DENEY: Malzeme Kullanılan Uç Uygulanan Kuvvet-F (N) İz ölçüsü-d (mm) Setlik Değeri

Benzer belgeler
FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

MALZEMELERİN MEKANİK ÖZELLİKLERİ

MALZEME BİLGİSİ DERS 8 DR. FATİH AY. fatihay@fatihay.net

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü

MALZEME ANA BİLİM DALI Malzeme Laboratuvarı Deney Föyü. Deneyin Adı: Malzemelerde Sertlik Deneyi. Deneyin Tarihi:

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması.


BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ

YTÜ Makine Mühendisliği Bölümü Mekanik Anabilim Dalı Özel Laboratuvar Dersi Strain Gauge Deneyi Çalışma Notu

METALİK MALZEMELERİN ÇEKME DENEYİ

Burma deneyinin çekme deneyi kadar geniş bir kullanım alanı yoktur ve çekme deneyi kadar standartlaştırılmamış bir deneydir. Uygulamada malzemelerin

BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ

FZM 220. Malzeme Bilimine Giriş

ÇEKME DENEYİ 1. DENEYİN AMACI

BÖLÜM 5 MALZEMELERİN MEKANİK ÖZELLİKLERİ

MMT310 Malzemelerin Mekanik Davranışı 2 Mukavemet ve deformasyon özelliklerinin belirlenmesi - Basma ve sertlik deneyleri

BARTIN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ METALURJĠ VE MALZEME MÜHENDĠSLĠĞĠ

BURULMA DENEYİ 2. TANIMLAMALAR:

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

STRAIN GAGE DENEY FÖYÜ

Sakarya Üniversitesi Teknoloji Fakültesi Makine Mühendisliği Bölümü. İmalat Müh. Deneysel Metotlar Dersi MAK 320. Çalışma 3: SERTLİK ÖLÇÜMÜ

TAHRİBATLI MALZEME MUAYENESİ DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ

YTÜ Makine Mühendisliği Bölümü Mekanik Anabilim Dalı Genel Laboratuvar Dersi Eğilme Deneyi Çalışma Notu

BURULMA DENEYİ 2. TANIMLAMALAR:

MUKAVEMET DERSİ. (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ

ÇEKME DENEYĠ. ġekil 1. Düşük karbonlu yumuşak bir çeliğin çekme diyagramı.

Bu deneyler, makine elemanlarının kalite kontrolü için çok önemlidir

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ ve MALZEME MÜHENDİSLİĞİ BÖLÜMÜ METALİK MALZEMELERİN DARBE DENEY FÖYÜ. Arş. Gör.

MALZEME BİLİMİ. Mekanik Özellikler ve Davranışlar. Doç. Dr. Özkan ÖZDEMİR. (DERS NOTLARı) Bölüm 5.

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI

SÜLEYMAN DEMİ REL ÜNİ VERSİ TESİ MÜHENDİ SLİ K-Mİ MARLIK FAKÜLTESİ MAKİ NA MÜHENDİ SLİĞİ BÖLÜMÜ MEKANİK LABORATUARI DENEY RAPORU

YAPI MALZEMELERİ DERS NOTLARI

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ ve MALZEME MÜHENDİSLİĞİ BÖLÜMÜ METALİK MALZEMELERİN ÇEKME VE BASMA DENEY FÖYÜ

SERTLİK DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Sertlik Deneylerinin Amacı

MUKAVEMET SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-I DERS NOTU

= σ ε = Elastiklik sınırı: Elastik şekil değişiminin görüldüğü en yüksek gerilme değerine denir.

T.C. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ M-220 ÇEKME DENEYİ

FZM 220. Malzeme Bilimine Giriş

MALZEMELERİN MEKANİK ÖZELLİKLERİ

MAKİNE ELEMANLARI DERS SLAYTLARI

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

DENEYİN ADI: MİHENGİR CİHAZI İLE YAPILAN ÖLÇME İŞLEMİ

İNŞAAT MALZEME BİLGİSİ

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Bölüm-4 MALZEMELERDE ÇEKME-BASMA - KESME GERİLMELERİ VE YOUNG MODÜLÜ Malzemelerde Zorlanma ve Gerilme Şekilleri

Malzemelerin Mekanik Özellikleri

DARBE DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Metalik Malzemelerin Darbe Deneyi

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering

Şekil 1. Sarkaçlı darbe deney düzeneği

Elastisite modülü çerçevesi ve deneyi: σmaks

T.C. GÜMÜŞHANE ÜNİVERSİTESİ. MÜHENDİSLİK ve DOĞA BİLİMLERİ FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MM 401 MAKİNE MÜHENDİSLİĞİ DENEYLER I

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. fatihay@fatihay.net

ÇEKME DENEYİ. Şekil. a) Çekme Deneyi makinesi, b) Deney esnasında deney numunesinin aldığı şekiler

DAYANIM İLE İLİŞKİLİ MALZEME ÖZELİKLERİ

BURSA TEKNĠK ÜNĠVERSĠTESĠ DOĞA BĠLĠMLERĠ, MĠMARLIK VE MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNE MÜHENDĠSLĠĞĠ BÖLÜMÜ

MAKİNE ELEMANLARI LABORATUARI

BA KENT ÜNİVERSİTESİ. Malzemeler genel olarak 4 ana sınıfa ayrılabilirler: 1. Metaller, 2. Seramikler, 3. Polimerler 4. Kompozitler.

FZM 220. Malzeme Bilimine Giriş

Kaynaklı Birleştirmelere Uygulanan Tahribatlı Deneyler

MAKİNE ELEMANLARI 1 GENEL ÇALIŞMA SORULARI 1) Verilen kuvvet değerlerini yükleme türlerini yazınız.

BİLGİSAYAR DESTEKLİ TASARIM VE ANALİZ (ANSYS)

ENDİREKT (DOLAYLI) ÇEKME DAYANIMI (BRAZILIAN) DENEYİ

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ KAYA MEKANİĞİ LABORATUVARI

Basınç deneyi sonrası numunelerdeki uygun kırılma şekilleri:

2. Amaç: Çekme testi yapılarak malzemenin elastiklik modülünün bulunması

MAK 305 MAKİNE ELEMANLARI-1

ÇEKME/EĞME DENEY FÖYÜ

Mekanik Davranışın Temel Kavramları. Cisimlerin uygulanan dış kuvvetlere karşı gösterdiği tepkiye mekanik davranış denir.

BURULMA (TORSİON) Dairesel Kesitli Çubukların (Millerin) Burulması MUKAVEMET - Ders Notları - Prof.Dr. Mehmet Zor

Prof.Dr.İrfan AY. Arş.Gör.T.Kerem DEMİRCİOĞLU. Öğr. Murat BOZKURT. Balıkesir

Makine Elemanları I. Yorulma Analizi. Prof. Dr. İrfan KAYMAZ. Erzurum Teknik Üniversitesi. Mühendislik Fakültesi Makine Mühendisliği Bölümü

MEKANİK LABORATUARI-1

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI

MALZEMENİN MUAYENESİ

MMT310 Malzemelerin Mekanik Davranışı 3 Tokluk özelliklerinin belirlenmesi Kırılma Mekaniği

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler

ÇEKME DENEYİ (1) MALZEME MÜHENDİSLİĞİ BÖLÜMÜ 1. DENEYİN AMACI:

KOÜ. Mühendislik Fakültesi Makine Mühendisliği Bölümü (1. ve 2.Öğretim / B Şubesi) MMK208 Mukavemet II Dersi - 1. Çalışma Soruları 23 Şubat 2019

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

PLASTİK ŞEKİLLENDİRME YÖNTEMLERİ

TOKLUK VE KIRILMA. Doç.Dr.Salim ŞAHĠN

Malzeme yavaşça artan yükler altında denendiği zaman, belirli bir sınır gerilmede dayanımı sona erip kopmaktadır.

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ YORULMA DENEY FÖYÜ

Malzeme Bilimi Ve Labaratuvarı MEKANİK ÖZELLİKLER

MUKAVEMET(8. Hafta) MALZEMENİN MEKANİK ÖZELLİKLERİ ÇEKME DENEYİ

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ

Arş.Gör.Ali Kaya GÜR. MALZEME MUAYENE Çekme Testi Magnetik Toz Yöntemi Yorulma Penetrasyon Muayene Sertlik. T.C Fırat Üniversitesi

KAYMA GERİLMESİ (ENİNE KESME)

Uygulanan dış yüklemelere karşı katı cisimlerin birim alanlarında sergiledikleri tepkiye «Gerilme» denir.

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

YORULMA HASARLARI Y r o u r l u m a ne n dir i?

Malzemenin Mekanik Özellikleri

2009 Kasım. MUKAVEMET DEĞERLERİ KONU İNDEKSİ M. Güven KUTAY

DENEY 2 ANKASTRE KİRİŞLERDE GERİNİM ÖLÇÜMLERİ

ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ

MAK 305 MAKİNE ELEMANLARI-1

MUKAVEMET FATİH ALİBEYOĞLU

ALIN KAYNAKLI LEVHASAL BAĞLANTILARIN EĞME TESTLERİ

Transkript:

METAL MALZEMELERİN MEKANİK ÖZELLİKLERİNİN BELİRLENMESİ MEKANİK TESTLER SERTLİK Sertlik; bir malzemenin, yüzeyine batırılmak istenen sert bir cisme karşı gösterdiği dirençdir. Belirli koşullarda yüzeyde oluşturulan kalıcı ve plastik izin büyüklüğüne göre belirlenir. Çeşitli malzemelerin sertliklerini belirlemek için birçok sertlik ölçme yöntemi geliştirilmiştir. Bunlardan en çok kullanılanları deney koşulları ile aşağıda açıklanmıştır. SERTLİK ÖLÇME YÖNTEMLERİ Brinel Sertlik Ölçme Deneyi (HB) Deney Koşulları: Kullanılan uç: Çelik bilye Uygulanan kuvvet: Sertliği ölçülecek malzemenin cinsi ve kullanılan bilyenın çapına göre değişir Bu değerler çizelgelerden alınır. Kullanım alanı: Yumuşak ve orta sertlikteki malzemelerin sertliklerini ölçmede kullanılır. Tavlanmış ve ıslah edilmiş çelik, hafif metaller ve ağır metallerin sertlikleri bu yöntemle ölçülür. Deneyin Yapılışı: Malzemenin cinsine göre çelik bilye seçilir ve sertlik ölçme cihazına bağlanır. Daha sonra uygun yük seçilerek malzeme üzerinde kalıcı iz meydana getirilir. Optik ve duyarlı bir ölçme aygıtı kullanılarak izin en az iki yerden çapı ölçülür. Uygulanan kuvvet (P), ölçülen iz çapı (d) ve kullanılan bilye çapı (D) aşağıdaki formülde kullanılarak malzemenin Birinel Sertligi (HB) hesaplanır. Sertlik değeri, kuvvet ve iz çapı kullanılarak daha önceden gerekli hesaplamalar yapılarak oluşturulmuş çizelgelerden de alınabilir. HB = HB = DeneyKuvveti F 0.10 = Bilya iz alanı ( π D / )( D D F 0.10 π D( D D d ) d Formülde: HB- Brinel Sertligi F- Uygulanan Kuvvet (Newton) D- Bilye çapı (mm) d- İz çapı (mm) Numunede meydana gelen iz çapının (d) belirlenmesi için, iz mikroskop altında mümkün olduğunca duyarlı olarak ölçülür. Gerekirse birden fazla ölçüm yapılarak ortalaması alınır. DENEY: Malzeme Kullanılan Uç Uygulanan Kuvvet-F (N) İz ölçüsü-d (mm) Setlik Değeri Vickers Sertlik Ölçme Deneyi (HV) Deney Koşulları: Kullanılan uç: Elmas piramit. (136 ) Uygulanan kuvvet: 588.4 N veya 980.7 N. Kullanım alanı: Hem yumuşak hem sert malzemelerin sertliklerini ölçmek için kullanılabilecek bir yöntemdir.

Deneyin Yapılışı: Koni açısı 136 olan elmas koni uç sertlik ölçme cihazına bağlanır. Daha sonra uygun yük seçilerek malzeme üzerinde kalıcı iz meydana getirilir. Optik ve duyarlı bir ölçme aygıtı kullanılarak izin köşegen uzunlukları ölçülür. Uygulanan kuvvet (F), ölçülen iz boyutu (d) aşağıdaki formülde kullanılarak malzemenin Vickers Sertligi (HV) hesaplanır. Sertlik değeri, kuvvet ve iz boyutu kullanılarak daha önceden gerekli hesaplamalarla oluşturulmuş çizelgelerden de alınabilir. HV HV d = DeneyKuvveti = Bilya iz alanı F = d d1 + d = F d Formülde: HV- Vikers Sertliği F- Uygulanan Kuvvet (Newton) d- İz köşegen ölçüleri ortalaması (mm) DENEY: Malzeme Kullanılan Uç Uygulanan Kuvvet-F (N) İz ölçüsü-d (mm) Setlik Değeri Rockwell Sertlik Ölçme Deneyi Bu sertlik ölçme yönteminde, deney sonunda malzemenin sertliği cihazın skalasından yada göstergesinden hemen okunabilir. Bu yöntemde, çeşitli malzemelerin sertliklerinin ölçülebilmesi için farklı uçlar her uç için de farklı yükler kullanılır. Değişik malzeme gruplarının sertliklerinin ölçülmesinde kullanılan Rockwell sertlik ölçme yöntemlerinden metellerde kullnılanlar aşağıda kısaca açıklanmıştır. Rockwell sertlik ölçme yöntemlerinin işlem sırası.

Rockwell C yöntemi (HRC) Deney Koşulları: Kullanılan uç: Elmas koni. Uygulanan kuvvet: 1471 N Deneyin Yapılışı: Elmas koni uç cihaza bağlanır ve cihaz 1471 N kuvvet uygulayacak şekilde ayarlanır. Önce 10 Kg lık ön kuvvet uygulanır. Daha sonra cihaz otomatik olarak belirlenmiş olan esas kuvvet uygular. Belirlenmiş bir süre (15 saniye) sonra kuvvet kaldırılır. Ucun malzemede meydana getirdiği izin derinliği malzemenin sertliğini gösterir. Bu değer mekanik cihazlarda kadrandan elektronik cihazlarda göstergeden okunabilir. Kullanım Alanı: Sert malzemelerin sertliklerinin ölçülmesinde kullanılır. Bu malzemeler; sertleştirilmiş yada yüzeyleri sertleştirilmiş çelikler ve alaşımlı çeliklerdir. Diğer sert metallerinde sertlikleri bu yöntemle ölçülür. DENEY: Malzeme Kullanılan Uç Uygulanan Kuvvet-F (N) Setlik Değeri Rockwell A yöntemi (HRA) Deney Koşulları: Kullanılan uç: Elmas koni. Uygulanan kuvvet: 588.4 N Deneyin Yapılışı: Elmas koni uç cihaza bağlanır ve cihaz 588.4 N kuvvet uygulayacak şekilde ayarlanır. Önce 98 N luk ön kuvvet uygulanır. Daha sonra cihaz otomatik olarak belirlenmiş olan esas kuvvet uygular. Belirlenmiş bir süre (15 saniye) sonra kuvvet kaldırılır. Ucun malzemede meydana getirdiği izin derinliği malzemenin sertliğini gösterir. Bu değer mekanik cihazlarda kadrandan elektronik cihazlarda göstergeden okunabilir. Kullanım Alanı: Sert malzemelerin sertliklerinin ölçülmesinde kullanılır. Bu malzemeler; sertleştirilmiş yada yüzeyleri sertleştirilmiş çelikler ve alaşımlı çeliklerdir. Sert metallerinde sertlikleri bu yöntemle ölçülür. DENEY: Malzeme Kullanılan Uç Uygulanan Kuvvet-F (N) Setlik Değeri Rockwell B yöntemi (HRB) Deney Koşulları: Kullanılan uç: Çelik bilye. Uygulanan kuvvet: 980.7 N Deneyin Yapılışı: Çelik bilye uç cihaza bağlanır ve cihaz 980.7 N kuvvet uygulayacak şekilde ayarlanır. Önce 98 N luk ön kuvvet uygulanır. Daha sonra cihaz otomatik olarak belirlenmiş olan esas kuvvet uygular. Belirlenmiş bir süre (15 saniye) sonra kuvvet kaldırılır. Ucun malzemede meydana getirdiği izin derinliği malzemenin sertliğini gösterir. Bu değer mekanik cihazlarda kadrandan elektronik cihazlarda göstergeden okunabilir.

Kullanım Alanı: Orta sert ve yumuşak malzemelerin sertliklerinin ölçülmesinde kullanılır. Bu malzemeler sertleştirilmemiş çelikler ve Cu Zn alaşımlarıdır. DENEY: Malzeme Kullanılan Uç Uygulanan Kuvvet-F (N) Setlik Değeri Rockwell F yöntemi (HRF) Deney Koşulları: Kullanılan uç: Çelik bilye. Uygulanan kuvvet: 588.4 N Deneyin Yapılışı: Çelik bilye uç cihaza bağlanır ve cihaz 588.4 N kuvvet uygulayacak şekilde ayarlanır. Önce 98 N luk ön kuvvet uygulanır. Daha sonra cihaz otomatik olarak belirlenmiş olan esas kuvvet uygular. Belirlenmiş bir süre (15 saniye) sonra kuvvet kaldırılır. Ucun malzemede meydana getirdiği izin derinliği malzemenin sertliğini gösterir. Bu değer mekanik cihazlarda kadrandan elektronik cihazlarda göstergeden okunabilir. Kullanım Alanı: Orta sert ve yumuşak malzemelerin sertliklerinin ölçülmesinde kullanılır. Bu malzemeler sertleştirilmemiş çelikler ve Cu Zn alaşımlarıdır. DENEY: Malzeme Kullanılan Uç Uygulanan Kuvvet-F (N) Setlik Değeri Sertlik ölçme yöntemlerinin karşılaştırılması.

GERİLME VE ŞEKİL DEĞİŞTİRME Bir malzemenin uygulanan kuvvetlere karşı gösterdiği tepki mekanik davranış olarak tanımlanır. Gerilme ve şekil değiştirme de bu tür davranışlardandır. Bu davranışın niteliği değişik tür zorlamalar altında oluşan gerilme ve şekil değiştirmeleri ölçerek ve gözleyerek saptanır. Bütün katı cisimler artan dış zorlamalar altında önce şekil değiştirir, sonra dayanımını yitirerek kırılır. Düşük zorlamalar altındaki şekil değiştirmeler elastik yani tersinirdir ve zorlama kuvveti ortadan kalkınca malzeme eski halini alır. Uygulanan zorlama kuvveti malzemenin elastiklik sınırını aşarsa malzemede kalıcı yani plastik şekil değişikliği meydana gelir. Malzemelerin iç yapılarında kalıcı şekil değişikliğine veya kırılmaya neden olan gerilme sınırı o malzemenin mukavemeti (dayanımı) olarak tanımlanır. Mekanik niteliklerin kaynağı atomlar arası bağ kuvvetleri olmakla beraber iç yapı ve çevre koşulları da bu nitelikleri önemli ölçüde etkiler. Ancak bu koşullar arasında kesin bir bağ kurmak olanaksızdır. Örneğin metal bir malzemenin bileşimi aynı kaldığı halde ısıl işlem uygulanması sonunda dayanımı -3 kat artırılabilir. Meydana gelen bu farkı atomlar arası bağ teorileri açıklayamaz. Bunun için ısıl işlemde meydana gelen yapı değişikliklerinin incelenmesi gerekir. Malzemelerin uygulanan dış kuvvetler karşısında ne gibi davranış gösterdiği incelenirken, kuvvet yerine kuvvetin şiddeti anlamına gelen gerilme, boyutlarda oluşan değişmeler yerine şekil değiştirme oranı göz önüne alınır. Gerilme; birim alana etki eden kuvvettir. Şekil değiştirme; birim boydaki uzama ve kesit daralmasıdır. Deneylerde; uygulana kuvvet sonucu malzemede meydana gelen gerilme ile şekil değiştirme arasındaki bağlantı incelenir. Deneylerde elde edilen veriler ile gerilme ve şekil değiştirme eğrileri malzemenin mekanik davranışları hakkında çok yararlı bilgiler sağlar. Metal malzemelerde uygulanan kuvvet sonunda malzeme bünyesinde meydana gelen gerilme ve fiziksel yapısında oluşan şekil değişikliklerini ölçmek için basit geometrik şekillere sahip silindir veya prizmatik deney parçaları kullanılır. Çekme: Çekmede parçaya etkiyen normal kuvvet (F) etkilediği alana (S) bölünerek çekme gerilmesi σ bulunur. σ = F S Formülde: F normal kuvvet Newton (N) veya Kilogram kuvvet (kgf) S deney parçası kesit alanı (mm ) σ Çekme gerilmesi (N/mm veya Kgf/mm ) Boyutlarda meydana gelen değişim şekil değiştirme oranı ile belirlenir. Uzama oranını belirlemek için son boydan (l) ilk boy (lo) çıkarılır ve ilk boya bölünerek 100 ile çarpılır. l lo % uzama = 100 lo σ σ Kesit daralması oranını belirlemek için, koptuktan sonra ölçülen kesit olanı, ilk kesit alanından çıkarılarak elde edilen fark ilk kesit alanına bölünüp 100 ile çarpılır So S do d % kesit daralması = 100 = 100 So do Çekme Basma: Basmada parçaya etkiyen normal basma kuvveti (F) etkilediği alana (S) bölünerek (σ) basma gerilmesi bulunur. σ = F S Formülde: F normal kuvvet Newton (N) veya Kilogram kuvvet (kgf) S deney parçası kesit alanı (mm ) σ Çekme gerilmesi (N/mm veya Kgf/mm ) Boyutlarda meydana gelen değişimler yukarıda çekmede anlatılan mantığa göre yapılmalıdır. Kayma: Kaymada parçaya etkiyen normal kaydırma kuvveti T etkidiği kesit alanına (S) bölünerek (τ) kayma gerilmesi bulunur. σ σ

T τ = S Formülde: T Normal kuvvet Newton (N) veya Kilogram kuvvet (kgf) S Deney parçası kesit alanı (mm ) τ Basma gerilmesi (N/mm veya Kgf/mm ) σ σ τ σ Basma σ τ Kayma Malzemelerin mekanik özelliklerini belirlemek için çeşitli yöntemler geliştirilmiştir. Bunlardan metal malzemeler için en önemli olanı çekme deneyidir. Çekme deneyinde örnek olarak hazırlanmış malzemeye tek eksenli çekme yükü uygulayarak gerilme davranışları belirlenir. Metal malzemeler makinalardaki yerlerinde çalışırken sadece tek eksenli yükele yüklenmemiş olmalarına karşın çekme deneyi sonunda elde edilen bilgiler malzemelerin genel davranışları hakkında gerekli bilgileri verir. Daha ayrıntılı bilgi gerekli olduğu takdirde eğme, burma, basma, kırılma, yorulma ve darbe deneyleri gibi deneylere başvurularak ölçme yapılır. Çekme Deneyi Bu deneyde özellikleri belirlenecek olan malzemeden standartlara uygun hazırlanan deney örnekleri kullanılır. Standart deney örneklerinde uzamanın ölçüleceği bölümdeki boy, çapın 5 katı, standart olmayan deney örneklerinde 10 katı olmalıdır. Standart deney örnekleri ilgili standart yaprağındaki üretim koşullarına göre yapılmalıdır. Standart deney örneği. Standart olmayan deney örneği Çekme işlemi, çekme deneyi makinasında (çekme cihazı) çeneler arasına yerleştirilen deney örneği sabit bir hızla ve giderek artan bir kuvvetle kopuncaya kadar çekilerek yapılır. Uygulanan kuvvetler ile meydana gelen uzama cihaz göstergelerinden okunur. Deney örneğinin kesiti ve kopma sonrasındaki kesit duyarlı bir şekilde ölçülerek hesaplanır. Bazı çekme cihazlarında çekme diyagramını çizebilen çiziciler de vardır. Çekme deneyi sonunda gerilme ve uzama arasındaki bağıntıyı incelemek için mutlaka gerilme uzama diyagramı çizilmelidir. Cihazdan okunan kuvvetler deney örneğinin ilk kesit alanına bölünerek elde edilen değerler dikey eksene, ölçülen uzamalar ilk boya bölünerek yatay eksene taşınır. Elde edilen diyagrama gerilme-uzama diyagramı adı verilir.

Deneyin Yapılışı Çekme deneyi sırasında deney örneğinde meydana gelen değişimler ve çekme-uzama diyagramı Çekme deneyi sonunda elde edilen verilerle çizilen çekme-uzama diyagramını kullanarak ve yapılan hesaplamalar sonunda deney örneği malzemesi hakkında aşağıdaki değerler elde edilir. Elastite (Elastikiyet) Modulü (E) Malzeme çekme sırasında Re ye kadar kalıcı şekil değişikliğine uğramadan uzar. Bu uzamaya elastik deformasyon adı verilir. Bu sınıra kadar uygulanan kuvvet kaldırılacak olursa malzemenin yapısında bir değişiklik olmaz. Bu sınıra orantı sınırı adı verilir. Diyagramda bu bölüm bir çizgi şeklindedir. Gerilme ve uzama arasındaki bu orantılı ilişki Hooke Kanunu ile ifade edilir. Formülde: E σ z - Çekme gerilmesi- Kgf/mm E = σ ε σ z z = ε ε- % uzama E- Elastite modulü Elastite modülü sabit bir sayıdır ve malzemenin katılığı hakkında fikir verir. Bu da malzemenin elastik şekil değiştirmeye karşı gösterdiği direnç olarak ifade edilebilir. Akma Sınırı (Re) Re noktasına gelindiğinde deney örneği kendiliğinden uzamaya başlar. Bu noktadan sonra malzemede kalıcı şekil değişikliği (plastik deformasyon) oluşur. Kuvvet kaldırılsa bile malzeme eski halini alamaz. F Formülde: Re e π do = Re- Akma gerilmesi-kg/mm So = S0 Fe- Akma sınırında belirlenen kuvvet-kgf 4 So- Deney örneğinin ilk kesit alanı-mm - formulü ile hesaplanır.

Akma dayanımı makina parçası olarak kullanılacak olan malzemelerin boyutlarının belirlenmesinde esas alınması gereken dayanımdır. Çünkü makina parçası çalıştığı yerde plastik deformasyona (kalıcı şekil değişikliği) uğramandan işlevini yerine getirmelidir. Alüminyum, bakır ve sertleştirilmiş çelik gibi bazı malzemelerin çekme-uzama eğrisinin bir dirseği- uzama öncesi değişimleri- yoktur. Bu malzemelerde eğri, kesintiye uğramadan yükselir. Bu nedenle bu tür malzemelerde bir akma sınırı belirlemek mümkün değildir. Ancak dayanım hesaplamaları için gerekli olan akma dayanımı, %0. kalıcı uzamanın gösterdiği gerilmedir. Diyagramda bu nokta Rp0. olarak gösterilir. Çekme Dayanımı (Rm) Akma noktasından sonra malzeme giderek artan çekme kuvveti nedeniyle uzar ve kasiti daralır. Malzemenin gerilmesi en yüksek noktaya ulaşır. Malzemenin hasara uğramadan taşıyabileceği en büyük kuvvet bu noktada uygulanan kuvvettir. Bu değere çekme dayanımı adı verilir. Bu noktadan sonra malzemede uzamanın dışında büyük bir deformasyon oluşur ve kritik kesitte boyun verme adı verilen kesit daralması meydana gelir. Rm = Fm So Formülde: Rm- Çekme dayanımı- Kgf/mm (σ z olarak da gösterilebilir.) Fm- Malzemeye uygulnan en büyük kuvvet- Kgf So- Deney örneğinin ilk kesit alanı- mm formulü ile hesaplanır. π do So = % Uzama (ε) 4 Deney örneğinde koptuktan sonra meydana gelen uzamanın ilk boya oranının % olarak ifadesidir. Δl ε = lo 100 Formülde: ε- % uzama Δl- uzama miktarı-mm Δl = lo l ( l- Son boy, lo- İlk boy) % Kesit Daralması (Z) Deney örneğinde, koptuktan sonra meydana gelen kesit alanı küçülmesinin, ilk kesit alanına oranlanmasının % olarak ifadesidir. Formülde: Silindir (yuvarlak çubuk) deney örnekleri için: So S Z- % kesit daralması So- ilk kesit alanı- mm Z = 100 do d So Z = 100 formülü kullanılır. S- son kesit alanı- mm do DENEY: Deney Örneği Deney Sonrası Verileri Hesaplama sonuçları İlk çap Akma Kuv. Çekme Kuv Son Son Elastite Akma Çekme do Fe Kgf Fm Kgf Boy l Çap d Mod. E Day. Re Day. Rm Malzeme İlk boy lo Uza ma. Kesit Dara Hesaplamaları yukarıdaki formülleri kullanarak burada yapınız ve sonuçları tabloya yazınız.

EĞME DENEYİ Komparatör Malzeme Mesnet Mesnet F Yük Bu deney; iki mesnet arasında bulunan çeşitli kesitlerdeki malzemelerin ortasından uygulanan bir F yükü sonucunda meydana gelen çökme (eğilme sonucu meydana gelen yer değiştirme) ile malzeme kesiti ve konumu arasındaki ilişkiyi araştırmak için yapılacaktır. Malzemede meydana gelen çökmenin miktarını etkileyen çeşitli faktörler vardır. Bunlar; Mesnetler arasındaki uzaklık, Malzeme kesit ölçüleri ( genişlik, yükseklik), Uygulanan yük ve Malzemenin cinsidir. Bu faktörler ile çökme arasında ne tür bir ilişki olduğunu anlamak için eğme deneyi laboratuardaki cihazda birkaç aşamada yapılacaktır. DENEY 1- Yük ve çökme arasındaki ilişkiyi belirlemek: Mesnetler (taşıyıcılar) arasındaki mesafe 600 mm ye ayarlanır. ( eğme cihazı mili üzerindaki her iki çizgi arası 100 mm dir.) 6x5 mm kesitindeki çelik çubuk mesnetler üzerine yerleştirilir. Yükleme yapmak için kullanılan askı, çubuğun ortasına yerleştirilir. Meydana gelen çökmelerin ölçülmesi için kullanılacak olan komparatör de askının tam ortasına yerleştirilerek sıfırlanır. Daha sonra askıya sırasıyla aşağıda tablodaki yükler asılarak meydana gelen çökmeler komparatörden okunarak tabloya yazılır. Ölçü aleti komparatörün iki çizgisi arası 0.01 mm ve ibrenin bir tur dönüşü 1 mm dir. Yük (N) Çökme (mm) 5 10 15 0 Yük ve çökme arasındaki ilişkinin ne olduğunu belirlemek için tablodaki verileri bir ölçek dahilinde diyagrama taşıyınız. yük (N) çökme (mm) Deneyi yorumlayınız:...

DENEY - Mesnetler arasındaki uzaklık ile çökme arasındaki ilişkiyi belirlemek: Bu deney 6x5 mm ölçülerindeki çelik çubuğa 10 N yük uygulayarak yapılacaktır. Söz konusu çubuğu cihaza yerleştiriniz ve yük askısına 10 N luk yük asınız. Daha sonra aşağıda tobloda verilenlere göre mesnetler arasındaki mesafeyi değiştirerek her seferinde komparatörden okuduğunuz değerleri tabloya yazınız. Mesnetler arası Çökme (mm) uzaklık (mm) 300 400 500 600 Mesnetler arasındaki uzaklık ve çökme arasındaki ilişkinin ne olduğunu belirlemek için tablodaki verileri bir ölçek dahilinde diyagrama taşıyınız. Mesnetler arası uzaklık (mm) Çökme (mm) Deneyi yorumlayınız:... DENEY 3- Deney örneği genişliği ile çökme arasındaki ilişkiyi belirlemek: Bu deneyde yükseklikleri aynı fakat genişlikleri farklı olan deney çubukları kullanılacaktır. Mesnetler arasındaki uzaklık 500 mm ye ayarlayınız ve 5 N luk yükü askıya asınız. Daha sonra aşağıda tabloda verildiği gibi genişlikleri farklı fakat yükseklikleri aynı olan deney çubuklarını mesnetler arasına yerleştiriniz. Komparatörden okuduğunuz çökme değerlerini tabloya yazınız. Deney örneği kesiti (mm) 4x15 4x0 4x5 4x30 Çökme (mm)

Deney örneği genişliği ile çökme arasındaki ilişkinin ne olduğunu belirlemek için tablodaki verileri bir ölçek dahilinde diyagrama taşıyınız. Genişlik (mm) Çökme (mm) Deneyi yorumlayınız:... DENEY 4- Deney örneği yüksekliği ile çökme arasındaki ilişkiyi belirlemek: Bu deneyde genişlikleri aynı fakat yükseklikleri farklı olan deney çubukları kullanılacaktır. Mesnetler arasındaki uzaklık 500 mm ye ayarlayınız ve 5 N luk yükü askıya asınız. Daha sonra aşağıda tabloda verildiği gibi yükseklikleri farklı fakat genişlikleri aynı olan deney çubuklarını mesnetler arasına yerleştiriniz. Komparatörden okuduğunuz çökme değerlerini tabloya yazınız. Deney örneği kesiti (mm) 3x5 4x5 6x5 8x5 Çökme (mm) Deney örneği genişliği ile çökme arasındaki ilişkinin ne olduğunu belirlemek için tablodaki verileri bir ölçek dahilinde diyagrama taşıyınız. Yükseklik (mm) Çökme (mm) Deneyi yorumlayınız:...

DENEY 5- Çelik, Prinç ve Ahşap malzemelerin elastiklik modülünün belirlenmesi: Bu deneyde, tespit edilen bir yük altında mesnetler arasındaki uzaklıklar sabit tutularak Çelik, Prinç ve Ahşap malzemelerde meydana gelen çökmeler ölçülür. Daha sonra meydana gelen bu çökmeler ile aşağıda verilmiş formüller ile hesaplanan değerler tabloya yerleştirilir. Komparatör (çökme miktarı) Malzeme Mesnet Mesnet L/ L Yük F+F 1 Malzeme Yük F+F 1 (N) Çökme (mm) Eğme momenti M b (N.mm) Eğme gerilmesi σb (N/mm ) Elastiklik modülü E (N/mm ) E ort (N/mm ) Çelik Pirinç Ahşap Hesaplamalar: Eğme momentinin hesaplanması; M b = ( F + F1) L 4 M b Eğme gerilmesinin hesaplanması: σ b = Wb b. h Burada; eğilme direnci ( W b ) dikdörtgen kesitli malzemeler için; W b = 6 3 π. d dairesel kesitli malzemeler için: W b = alınacaktır. 3 Elastiklik modülünün hesaplanması: Elastiklik modülünün hesaplanması için, mesnetler arasındaki malzemenin belli bir yük altında eğilmesi sonunda meydana gelen çökmenin hesaplanmasında kullanılan formülden yararlanılır. Bu formül; 3 F. L δ = Bu formülde çökme (δ ) deney sırasında ölçüldüğünden, 48. E. I

Elastiklik modülü; 3 F. L E = formülü ile bulunur. 48. I.δ Burada ( I ) Atalet momenti dikdörtgen kesitli malzemeler için; 3 b. h I =, 1 dairesel kesitli malzemeler için; I 4 π. d = formülü ile hesaplanır. 64 d h b Formüllerde; δ Çökme (mm). L Mesnetler arası uzaklık (mm). M b Eğme momenti. W b Eğme direnci. σ b Eğme gerilmesi. E Elastiklik modülü. I Atalet momenti. F 1 Ağırlık asma askısının yükü. F Askıya asılan yük. Hesaplamalar için buradaki boş kısmı kullanınız Deneyi yorumlayınız:...

BURMA DENEYİ Bu deney; mesnetler arasına sabitlenmiş deney örneklerine uygulanan burma etkisi sonunda meydana gelen burma açısının ölçülmesi ve çeşitli malzemelerin kayma modülünün hesaplanması için yapılacaktır. Deneyde burma yükü, mesnetler arasına sabitlenmiş deney örneğinin eksenine 100 mm uzaklıktan uygulanacaktır. Burulma açısını ölçmek için kullanılacak komparatör eksenden 57.3 mm uzaklığa yerleştirilir. Bu durumda komparatörün bir dönüşü 1 lik açıya karşılık gelir. Burma deneyi cihazında hem yükün asılması hem de komparatörün yerleştirilmesi için eksene bağlanmış bir mil kullanılır. Komparatör 57.3 100 F Yük DENEY 1- Burma momenti ve burma açısı arasındaki ilişkinin belirlenmesi. Destekler arası uzaklık 600 mm ayarlanır. Çelik deney örneği yataklardan geçirilerek sabitlenir. Daha sonra yük askısı milin ön kısmına yerleştirilir. Komparatör de milin düz kısmına yerleştirilerek sıfırlanır. Aşağıda verilen tablodaki yükler sırasıyla yüklenir. Burulma açıları komparatörden okunarak tabloya yazılır. Burma momentinin hesaplanmasında kuvvet kolu 100 mm alınmalıdır. Yük N Burma momenti N mm Burulma açısı.5 7.5 1.5 17.5 Burma momenti ile burulma açısı arasındaki ilişkiyi belirlemek için bulunan değerleri aşağıdaki diyagrama bir ölçek dahilinde taşıyınız ve diyagramı çiziniz. N mm Burulma açısı Deneyi yorumlayınız:...

DENEY - Deney örneği uzunluğu ile burulma açısı arasındaki bağlantının incelenmesi. Çelik deney örneğini aşağıdaki tabloda verilen mesnetler arası uzaklıklarda yataklara sabitleyerek 1.5 N yük ile yükleyiniz. Her uzaklık için komparatöreden okunan açıları tabloya yazınız. Deney örneği uzunluğu (mm) 300 400 500 600 Burulma açısı Mesnetler arası uzaklık ile burulma açısı arasındaki ilişkiyi belirlemek için bulunan değerleri aşağıdaki diyagrama bir ölçek dahilinde taşıyınız ve diyagramı çiziniz. Mesnetler arası uzunluk Burulma açısı Deneyi yorumlayınız:... DENEY 3- Çelik, pirinç ve alüminyumun kayma modülünün belirlenmesi. Komparatör L d 57.3 r=100 F Yük Mesnetler arasındaki uzaklık 600 mm ye ayarlanır. Çelik deney örneği yataklara takılarak sabitlenir. Aşağıda tabloda verilen yükler yüklenerek burulma açısı ölçülerek tabloya yazılır. Bu işlemler pirinç ve alüminyum için de tekrarlanır. Formüllerde kullanılan ifadeler: ϕ burulma (dönme) açısı ( ) L deney örneği boyu (mm) G kayma modülü (N/mm ) M v dönme momenti (N mm) F yük (N) I p atalet momenti (mm 4 ) W v burulma direnci (mm 3 ) τ kayma gerilmesi (nn/mm )

Malzeme Yük (N) Burma momenti (N mm) Burulma açısı ( ) Kayma modülü G (N/mm ) G ort (N/mm ).5 Çelik 7.5.5 Pirinç 7.5.5 Alüminyum 7.5 Hesaplamalarda kullanılacak formüller: Burulma momentinin hesaplanması: M v = F. r Kayma (burulma) gerilmesinin hesaplanması: τ = M W v v Burulma açısının hesaplanması: M v L ϕ = 180 bu formülde burulma açısı ϕ bilindiğinden π I G p 180 M Kayma modülünü hesaplayabiliriz G = π ϕ I Not: Atalet momenti ve burulma direnci formüllerini eğme deneyi föyünden alınız. Hesaplamaları buraya yapınız. v p L Deneyi yorumlayınız:...

DARBE DENEYİ Darbe deneyi, metallerin özellikle gevrek kırılmaya müsait şartlardaki mekanik özellikleri hakkında sağlam bir bilgi elde etmek amacıyla kullanılır. Çoğu kez metallerin mekanik özelliklerini belirlemede çekme deneyi sonuçlarından faydalanılır. Çekme deneyinde, gerilme-şekil değiştirme diyagramından iyi bir uzama gösteren malzemenin sünek olacağı ve statik ve dinamik yüklere karşı plastik biçim değiştirme ile karşı koyacağı tahmin edilir. Bazı malzemeler için çekme deneyi sonuçları ile darbe deneyi sonuçları arasında uyuşmazlık görülür. Çekme deneyinde sünsek olan malzeme darbe deneyinde gevrek bir özellik gösterir. Bu duruma oda sıcaklığının altındaki sıcaklıklarda daha çok rastlanır. Darbe deneyinde elde edilen sonuçlar o deney örneği için bir karşılaştırma değeridir ve çekme deneyi sonuçları gibi mühendislik hesaplamalarında kullanılmaz. Deneyin yapılışı: Darbe deneyinde, deney örneğinin dinamik bir zorlama altında kırılması için gereken enerji miktarı belirlenir. Bulunan değer malzemenin darbe direnci olarak tanımlanır. Deneyde aşağıda şekilde çizimi verilen sarkaç tipi cihaz kullanılır. Ağırlığı G olan sarkaç asılı durumda (h yüksekliği) potansiyel enerjisi Gxh büyüklüğündedir. Sarkaç bu yükseklikten serbest bırakıldığında düşey düzlemde hareket ederek deney örneğine çarparak kırar ve h 1 yüksekliğine kadar çıkar. Böylece deney örneğinin kırılması sonucunda sarkaçta kalan enerji Gxh 1 büyüklüğündedir. Bu durumda sarkacın deney örneğine dokunduğu andaki enerjisi ile deney örneği kırıldıktan sonra sarkaçta kalan enerji farkı, deney örneğinin kırılması için gereken enerjiyi başka bir deyimle malzemenin darbe direncini verir. 15 Joule Yükselme açısı Düşme açısı L sarkaç uzunluğu 0 Deney örneği Çekiç Şekil - Darbe deneyi cihazının çalışma prensibini gösteren çizim. Charpy Darbe Deneyi: Bu deney çentikli darbe deneyleri içinde en çok kullanılanıdır. Yatay ve basit kiriş halinde iki mesnede yaslanan deney örneğinin (Şekil ) çentik tabanına, bir sarkacın ucundaki çekiç ile darbe yapılması ve çentik tabanında meydana gelen çok eksenli gerilimler etkisi ile deney örneğinin kırılması için harcanan enerjinin belirlenmesi işlemidir. Çekiç Deney örneği Şekil - Charpy darbe deneyinde deney örneğinin cihaza yerleştirilmesi. (üstten görünüş)

DENEY 1- Çeliklerde Karbon yüzdesinin darbe dayanımına etkisi. Bu deneyde Karbon yüzdeleri farklı olan deney örnekleri cihazda kırılarak darbe dayanımları araştırılır. Malzeme % Karbon Kırık kesit alanı (cm ) Okunan darbe enerjisi (J) Darbe dayanımı (J/cm ) Soru: Darbe dayanımı Karbon yüzdesinden nasıl etkilenmiştir? Cevap:... DENEY - Çelikte ısıl işlemin darbe dayanımına etkisi. Bu deneyde bir çelik malzemenin ısıl işlem görmeden ve ısıl işlem gördükten sonraki darbe dayanımlarının hangi yönde değiştiği araştırılır. Malzeme Isıl işlem Kırık kesit alanı (cm ) İşlem görmemiş Su verilmiş Su verilmiş ve menevişlenmiş Okunan darbe enerjisi (J) Darbe dayanımı (J/cm ) Soru: Su verme (sertleştirme) işleminin darbe dayanımına etkisi ne olmuştur? Cevap:...... Soru: Menevişleme işleminin darbe dayanımına etkisi ne olmuştur? Cevap:...... DENEY 3- Çentik şeklinin darbe dayanımına etkisi. Bu deneyde aynı cins malzemenin deney örneğine açılan çentik farklılıklarının darbe dayanımını nasıl etkilediği araştırılır. Malzeme Çentik Kırık kesit alanı (cm ) Okunan darbe enerjisi (J) Darbe dayanımı (J/cm ) Soru: Çentik şekli ve açısının darbe dayanımına etkisini yazınız. Cevap:...

YORULMA DENEYİ Bu deneyde değişken eğme yükü altındaki deney örneğinin yorulma dayanımı incelenir. Deney, MT 05 Yorulma Deneyi Cihazında standart deney örneği kullanılarak yapılır. Gerçek gerilim A daki çentikten (radüs) dolayı teorik olarak hesaplanan nominal gerilimden daha büyüktür. Yükün değişim sayısı olarak ifade edilen yorulma dayanımına; Uygulanan yükün miktarı (F), Yüzeydeki çentik (radüs yarıçapı), Yüzey pürüzlülüğü değeri (R a ) ve Malzemenin cinsi etkendir. DENEY 1- Belirli bir eğme yükü altında yüzey kalitesinin ve çentiklerin (radüs yarıçapı) yorulma dayanımına etkisinin incelenmesi. Çeşitli ölçülerde çentik yarıçaplı ve farklı yüzey pürüzlülüğüne sahip deney örnekleri cihaza bağlanır. Bağlama işlemi 8 mm çaplı bölüm yatağa geçirildikten sonra konik bölüm konik deliğe takılarak somun sıkılır. Daha sonra yükleme sistemindeki dinamometreden 00 N luk yükleme yapılır. Bu durumda deney örneği eğilme gerilmesine maruz kalmaktadır. En büyük eğilme momenti çentik yarıçapının başladığı kesittir. Cihaz motor devrinde döndürülmeye başlayınca deney örneği kritik kesiti zaman içinde yorularak kırılır. Bu sırada otomatik şalter motoru durdurur. Numaratörden deney örneği kırılıncaya kadar motorun kaç devir yaptığı (yükleme sayısı) okunur. Deney; çentik yarıçapı, yüzey pürüzlülüğü değerleri ve malzeme cinsi farklı olan deney örnekleri kullanılarak yapılır. Elde edilen bilgiler aşağıdaki tabloya aktarılarak malzemenin yorulma ömrü hakkında bilgi sahibi olunur. Daha sonra çeşitli yükler altında yapılan deneylerden elde edilen yükleme sayıları ve eğilme gerilmesine bağlı olan Wöhler çizilir. Deney örneği özellileri L, d, Ra, R Yük N Eğilme gerilme N/mm Değişken yükleme sayısı Eğilme gerilmesi; R = m M W e e M e = F. L W e π d = 3 3 Formülleri ile hesaplanır.