Üniversitesi Teknoloji Fakültesi Elektrik Elektronik Mühendisliği

4. Bölüm: Çift Jonksiyonlu Transistörler (BJT) Doç. Dr. Ersan KABALCI

ELEKTRİK AKIMI Elektrik Akım Şiddeti Bir İletkenin Direnci

Deney 3: Diyotlar ve Diyot Uygulamaları. Amaç: Araç ve Malzeme: Teori:

ELEKTRONİK LAB. 1. DENEY QUİZ ÇALIŞMA SORULARI

ELEKTRİK DEVRELERİ-2 LABORATUVARI IV. DENEY FÖYÜ

Akreditasyon Sertifikası Eki (Sayfa 1/5) Akreditasyon Kapsamı

Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=?

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ

Introduction to Circuit Analysis Laboratuarı 1.Deney Föyü

DENEY-1 ÖLÇÜ ALETLERİNİN İNCELENMESİ VE BREADBOARD KULLANIMI

Chapter 7. Elektrik Devreleri. Principles of Electric Circuits, Conventional Flow, 9 th ed. Floyd

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME

Elektrik Müh. Temelleri

DİRENÇLER, DİRENÇLERİN SERİ VE PARALEL BAĞLANMASI, OHM VE KIRCHOFF YASALARI

Dirençlerin değerleri ve toleransları renk kodu denilen iģaretleme ile belirlenir.

dq I = (1) dt OHM YASASI ve OHM YASASI İLE DİRENÇ ÖLÇÜMÜ

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 4

ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI-II DENEY RAPORU

Transkript:

DC AKIM ÖLÇMELERİ

Doğru Akım Doğru akım, zamana bağlı olarak yönü değişmeyen akıma denir. Kısa gösterimi DA (Doğru Akım) ya da İngilizce haliyle DC (Direct Current) şeklindedir. Doğru akımın yönü değişmese de şiddeti değişebilir. Buna göre doğru akım iki başlık altında incelenebilir. Düzgün Doğru Akım Zamana göre yönü de şiddeti de değişmeyen akıma düzgün doğru akım denir. Değişken Doğru Akım Zaman göre yönü değişmeyen ancak değeri değişen akımlara değişken doğru akım denir.

MULTİMETRE İLE GERİLİM, AKIM VE DİRENÇ ÖLÇÜMLERİ Elektrik akımının şiddetini ölçmeye yarayan aletlere Ampermetre, gerilimin şiddetini ölçmeye yarayan aletlere Voltmetre ve direnç ölçmeye yarayan aletlere Ohmmetre denir. Her bir büyüklüğü ölçmek için farklı alet kullanılabileceği gibi, bir aletle bu üç büyüklüğün ölçülmesi de mümkündür. Bu tür aletler, ölçtükleri büyüklüklerin birimlerinin baş harfleri (Amper Volt Ohm) yardımıyla AVO metre olarak adlandırılırlar. Gerilim, akım ve direnç ölçmenin yanında diyot testi, kapasite, transistör kazancı ve sıcaklık ölçme gibi ilave ölçümler de yapabilen ölçü aletlerine ise Multimetre adı verilir. Uygulamada el tipi ve masa tipi olmak üzere iki tip multimetre kullanılır. Hiçbir ölçü aleti ve hiçbir devre elemanı ideal (kayıpsız) olmadığı için, ölçü aletleri ile ölçülen değerler, teorik olarak hesaplanan değerlerden her zaman farklı olacaktır. Ancak, günümüzde çok yüksek doğruluğa sahip dijital (sayısal) multimetreler üretilmiştir ve bu aletlerle yapılan ölçümlerde alet hatası oldukça azaltılmıştır. Özellikle masa tipi multimetrelerin doğruluğu daha yüksektir.

AKIM ÖLÇME Doğru akım ölçme işlemi yapan bir ampermetenin kendi iç direnci oldukça küçüktür. İdeal ampermetrede sıfır olması gereken bu direnç ampermetenin sınıfına göre 1Ω dan daha küçüktür. Bu nedenle bir devre elemanın üzerinden geçen akım ölçülmek istendiğinde ampermetre o elemana SERİ bağlanmalıdır. Ampermetrenin Yükleme Etkisi Ampermetre devreye seri bağlandığında, ampermetrenin kendi iç direnci kadar seri bir direnç devre ilave edilmiş olur. Bu etkiye yükleme etkisi adı verilir.

Ödev:

Bir devre üzerinde birbirinden bağımsız iki nokta arasında bir gerilim varsa, bu iki nokta arasında elektrik akımı akacaktır. Bu akımı ölçebilmek için, multimetrenin doğal olarak akım yolu üzerine (Şekil de A noktası ile yük arasına veya B noktası ile yük arasına) yerleştirilmesi gerekir. Bu işleme seri bağlama denir. Ancak bu işlemden önce, multimetrenin uygun akım ölçme konumuna (A-mA veya µa) alınması gerekir. Şekil de elektrik akımını ölçebilmek için multimetrenin örnek kullanım şekli görülmektedir.

GERİLİM ÖLÇME Gerilim; tanım gereği bir devrede iki nokta arasındaki potansiyel farkı olduğuna göre, gerek DC ve gerekse AC gerilim ölçerken multimetre problarının birbirinden bağımsız olan bu noktalara temas ettirilmesi gerekir. Bu işleme paralel bağlama denir. Bir iletken üzerindeki tüm noktalar arasındaki potansiyel farkları yaklaşık sıfır olacağına göre, bu iletken üzerinde herhangi iki nokta arasındaki gerilimi ölçmek anlamsız olacaktır. Şekil de bir kaynak ve bir yükten (direnç veya empedans) oluşan en basit devre gösteriminde, multimetrenin A-B noktaları arasındaki gerilimi ölçmek için nasıl kullanılması gerektiği görülmektedir. Ancak ölçme işleminden önce multimetrenin mutlaka uygun gerilim ölçme konumuna (AC veya DC) alınması gerekir.

DİRENÇ ÖLÇME Direnç ölçme işleminin mümkün olan en az hatayla yapılabilmesi için, ölçülecek direncin değerine bağlı olarak farklı yöntemler uygulanır. Değeri 1 µω ile 1 Ω arasında olan dirençlerin değeri Thomson doğru akım köprüsü ile, değeri 1 Ω ile 1 MΩ arasında olan dirençlerin değeri multimetre veya Wheatstone doğru akım köprüsü ile, değeri 1 MΩ dan büyük olan dirençlerin değeri ise multimetre ile ölçülür. Pratikte kullanılan dirençlerin büyük çoğunluğu 1 Ω ile 1 MΩ arasındadır. Multimetre ile direnç ölçümü iki farklı şekilde yapılabilir. 1- Multimetrenin direnç ölçme konumu kullanılarak, 2- DC gerilim kaynağına bağlanan direncin akım ve gerilimini ölçtükten sonra Ohm kanununu uygulayarak. Birinci durumda (ohmmetre yöntemi), eğer ölçülen direnç bir devre üzerindeyse, ölçüm yapmadan önce, direncin en az bir bacağının devre ile bağlantısı kesilmelidir. Multimetre İle Doğrudan Direnç Ölçümü

İkinci durumda ise, direnç değerine ve kabul edilebilen hata sınırına bağlı olarak voltmetre-ampermetre veya ampermetrevoltmetre yöntemi kullanılabilir. Multimetrenin ampermetre olarak kullanılması durumunda iç direncinin çok küçük (0,1 Ω civarında) ve voltmetre olarak kullanılması durumunda ise çok büyük (10 MΩ civarında) olduğu bilinmektedir. Eğer en fazla %1 civarında oluşacak bir yöntem hatasına göz yumulursa, 1 Ω ile 100 KΩ aralığındaki direnç değerlerini ölçmek için şekil a daki ölçme devresi (voltmetre-ampermetre yöntemi), 10 Ω ile 1 MΩ arasındaki direnç değerlerini ölçmek içinse şekil b deki ölçme devresi (ampermetre-voltmetre yöntemi) kullanılmalıdır. Buradan anlaşılacağı gibi; 10 Ω ile 100 KΩ arasındaki direnç değerlerinin ölçümleri için her iki yöntem de kullanılabilir. Şekil a: Voltmetre ampermetre yöntemi ile direnç ölçümü Şekil b: Ampermetre voltmetre yöntemi ile direnç ölçümü

DİRENÇ RENK KODLARI

BREADBOARDLAR (PROTOBOARDLAR) Breadboardlar elektronik devre elemanlarından oluşan bir devrenin deneysel olarak kurulması için kullanılan yatay ve dikey iletken metal çubukların olduğu delikli bir araçtır. Genellikle iki tip breadboard mevcuttur. Aşağıdaki şekillerde, bu breadboardlar üzerindeki noktaların birbiriyle ne şekilde bağlı olduğu görülmektedir.

Deney-1 Direnç renk kodları tablosunu kullanarak, verilen dirençler içerisinden 1 Ω, 47 KΩ ve 470 KΩ değerlerindeki dirençleri tespit ediniz ve tolerans değerlerini hesaplayınız. Aynı dirençleri bu kez multimetrenin direnç ölçme konumunu kullanarak ölçünüz. Her bir direnç için mutlak ve bağıl hatayı hesaplayınız. Ohmmetre Yöntemi Teorik Direnç Değerleri (R ± Tolerans) R Mutlak Bağıl 1 Ω ±.. 47 KΩ ±.. 470 KΩ ±..

Deney-2 Şekil de görülen ölçüm devresini, R X = 1 Ω ve R = 150 Ω dirençlerini kullanarak protobord üzerinde kurunuz. Devreye 5 Volt DC gerilim uygulayınız. Multimetrelerden birini DC gerilim ölçme, diğerini ise uygun akım ölçme konumuna aldıktan sonra okuduğunuz gerilim ve akım değerlerini kullanarak R X değerini hesaplayınız. Aynı işlemleri R X = 47 KΩ ve 470 KΩ için tekrarlayınız. Her bir direnç için mutlak ve bağıl hatayı hesaplayınız. V-A Yöntemi Voltmetre ampermetre yöntemi ile direnç ölçümü Teorik Direnç Değerleri (R ± Tolerans) V I R Mutlak Bağıl 1 Ω ±.. Ω 47 KΩ ±.. KΩ 470 KΩ ±.. KΩ

Deney-3 Şekil de görülen ölçüm devresini, R X = 1 Ω ve R = 150 Ω dirençlerini kullanarak protobord üzerinde kurunuz. Devreye 5 Volt DC gerilim uygulayınız. Multimetrelerden birini DC gerilim ölçme, diğerini ise uygun akım ölçme konumuna aldıktan sonra okuduğunuz gerilim ve akım değerlerini kullanarak R X değerini hesaplayınız. Aynı işlemleri R X = 47 KΩ ve 470 KΩ için tekrarlayınız. Her bir direnç için mutlak ve bağıl hatayı hesaplayınız. A-V Yöntemi Ampermetre voltmetre yöntemi ile direnç ölçümü Teorik Direnç Değerleri (R ± Tolerans) V I R Mutlak Bağıl 1 Ω ±.. Ω 47 KΩ ±.. KΩ 470 KΩ ±.. KΩ

Sonuç Ohmmetre, V-A ve A-V yöntemleriyle hesaplanan direnç değerlerini teorik değerler ile karşılaştırarak yöntemleri yorumlayınız. Ohmmetre Yöntemi V-A Yöntemi A-V Yöntemi Teorik Direnç Değerleri (R ± Tolerans) R Mutlak Bağıl V I R Mutlak Bağıl V I R Mutlak Bağıl 1 Ω ±.. Ω 47 KΩ ±.. KΩ 470 KΩ ±.. KΩ