BÖLÜM 3 BUHARLAŞMA. Bu kayıpların belirlenmesi özellikle kurak mevsimlerde hidrolojik bakımdan büyük önem taşır.



Benzer belgeler
SU MÜHENDİSLİĞİNE GİRİŞ YRD. DOÇ. DR. FATİH TOSUNOĞLU

HİDROLOJİ. Buharlaşma. Yr. Doç. Dr. Mehmet B. Ercan. İnönü Üniversitesi İnşaat Mühendisliği Bölümü

Bahar. Hidroloji. Yrd. Doç. Dr. Burhan ÜNAL. Yrd. Doç. Dr. Burhan ÜNAL Bozok Üniversitesi n aat Mühendisli i Bölümü 1.

Buharlaşma BUHARLAŞMA 3/28/2017

Meteoroloji. IX. Hafta: Buharlaşma

BUHARLAŞMA. Atmosferden yeryüzüne düşen yağışın önemli bir kısmı tutma, buharlaşma ve terleme yoluyla, akış haline geçmeden atmosfere geri döner.

2016 Yılı Buharlaşma Değerlendirmesi

UYGULAMALAR BUHARLAŞMA ve TERLEME

Fatih TOSUNOĞLU Hidroloji Hidroloji Ders Notları Hidrolojik Analiz ve Tasarım Ders Notları

HİDROJEOLOJİ. Hidrolojik Çevrim Bileşenleri Buharlaşma-Yağış. 2.Hafta. Prof.Dr.N.Nur ÖZYURT

PERKOLASYON İNFİLTRASYON YÜZEYSEL VE YÜZETALTI AKIŞ GEÇİRGENLİK

BİTKİ SU TÜKETİMİ 1. Bitkinin Su İhtiyacı

METEOROLOJİ. VI. Hafta: Nem

Hidroloji Disiplinlerarası Bir Bilimdir

HİDROLOJİ DERS NOTLARI

SU MÜHENDİSLİĞİNE GİRİŞ YRD. DOÇ. DR. FATİH TOSUNOĞLU

BÖLÜM-1 HİDROLOJİNİN TANIMI VE ÖNEMİ

HİDROLOJİK DÖNGÜ (Su Döngüsü)

HİDROLOJİ DERS NOTLARI

YAGIŞ-AKIŞ SÜREÇLERİ

HİDROJEOLOJİ. Hidrolojik Çevrim Bileşenleri Akış ve süzülme. 3.Hafta. Prof.Dr.N.Nur ÖZYURT

Suyun yeryüzünde, buharlaşma, yağış, yeraltına süzülme, kaynak ve akarsu olarak tekrar çıkma, bir göl veya denize akma vs gibi hareketlerine su

METEOROLOJİ. III. Hafta: Sıcaklık

Suyun sıvı halinden gaz veya buhar haline dönüşmesi sürecidir ve suyun sıvı halinden gaz veya buhar olarak atmosfere iletilmesinin başlıca yoludur.

Fatih TOSUNOĞLU Hidroloji Hidroloji Ders Notları Hidrolojik Analiz ve Tasarım Ders Notları Hidroloji Ders Notları

Fatih TOSUNOĞLU Hidroloji Hidroloji Ders Notları Hidrolojik Analiz ve Tasarım Ders Notları Hidroloji Ders Notları

Fatih TOSUNOĞLU Hidroloji Hidroloji Ders Notları Hidrolojik Analiz ve Tasarım Ders Notları Hidroloji Ders Notları

HİDROLOJİ Doç.Dr.Emrah DOĞAN

SU HALDEN HALE G İ RER

Su, yaşam kaynağıdır. Bütün canlıların ağırlıklarının önemli bir kısmını su oluşturur.yeryüzündeki su miktarının yaklaşık % 5 i tatlı sulardır.

GAZLAR GAZ KARIŞIMLARI

Açık hava basıncını ilk defa 1643 yılında, İtalyan bilim adamı Evangelista Torricelli keşfetmiştir. Yaptığı deneylerde Torriçelli Deneyi denmiştir.

BÖLÜM-3 BUHARLAŞMA (EVAPORATION)

MADDENİN DEĞİŞİMİ VE TANINMASI

Akışkanların Dinamiği

SU MÜHENDİSLİĞİNE GİRİŞ YRD. DOÇ. DR. FATİH TOSUNOĞLU

NEMLİLİK VE YAĞIŞ Su Döngüsü: döngüsü NEMLİLİK nem

Akifer Özellikleri

11. BÖLÜM: TOPRAK SUYU

12. SINIF KONU ANLATIMI 24 STOMA VE TERLEME (TRANSPİRASYON)

BİNA BİLGİSİ 2 ÇEVRE TANIMI - İKLİM 26 ŞUBAT 2014

Yüzeysel Akış. Giriş

Maddenin Isı Etkisi İle Değişimi a)isınma-soğuma

MADDENİN AYIRT EDİCİ ÖZELLİKLERİ. Nazife ALTIN Bayburt Üniversitesi, Eğitim Fakültesi

ISI VE SICAKLIK. 1 cal = 4,18 j

Ağır Ama Hissedemediğimiz Yük: Basınç

ZEMİN MEKANİĞİ DENEYLERİ

DENEY 3. MADDENİN ÜÇ HALİ: NİTEL VE NİCEL GÖZLEMLER Sıcaklık ilişkileri

Akışkanların Dinamiği

TÜRKİYE NİN İKLİMİ. Türkiye nin İklimini Etkileyen Faktörler :

ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç. Kaldırma Kuvveti

Ahşap Malzeme Bilgisi

İKLİM ELEMANLARI SICAKLIK

Transpirasyonun fiziksel yönü evaporasyona benzer ve aşağıdaki şekilde gerçekleşmektedir:

SU HALDEN HALE GİRER. Nazife ALTIN. Fen ve Teknoloji

5.SINIF FEN VE TEKNOLOJİ KİMYA KONULARI MADDENİN DEĞİŞMESİ VE TANINMASI

5.SINIF FEN TEKNOLOJİ ISI MADDEYİ ETKİLER

MADDENİN ISI ETKİSİ İLE DEĞİŞİMİ

SIZMA SIZMA. Yağışın bir kısmının yerçekimi, Kapiler ve moleküler gerilmeler etkisi ile zemine süzülmesi sızma (infiltrasyon) olarak adlandırılır

TARIMSAL YAPILAR. Prof. Dr. Metin OLGUN. Ankara Üniversitesi Ziraat Fakültesi Tarımsal Yapılar ve Sulama Bölümü

KİNETİK GAZ KURAMI. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 1

Havacılık Meteorolojisi Ders Notları. 3. Atmosferin tabakaları

Prof. Dr. Osman SİVRİKAYA Zemin Mekaniği I Ders Notu

METEOROLOJİ SICAKLIK. Havacılık Meteorolojisi Şube Müdürlüğü. İbrahim ÇAMALAN Meteoroloji Mühendisi

kalkerli-kumlu, besin maddelerince zengin, PH sı 6-8

B A S I N Ç ve RÜZGARLAR

Gaz hali genel olarak molekül ve atomların birbirinden uzak olduğu ve çok hızlı hareket ettiği bir haldir.

Zeus tarafından yazıldı. Cumartesi, 09 Ekim :27 - Son Güncelleme Cumartesi, 09 Ekim :53

Kütlesi,hacmi,eylemsizliği olan,tanecikli yapıdaki her şeye madde denir. Yer yüzünde gözümüzle görebildiğimiz her şey maddedir.

ATMOSFERDEKİ YAĞIŞA GEÇERİLİR SURUHARI MİKTARININ HESAPLANMASI

ISI NEDİR? Isı bir enerji çeşidi olduğu için enerji birimleriyle ölçülür. HÜSEYİN DEMİRBAŞ

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET

İNŞAAT MALZEME BİLGİSİ

O )molekül ağırlığı 18 g/mol ve 1g suyun kapladığı hacimde

Isı ve sıcaklık arasındaki fark : Isı ve sıcaklık birbiriyle bağlantılı fakat aynı olmayan iki kavramdır.

İnstagram:kimyaci_glcn_hoca GAZLAR-1.

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFERİ LABORATUARI

E = U + KE + KP = (kj) U = iç enerji, KE = kinetik enerji, KP = potansiyel enerji, m = kütle, V = hız, g = yerçekimi ivmesi, z = yükseklik

Havacılık Meteorolojisi Ders Notları. 7. Yağış

Yüzeysel Akış. Havza Özelliklerinin Yüzeysel Akış Üzerindeki Etkileri

508 HİDROLOJİ ÖDEV #1

DERS ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞTĐRME KONU ÇALIŞMA YAPRAĞI HAZIRLAMA (MADDELERĐN AYIRT EDĐCĐ ÖZELLĐKLERĐ)

GÜNEŞ ENERJİSİ II. BÖLÜM

ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞTĐRME DERSĐ GAZLAR KONU ANLATIMI

c harfi ile gösterilir. Birimi J/g C dir. 1 g suyun sıcaklığını 1 C arttırmak için 4,18J ısı vermek gerekir

1 SU HALDEN HALE GİRER

GÜNEŞ ENERJĐSĐ IV. BÖLÜM. Prof. Dr. Olcay KINCAY

Büyüklüklerine Göre Zemin Malzemeleri

7. BÖLÜMLE İLGİLİ ÖRNEK SORULAR

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 5 PSİKROMETRİK İŞLEMLERDE ENERJİ VE KÜTLE DENGESİ

Hava Kirliliği Meteorolojisi Prof.Dr.Abdurrahman BAYRAM

ORMAN VE SU İŞLERİ BAKANLIĞI İZLEME VE SU BİLGİ SİSTEMİ DAİRESİ BAŞKANLIĞI

Bölüm 4 BİNALARDA ISITMA SİSTEMİ PROJELENDİRİLMESİNE ESAS ISI GEREKSİNİMİ HESABI (TS 2164)

ÇAKÜ Orman Fakültesi, Havza Yönetimi ABD 1

1. HAFTA Giriş ve Temel Kavramlar

F KALDIRMA KUVVETİ (ARCHİMEDES PRENSİBİ) (3 SAAT) 1 Sıvıların Kaldırma Kuvveti 2 Gazların Kaldır ma Kuvveti

Prof. Dr. Berna KENDİRLİ

Meteoroloji. XII. Hafta: Rasat Parkı

ERİME DONMA KAYNAMA YOĞUNLAŞMA SÜBLİNLEŞME

Transkript:

BÖLÜM 3 BUHARLAŞMA 3.1. Giriş Atmosferden yeryüzüne düşen yağışın önemli bir kısmı tutma, buharlaşma ve terleme yoluyla, akış haline geçmeden atmosfere geri döner. Bu kayıpların belirlenmesi özellikle kurak mevsimlerde hidrolojik bakımdan büyük önem taşır. Buharlaşma, suyun sıvı halden gaz haline geçmesi olayıdır. Su yüzeyindeki moleküller yeterli bir kinetik enerjiye sahip olduklarında, kendilerini tutmaya çalışan diğer moleküllerin çekim etkisinden kurtularak sudan havaya fırlarlar. Su yüzeyi civarında sudan havaya ve havadan suya doğru sürekli bir molekül akımı vardır. Sudan havaya geçen moleküllerin fazla olması olayına "buharlaşma" adı verilir. 1

Buharlaşma, su, ıslak toprak, kar, nehir, göl ve deniz yüzeylerinden olabilir. Bitkiler üzerine düşen yağışın burada kalması olayına "tutma", bitkiler üzerinden suyun havaya çıkmasına da "terleme" (transpirasyon) denir. Buharlaşma ve terleme olaylarının ikisine birden "evapotranspirasyon" denir. Buharlaşma, su mühendisliği açısından büyük bir öneme sahiptir. Özellikle baraj göllerinde (rezervuarlarda) biriken suyun önemli bir kısmı buharlaşma yoluyla atmosfere geri dönmekte ve bu sudan yararlanılamamaktadır. Örneğin, tüm barajlardan bir yılda buharlaşan su miktarı, Seyhan Nehri nin aynı sürede getirdiği suya eşittir. Buharlaşma mekanizmasını bilmek ve buharlaşmayı azaltıcı önlemler almak, su potansiyelinden yararlanma açısından büyük bir önem taşımaktadır. 3.2. Buharlaşmanın Bileşenleri 2

3.3. Buharlaşmayı Etkileyen Faktörler a. Hava Sıcaklığı: Hava sıcaklığı arttıkça, su yüzeyindeki buhar basıncı (ew) ile hava basıncı (ea) arasındaki fark büyür ve buna bağlı olarak da buharlaşma miktarı da artar (Dalton Kanunu). b. Rüzgâr: Rüzgârlı havalarda havanın hareketi artacağından, su yüzeyi yakınlarında suya doymuş olan hava buradan uzaklaşarak daha az rutubetli hava bu bölgeye gelir. Sonuç olarak, rüzgâr, hava sirkülasyonunu sağlayarak buharlaşma miktarının artmasına yol açar (! rüzgârlı havalarda çamaşırların daha çabuk kuruması örneği). c. Güneş enerjisi: 1 gram suyun buharlaşması için suyun sıcaklığına bağlı olarak 539-597 kalori gereklidir. Bu enerji direkt olarak güneşten sağlanır. d. Suda erimiş tuzlar ve su yüzeyindeki kimyasal maddeler: Suda erimiş tuzlar ve su yüzeyindeki kimyasal maddeler buharlaşmayı azaltırlar. e. Hava basıncı: Hava basıncının artması buharlaşmayı az da olsa azaltır. 3.4. Su Yüzeyinden Buharlaşma 3.4.1. Buharlaşma Miktarının Hesabı: Meteorolojik şartlara bağlı olarak su yuzeyinden gunde (1-10) mm arasında su buharlaşır. Buharlaşma olayını etkileyen parametrelerin cok olması nedeniyle, buharlaşma miktarının önceden kesin olarak belirlenmesi imkansızdır. Ancak, ceşitli yontemlerle bu miktar tahmin edilebilir: a. Su Dengesi Yontemi: Göz onune alınan diğer değişkenler (X, Y ve S) biliniyorsa, buharlaşma miktarı tahmin edilir. b. Enerji Dengesi Yontemi: Su kutlesine enerjinin korunumu ilkesi uygulanarak buharlaşma miktarı tahmin edilebilir. Ancak, bu yontemin uygulanması icin gerekli olan meteorolojik parametrelerin hesaplanması oldukca guctur ve bu nedenle yontem pek fazla kullanılmamaktadır. 3

c. Ampirik Formüller: Ampirik formüller, buharlaşma hesaplarında sıkça kullanılmaktadır. Bunların genel yapısı şöyledir: E: buharlaşma miktarı, ew ve ea: sırasıyla su yüzeyindeki ve havadaki buhar basıncı, w: rüzgâr hızı, A, b, n : her formül için ayrı ayrı belirlenen katsayılardır. Ampirik formüllerin en büyük dezavantajı, yalnızca belirli şartlar altında iyi sonuç vermeleridir. Su dengesi metodunu bir su kütlesine (göl, hazne gibi) süreklilik denklemi uygularsak: 4

Enerji dengesi metodu: Enerjinin korunumu prensibine göre H G ve H Ç değerleri radyometrelerle ölçülebilir. Bu ifadelerde yer alan giren akımların getirdiği ve çıkan akımların götürdüğü ısı genellikle ihmal edilmektedir. H C nin ölçülmesi mümkün olmayıp H C ile He arasında aşağıdaki bağıntı mevcuttur. 5

Buharlaşmanın Ölçülmesi Serbest su yüzeyinden buharlaşmayı belirlemenin en iyi yolu buharlaşma tavası (evaporimetre) denen metal kaplar kullanılmaktadır En çok kullanılan tip: A sınıfı tavanın alanı 1 m2, derinliği 25 cm dir. Tava 20 cm derinlikte su ile doldurulup su yüzeyindeki alçalma bir Limnimetre ile ölçülerek buharlaşma miktarı belirlenir. Yağışlı günlerde yağış yüksekliği de ayrıca ölçülerek hesaba katılmalıdır. Tava yerden 15 cm yükseğe yerleştirilmeli, tavadaki su yüzeyinin tavanın üst kenarından uzaklığı 5-8 cm arasında kalacak şekilde her gün su eklenmelidir. En az 5000 km2 ye bir tava yerleştirilmesi tavsiye edilmektedir. Ancak tavadaki buharlaşma miktarı ile büyük bir su kütlesindeki (Bir hazne, bir göl, bir baraj vb.) buharlaşma miktarı birbiri ile aynı olmaz. Tavadaki su hava sıcaklığındaki değişmelerden daha çabuk etkilenmesidir. 6

Tavanın ısı yansıması, tava civarından ısı alışverişi ve çevrenin az nemli olması da buharlaşmayı etkiler. Tedbirler: Tavayı üst kısmına kadar toprağa gömmek, yada su üzerinde yüzdürmek Bu gibi tavaların buharlaşma miktarı büyük göllerdekine daha yakın olsa da elde edilen sonuçlar kararlı olmamaktadır. A sınıfı buharlaşma tavasının kullanılması ve göldeki buharlaşma miktarına geçmek için tavadaki okumanın Tava Katsayısı ile çarpılır. A sınıfı tavada yıllık buharlaşma için katsayı 0,7 kabul edilebilir. Bu katsayının değişim sınırları 0,6-0,8 arasındadır. Katsayının 0,7 kabul edilmesi durumunda hata payının %15 in altında olduğu düşünülür. Yazıcı ölçekler de (Evaporograf) kullanılmaktadır. Buharlaşma Miktarının Azaltılması Baraj göllerinden buharlaşan su miktarı önemli rakamlara ulaşıp büyük su ve para kaybına neden olur. Tedbirler: a. Baraj gölü yüzeyinin küçük tutulması: Baraj yeri seçilirken, mümkün olduğunca, sığ ve geniş alanlı baraj yerine, derin ve küçük alanlı barajlar tercih edilmelidir. Çeşitli baraj alternatifleri için, (yüzey alanı/depolama hacmi) oranları belirlenip en küçük orana sahip alternatif seçilmelidir. b. Rüzgâr hızının azaltılması: Rüzgâr hızı arttıkça buharlaşma miktarı da artacağından, rüzgâr hızını azaltarak buharlaşma miktarı küçültülebilir. Bu maksatla, göl yamaçlarında çam ağaçları yetiştirir. c. Kimyasal yöntemler: Rezervuar yüzeyleri, buharlaşmayı azaltan ince bir yağ tabakasıyla kaplanarak buharlaşma azaltılır. 7

3.5. Zemin ve Kar Yüzeyinden Buharlaşma Zemin yüzeyinden buharlaşma, su yüzeyinden buharlaşmaya benzer. - zemin geçirimliliği az ise su parçacıklarının buharlaşabilmesi için daha fazla direnç mevcuttur. - zeminin üst bölgelerinde yeterli su bulunması halinde, zemin yüzeyinden buharlaşma miktarı su yüzeyinden buharlaşma miktarına yakın olur. Yer altı su seviyesinin yüzeyden itibaren 2-3 m den aşağıda olması halinde buharlaşma ihmal edilebilecek seviyelere düşer. Kar yüzeyinden buharlaşma (sublimasyon) miktarı çok rüzgarlı havalarda, günde en fazla 5 mm ye kadar çıkabilmekle beraber, ayda en fazla 20-30 mm ye kadar ulaşabilir. Bu değer de aynı şartlarda su yüzeyinden buharlaşmanın % 20-25 i kadardır. 3.6. Terleme ve Tutma Bitkilerin yaşamları için gerekli suyu kullandıktan sonra kalan kısmını yapraklarından buhar halinde havaya vermesine: terleme (transpirasyon) Terleme, bitkilerin büyüme mevsimlerinde ve gündüz saatlerinde olur. Terleme miktarı bitki cinsine göre 0.1-7 mm/gün arasında değişir. Bitkiler tarafından tutulan ve yeryüzüne ulaşamayan yağış: tutma Bitkiler tarafından tutulan su buharlaşır ve buharlaşma kayıpları olur. Tutma kayıpları, özellikle yağış şiddetinin az ve süresi kısa ve bitki örtüsünün sık olması durumunda tutma miktarı önemlidir. Tutma kapasitesi iğne yapraklı ağaçlarda 0.7-3 mm arasındadır. Bu ağaçlar üzerlerine düşen yağışın % 25-30 unu, yaprak döken ağaçlar ise % 10-15 ini tutarlar. 8

3.7. Evapotranspirasyon Kayıpları 9

Bitkilerin su ihtiyacının belirlenmesinde ise Blaney-Criddle yöntemi kullanılır: U = 45 kp (t+18) Burada; U aylık su ihtiyacı (mm), k bitki cinsine bağlı bir katsayı, p göz önüne alınan aydaki gündüz saatlerinin, tüm yıldaki gündüz saatlerine oranı (güneşlenme oranı), t aylık ortalama sıcaklıktır ( C). k = (0.031 t + 0.24) kc kc büyüme oranı; ürünün ekimden sonra geçen gün sayısı; ya da yılın ayları k katsayıları değişik bitkiler için 0.45-1.10 arasında değerler almaktadır. Güneşlenme oranı (p), bölgenin enlem dercesine ve mevsimlere bağlı olarak ilgili tablolardan alınırlar. 10

3.7. 2. Günlük Evapotranspirasyon Kayıpları Günlük potansiyel Evapotranspirasyon kayıpları, enerji dengesi ve kütle transferi denklemlerine dayanan Penman formül ile hesaplanır: U = (AH + 0.27 E) / (A + 0.27) U: günlük evapotranspirasyon yüksekliği (mm), E: kütle transferinin etkisi, H: net radyasyon, E = 0.35 ( ew-ea) (1+0.55w2) H = R (1- r) (0.18 + 0.55 S) B (0.56-0.092 ea) (0.1 + 0.9 S) A ve B günlük ortalama sıcaklığın fonksiyonları, w2 yerden 2 m yükseklikteki rüzgar hızı (m/sn), R aylık ortalama radyasyon, r yüzeyin radyasyon yansıtma yüzdesi ve S parlak güneş ışığının görünme yüzdesidir. Bütün bu değerler tablolardan alınarak kullanılmaktadır. Bu hesaplanan evapotranspirasyon değerleri potansiyel (maksimum) değerler olup, günlük gerçek evapotranspirasyon değerlerini için, bu değer kışın 0.6, ilkbaharda ve sonbaharda 0.7 ve yazın ise 0.85 ile çarpılmalıdır. 11