Spektroskopi. Elektromanyetik ışımanın madde ile etkileşimini inceleyen bilim dalına spektroskopi denir.

Benzer belgeler
ALETLİ ANALİZ YÖNTEMLERİ

Bileşiğin basit formülünün bulunması (moleküldeki C, H, O, X atomlarının oranından, veya molekül ağırlığından)

Infrared Spektroskopisi ve Kütle Spektrometrisi

ALETLİ ANALİZ YÖNTEMLERİ

Nükleer Manyetik Rezonans Spektroskopisi

BÖLÜM 7. ENSTRÜMENTAL ANALİZ YÖNTEMLERİ Doç.Dr. Ebru Şenel

2.4 NÜKLEER MANYETİK REZONANS (NMR) SPEKTROSKOPİSİ

ALETLİ ANALİZ YÖNTEMLERİ

NMR spektroskopisi. H, 11 B, 13 C, 15 N, 31 P, 19 F vb. NMR ları vardır. Bu başlık altında 1 H NMR ı incelenecektir.

Nanomalzemelerin Karakterizasyonu. Yapısal Karakterizasyon Kimyasal Karakterizasyon

Atomlar ve Moleküller

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

KARBON- 13 C NMR. Ref. e_makaleleri, Enstrümantal Analiz, IR ve 1 H NMR ile Yapı Tayini, 1 H NMR ile Yapı Tayini

Ref. e_makaleleri, Enstrümantal Analiz, IR ve 1 H NMR ile Yapı Tayini

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

Dalga boyu aralığı Bölge. Dalga sayısı aralığı (cm. ) Yakın Orta Uzak

Element atomlarının atom ve kütle numaraları element sembolleri üzerinde gösterilebilir. Element atom numarası sembolün sol alt köşesine yazılır.

Molekül formülü bilinen bir bileşiğin yapısal formülünün bulunmasında:

PROBLEM 1.1 a ) Örnek Çözüm b ) 9 F; 1s 2 2s 2 2p 5 (Değerlik elektronları: 2s 2 2p 5 ) c ) 16 S; 1s 2 2s 2 2p 6 3s 2 3p 4 (Değerlik elektronları: 3s

Enstrümantal Analiz, Elektromagnetik Işının Özellikleri

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU

KİM-117 TEMEL KİMYA Prof. Dr. Zeliha HAYVALI Ankara Üniversitesi Kimya Bölümü

Ultraviyole-Görünür Bölge Absorpsiyon Spektroskopisi

İNSTAGRAM:kimyaci_glcn_hoca

SCHRÖDİNGER: Elektronun yeri (yörüngesi ve orbitali) birer dalga fonksiyonu olan n, l, m l olarak ifade edilen kuantum sayıları ile belirlenir.

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri

PROBLEM 5.1. PROBLEM 5.2 Örnek Çözüm PROBLEM 5.3. Başlama basamağı. Gelişme basamağı. Sonlanma basamağı

Nötr (yüksüz) bir için, çekirdekte kaç proton varsa çekirdeğin etrafındaki yörüngelerde de o kadar elektron dolaşır.

SPEKTROSKOPİ ENSTRÜMANTAL ANALİZ. Elektromanyetik radyasyon (ışıma)

Lewis Nokta Yapıları ve VSEPR

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri Elektronik kutuplaşma

İnfrared spektroskopisi ENSTRÜMANTAL ANALİZ

Bölüm 8: Atomun Elektron Yapısı

ATOMLAR ARASI BAĞLARIN POLARİZASYONU. Bağ Polarizasyonu: Bağ elektronlarının bir atom tarafından daha fazla çekilmesi.

12-B. 31. I. 4p II. 5d III. 6s

DENEY RAPORU. Koordinasyon Bile iklerinde zomerlerin IR Spektroskopisi ile Tanınması (6.deney)

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM

ATOM NEDİR? -Atom elementin özelliğini taşıyan en küçük parçasına denir. Her canlı-cansız madde atomdan oluşmuştur.

ATOMUN YAPISI. Özhan ÇALIŞ. Bilgi İletişim ve Teknolojileri

ELEKTRON DİZİLİMİ PAULİ DIŞLAMA İLKESİ:

EŞDEĞER (EKİVALENT) PROTONLAR 2 KİMYASAL KAYMA; NMR SPEKTRUMDAKİ PİK KONUMU 3 İNTEGRASYON; PİK ALANI VE PROTON SAYMA 8

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1

SPEKTROSKOPİ. Spektroskopi ile İlgili Terimler

ATOM BİLGİSİ I ÖRNEK 1

Serüveni 3. ÜNİTE KİMYASAL TÜRLER ARASI ETKİLEŞİM GÜÇLÜ ETKİLEŞİM. o İYONİK BAĞ o KOVALENT BAĞ o METALİK BAĞ

Fourier Transform Infrared Spectroscopy (FTIR) Spektroskopi Nedir?

ALKOLLER ve ETERLER. Kimya Ders Notu

MANYETİK REZONANS GÖRÜNTÜLEMENİN TEMELLERİ. Yrd.Doç.Dr. Ayşegül Yurt Dokuz Eylül Üniversitesi Medikal Fizik AD.

BİYOKİMYAYA GİRİŞ: ATOM, MOLEKÜL, ORGANİK BİLEŞİKLER

Paylaşılan elektron ya da elektronlar, her iki çekirdek etrafında dolanacaklar, iki çekirdek arasındaki bölgede daha uzun süre bulundukları için bu

ÖĞRETİM YILI 2. DÖNEM 12. SINIF / KİMYA DERSİ / 1. YAZILI

CANLILARIN KİMYASAL İÇERİĞİ

Her madde atomlardan oluşur

Radyoaktif elementin tek başına bulunması, bileşik içinde bulunması, katı, sıvı, gaz, iyon halinde bulunması radyoaktif özelliğini etkilemez.

BİYOLOJİK MOLEKÜLLERDEKİ

OPTİK izomerlik Optik İzomerlik R-S Adlandırma

R RAMAN SPEKTROSKOPİSİ CAN EROL

ORGANİK KİMYA. Prof.Dr. Özlen Güzel Akdemir. Farmasötik Kimya Anabilim Dalı

Enstrümantal Analiz, Cihazlar, FTIR, IR Uygulamalar

Ref. e_makaleleri, Enstrümantal Analiz, Deneysel Yöntemler

Yrd. Doç. Dr. H. Hasan YOLCU. hasanyolcu.wordpress.com

Bolum 11&12 Eterler, Epoksitler, Sülfitler

Kimyafull Gülçin Hoca

ATOMUN YAPISI ATOMUN ÖZELLİKLERİ

Bohr Atom Modeli. ( I eylemsizlik momen ) Her iki tarafı mv ye bölelim.

İSRAFİL ARSLAN KİM ÖĞR. YGS ÇALIŞMA KİMYA SORULARI I

Aşağıda verilen özet bilginin ayrıntısını, ders kitabı. olarak önerilen, Erdik ve Sarıkaya nın Temel. Üniversitesi Kimyası" Kitabı ndan okuyunuz.

Dalton atom modelinde henüz keşfedilmedikleri için atomun temel tanecikleri olan proton nötron ve elektrondan bahsedilmez.

KİMYA-IV. Alkoller, Eterler ve Karbonil Bileşikleri (6. Konu)

MOLEKÜL GEOMETRİSİ ve HİBRİTLEŞME. (Kimya Ders Notu)

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1

Tepkimeler ve Mekanizmaları

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Temel kavramlar Atomsal yapı

ATOM ATOMUN YAPISI 7. S I N I F S U N U M U. Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir.

12. SINIF KONU ANLATIMLI

2.ÜNİTE:ATOM VE PERİYODİK SİSTEM ATOM ALTI TANECİKLER

ATOM ve YAPISI Maddelerin gözle görülmeyen (bölünmeyen) en parçasına atom denir. Atom kendinden başka hiçbir fiziksel ya da kimyasal metotlarla

KARBON ve CANLILARDAKİ MOLEKÜL ÇEŞİTLİLİĞİ

GENEL KİMYA. 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar

... ANADOLU L SES E T M YILI I. DÖNEM 10. SINIF K MYA DERS 1. YAZILI SINAVI SINIFI: Ö RENC NO: Ö RENC N N ADI VE SOYADI:

Müh. Fak. G. Kimya Vize Soru ve Cevapları A Mühendislik Fakültesi Genel Kimya (Kimya Metal. ve Malz.)) Ara Sınav Soruları

Ref. e_makaleleri, Enstrümantal Analiz

Bir maddenin başka bir madde içerisinde homojen olarak dağılmasına ÇÖZÜNME denir. Çözelti=Çözücü+Çözünen

BÖLÜM 3: (6,67x10 Nm kg )(1,67x10 kg)»10 36 F (9x10 Nm C )(1,6x10 C) NÜKLEONLAR ARASI KUVVET- NÜKLEER KUVVET

GENEL KİMYA. 4. Konu: Kimyasal türler, Kimyasal türler arasındaki etkileşimler, Kimyasal Bağlar

RADYASYON FİZİĞİ 1. Prof. Dr. Kıvanç Kamburoğlu

ENSTRÜMENTAL ANALİZ YÖNTEMLERİ

ATOMUN YAPISI VE PERİYODİK ÖZELLİKLER

POLİMER KİMYASI -2. Prof. Dr. Saadet K. Pabuccuoğlu

Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü

ATOM BİLGİSİ Atom Modelleri

BÖLÜM 36 NÜKLEER MANYETİK REZONANS

İnorganik Kimya Atomun Yapısı ve Kimyasal Bağlanma

ATOM MODELLERİ.

ECZACILIK FAKÜLTESİ FARMASÖTİK KİMYA

görülmüştür. Bu sırada sabit nükleer yoğunluk (ρ) hipotezide doğrulanmış olup ραa olarak belirtilmiştir.

Elektromanyetik Işıma Electromagnetic Radiation (EMR)

KİM-117 TEMEL KİMYA Prof. Dr. Zeliha HAYVALI Ankara Üniversitesi Kimya Bölümü

BİLEŞİKLER VE FORMÜLLERİ

Transkript:

Spektroskopi Elektromanyetik ışımanın madde ile etkileşimini inceleyen bilim dalına spektroskopi denir. Bu etkileşim absorbsiyon (soğurma) ya da emisyon (yayınma) şeklinde olabilir. Elektromanyetik ışımanın organik moleküller tarafından absorblanması atomların türü, düzenlenmesi, moleküllerin şekli, büyüklüğü... gibi pek çok parametreye bağlıdır.

Organik kimyada spektroskopik yöntemler, maddelerin: yapı tayininde stereokimyasal özelliklerinin belirlenmesinde saflık kontrolünde miktar tayininde uygulanır.

Dalga boylarına veya frekanslarına göre kozmik ışınlardan radyo dalgalarına kadar çok geniş bir aralığı kapsayan spektruma elektromanyetik spektrum denir. Elektromanyetik Spektrum λ (m)

Bir molekülün toplam enerjisi onun elektronik, vibrasyonel (titreşim) ve rotasyonel (dönme) enerjilerinin toplamıdır. E = Ee + Er + Ev Ee > Er + Ev

Elektromanyetik ışımanın molekül üzerindeki etkisi 3 farklı şekilde olur : 1. Molekülün bütün olarak uyarılması : Uyarılma sonucu ötelenme, dönme(rotasyon), titreşim (vibrasyon) hareketleri gözlenir. (IR) 2. Moleküllerdeki elektronların uyarılması : Moleküllerdeki elektronlar çeşitli enerji düzeylerinde bulunurlar. Elektromanyetik ışımayı absorbe ettiklerinde temel enerji düzeyinden yüksek enerji düzeyine geçerler. (UV) 3. Çekirdek spinlerinin uyarılması : Spin kuantum sayısı sıfırdan farklı olan bazı çekirdeklerin güçlü bir manyetik alanda radyo dalgaları ile uyarılması sağlanır. (NMR)

Spektroskopik Yöntemler 1- UV-Visible alan spektroskopisi : Molekülde kromofor grup ve konjugasyon varlığı belirlenir. 2- İnfrared spektroskopisi (IR) : Moleküldeki fonksiyonlu gruplar belirlenir. 3- Nükleer manyetik rezonans spektroskopisi (NMR) : Moleküldeki ilgili çekirdek ( 1 H, 13 C vb.) sayısı ve bu çekirdeklerin kimyasal çevreleri (molekülde nasıl yerleştikleri) belirlenir. 4- Kütle spektrometrisi (MS) : Molekül kütlesi (ağırlığı), formülü, fonksiyonlu gruplar ve genel yapı bulunabilir.

Ultraviyole-Visible Alan Spektroskopileri (Mor Ötesi ve Görünür Alan Spektroskopileri) 10-380 nm / UV alan 10-200 nm / Uzak UV 380-780 nm / Visible alan 200-380 nm / Yakın UV Organik molekülde özellikle konjugasyonun derecesi ve aromatiklik hakkında bilgi verir. Elde edilen bilgi belirtici ve yeterli olmamakla beraber tamamlayıcıdır.

Esası... UV ışığın molekül tarafından absorblanması, molekülde elektronik uyarıya yol açar Elektronlar düşük enerjili bir elektronik düzeyden, daha yüksek enerjili bir düzeye geçerler. ΔE E 2 (uyarılmış elektronik seviye) E 1 (temel elektronik seviye)

İnfrared (Kızıl Ötesi) Spektroskopisi 0.78 μ 1 mm / IR alan 0.78-2.5 μ (Yakın IR) 2.5 15 μ (IR) 15 μ 1 mm (Uzak IR) İki tür bilgi elde edilir: 1-Yapıdaki ödevli gruplar 2- İki organik bileşiğin aynı olup olmadığı

IR spektrumlarında bandların yeri, dalga sayısı _ (υ) ile ifade edilir. _ υ = Bir santimetredeki dalga sayısıdır. _ υ ( cm -1 ) 1 = = λ (cm) 10 4 λ (μ) 10 4 2.5 μ = 4000 cm -1 10 4 15 μ = 666 cm -1

Esası... IR ışınları molekülün vibrasyonel (titreşim) ve rotasyonel (dönme) enerjilerinde değişikliğe sebep olur. IR ışınlarının enerjisi, molekülün elektronik enerji seviyesini uyarmak ve moleküldeki bağları bozmak için yeterli değildir. Dönme enerjisindeki değişikler çok nadir saptanabilir. IR spektrumlarında organik kimyayı ilgilendiren bandlar, titreşim enerji düzeylerinin değişimiyle oluşan bandlardır.

Moleküller iki tür titreşim yapar : Gerilme titreşimi Bağ hattı boyunca ritmik titreşim H H C simetrik H C H asimetrik Eğilme titreşimi düzlem boyunca titreşim (bağ açılarının değişimi) H H C H H C H H C H H C makaslama sallanma burkulma salınma Düzlem içi Düzlem dışı

Fonksiyonel grup (ödevli grup), molekülün bir parçasıdır; kendine özgü kimyasal davranışlara sahip atom ya da atom grubundan meydana gelmiştir. Spektroskopide belli bir fonksiyonel grup, farklı moleküllerde benzer şekilde hareket eder. Ödevli grupların genel olarak IR spektrumunda gözlenebilecekleri aralıklar belirlidir : 4000-1200 cm -1 ödevli grup bölgesi 1200-666 cm -1 parmak izi bölgesi

3650-3550 cm -1 O-H gt (alkol, asid, fenol vb ödevli gruplar) 3500-3300 cm -1 N-H gt (amin, amid, üre vb ödevli gruplar) 3100-3000 cm -1 aromatik C-H gt 2970 cm -1 alifatik C-H gt (asimetrik) 2870 cm -1 alifatik C-H gt (simetrik) 2200 cm -1 C N 1800-1650 cm -1 C=O gt (asid, ester, keton, aldehit...vb) 1650-1450 cm -1 C=C gt 1600-1550, 1390-1300 cm -1 NO 2 gt 1300-1000 cm -1 C-O, C-N gt 1370-1335, 1170-1155 cm -1 S=O gt 1000-600 cm -1 Parmak izi bölgesi R-COCl > R-COOR > R-CO-R; R-CHO > R-CONHR > R-COOH 1800cm -1 1735cm -1 1700cm -1 1680cm -1 1650cm -1

O C H

Nükleer Manyetik Rezonans Spektroskopisi ( NMR ) 1 mm-30 cm dalga boyundaki radyo dalgaları kullanılır. Organik moleküllerdeki belirli çekirdeklerin kuvvetli bir manyetik alanda, radyo dalgalarını absorblaması esasına dayanır. NMR spektroskopisinde radyo dalgaları, atom çekirdeği üzerinde etki gösterir.

Esası.. Çekirdeklerin kendi ekseni etrafında dönmesine çekirdek spini denir. Çekirdek spin hareketi yaparken manyetik momente sahiptir ve çevresinde manyetik bir alan oluşturur. Spin Kuantum Sayısı Bir elementin NMR da aktif olup olmaması, ilgili çekirdeğin spin kuantum sayısına bağlıdır. Bir elementin NMR da gözlenebilmesi için spin kuantum sayısının sıfırdan büyük olması gerekir. Örn: 1 H, 13 C, 15 N, 19 F, 31 P...vb

Spin kuantum sayısı (I), çekirdekte bulunan proton ve nötron sayısına bağlı olarak değişir: Atom ve kütle numarası çiftse, çekirdeğin spin kuantum sayısı 0 dır. ( 12 C, 16 O ) Atom ve kütle numarası tek ise veya atom numarası çift ve kütle numarası tek ise, çekirdeğin spin kuantum sayısı ½ ve katlarıdır. ( 1 H, 11 B, 19 F, 31 P, 13 C ) Atom numarası tek ve kütle numarası çift ise, çekirdeğin spin kuantum sayısı 1 ve katlarıdır. ( 10 B, 2 H..)

Spin hareketi yapan bir çekirdeğin, manyetik alan içerisinde kaç değişik şekilde yönlenebileceği (2 I +1) formülü ile hesaplanır. NMR da en önemli çekirdekler 1 H, 13 C izotoplarının çekirdekleridir. Bu çekirdeklerin spin kuantum sayısı ½ olduğundan (2.1/2+1=2) 2 spin yönlenmesi söz konusudur. Dönen bir proton ( 1 H çekirdeği), güçlü bir manyetik alan içine yerleştirilirse; Manyetik alanla aynı yönlü= PARALEL Manyetik alanla zıt yönlü= ANTİPARALEL yönlenebilir.

Dış Manyetik Alan Rastgele yönlenmiş protonlar Paralel ve Antiparalel yönlenmiş protonlar Dönen protonlar birer mıknatıs gibi davranır

Manyetik alan içerisindeki çekirdek üzerine, uygun radyo frekansı yollandığında paralel protonlar absorbladıkları enerji ile antiparalel duruma geçerler; tekrar eski durumlarına geçerken de sahip oldukları enerjiyi ısı olarak verirler.

Protonun ( 1 H çekirdeği) rezonansa gelmesi : Uygulanan manyetik alan ile paralel yönlenmiş çekirdeğin, dışarıdan verilen enerji ile antiparalel duruma geçmesi olayıdır. Protonlar bağlı bulundukları atomlara ve bu atomların uzaydaki konumlarına göre farklı bölgelerde (farklı frekanslarda) rezonans olur. Bu protonlara ait sinyaller NMR spektrumunda farklı kaydedilir (bu durum farklı kimyasal kayma değerleri olarak ifade edilir).

Kısaca özetlersek; Numune sabit ve homojen bir magnetik alan içine konur. Elektromagnetik ışıma yapılır (radyo dalgaları). Rezonans için uygun frekans yakalandığında ışıma enerjisi protonlar tarafından absorblanır ve protonlar alt enerji seviyesinden üst enerji seviyesine geçer ( paralel antiparalel yönlenme ) Bu absorbsiyon SİNYAL olarak kaydedilir.

Radyo frekans vericisi Radyo frekans alıcısı Alan tarayıcı Alan tarayıcı Mıknatıs Kaydedici Numune Tarayıcı Jeneratör

Kimyasal kayma : Protonun rezonansa geldiği radyo frekansıyla, standart maddenin rezonansa geldiği frekans arasındaki farktır. Bütün maddelerin kimyasal kayması standart madde tetrametilsilan a göre değerlendirilir (TMS nin çıktığı yer sıfır olarak kabul edilir). Kimyasal kayma birimi ppm dir. Kimyasal kayma = = υ numune / υ cihaz. 10 6 ppm 200 MHz de çalışan alette 1 ppm 200 Hz dir. CH 3 H 3 C Si CH 3 CH 3 TMS

Aynı kimyasal çevrede bulunan protonlar NMR spektrumunda aynı kimyasal kaymaya sahiptirler. Farklı kimyasal çevredeki protonlar farklı kimyasal kaymalara sahiptirler ve eşdeğer olmayan protonlar olarak adlandırılırlar. Kimyasal Kaymayı Etkileyen Faktörler: Atom çekirdeğinin çevresindeki manyetik alan, dış manyetik alanla eşdeğer değildir: 1) Çekirdeğin etrafında dönmekte olan elektronların oluşturduğu manyetik alan etkisi: Protonların etkisi altında bulundukları manyetik alan dış manyetik alandan farklıdır. Çünkü; çekirdek çevresinde elektronların oluşturduğu sekonder manyetik alan dış manyetik alanın etkisini azaltır veya arttırır.

Çekirdek etrafındaki elektron yoğunluğu fazla Çekirdek etrafındaki elektron yoğunluğu az Kuvvetli sekonder manyetik alan Zayıf sekonder manyetik alan Güçlü perdeleme Zayıf perdeleme Yukarı Alanda Rezonans Aşağı Alanda Rezonans Aşağı Alan Yüksek Frekans Düşük Enerji Yukarı Alan Düşük Frekans Yüksek Enerji DİAMANYETİK KAYMA (PERDELEME) 10 9 8 7 6 5 4 3 2 1 0 PARAMANYETİK KAYMA (ANTİPERDELEME)

2) Komşu Atom ve Atom Gruplarının Etkisi : Z X C H Y Protonun kimyasal kayması komşu sübstitüentlerin (X, Y, Z) elektronik yapısına bağlıdır. Gruplar elektron çekici ise Gruplar elektron verici ise F Cl Br I Elektronegatiflik artar Protonun çevresindeki elektron yoğunluğu azalır Protonun çevresindeki elektron yoğunluğu artar O N S C Proton rezonans frekansı daha az perdelemeden aşağı alana kayar Proton rezonans frekansı daha az perdelemeden yukarı alana kayar

1 H-NMR SPEKTROSKOPİSİNDE FONKSİYONEL GRUPLARIN KİMYASAL KAYMALARI C-CH 3 0.9 ppm -C=CH-OH 15 ppm ve 4.0-7.5 ppm C-CH 2 1.2 ppm RCOOH 10.0-13.2 ppm C-CH 1.5 ppm RSO 3 H 11.0-12.0 ppm CO-CH 3 1.9-2.2 ppm R-SH 1.2-1.6 ppm Ar-CH 3 2.3 ppm Ar-SH 2.8-3.6 ppm O-CH 3 3.3-4.0 ppm RCONH 2 5.0-8.5 ppm N-CH 3 2.1-3.0 ppm RSO 2 NH 2 10.0 ppm S-CH 3 2.1-2.8 ppm R-NH 2 0.5-3.0 ppm -CH=C- 4.6-6.4 ppm Ar-NH 2 3.0-5.0 ppm -HC CH- 2.5 ppm R-CHO 9.9 ppm Aromatik protonlar 6.0-8.0 ppm Amin tuzları 6.0-8.5 ppm R-OH Ar-OH 0.5-6.2 ppm 4.0-6.2 ppm

Spin-spin etkileşmesi ve pik yarılması: Komşu protonun farklı şekilde yönlenmesi, diğer protona ait sinyallerde ince yarılmalar oluşturur. Sinyallerin, komşu protonların etkisi ile yarılmasına spin-spin etkileşmesi denir. Proton pik yarılması = Komşu karbondaki hidrojen sayısı+1 Etkileşen H yok singlet Etkileşen bir H dublet Etkileşen iki H Etkileşen üç H triplet kuartet Pascal Üçgeni

Etanolun 1 H NMR spektrumu H 3 C CH 2 OH

2-propanol OH H 3 C HC CH 3

t-butanol CH 3 C H 3 C OH CH 3

Aseton O H 3 C C CH 3

Metil etil keton O H 3 C C CH 2 CH 3

O H 3 C C O CH 3 methyl acetate Metil asetat

Benzen H H H H H H

Kütle spektrometrisi Organik molekülün gaz fazda, yüksek enerjili elektronlarla bombardıman edilmesi ( elektron çarptırma ) esasına dayanır. Yüksek enerjili elektronlarla bombardıman sonucu molekülden ilk olarak elektron kopartılır; bu şekilde oluşan iyon radikaline moleküler iyon (M +. ) denir. M+ e - M +. + 2e - Moleküler iyonun kütlesi bileşiğin molekül ağırlığıdır.

Elektron bombardımanının devam etmesi sonucu, moleküldeki bağların kırılmasıyla fragment iyonlar denilen parçacıklar oluşur. Kopan parçacıkların kütle/yük oranlarına (m/e ya da m/z) karşı bağıl bolluklarının çizimiyle kütle spektrumu elde edilir. Her spektrumda en büyük olan pike temel pik denir ve bağıl bolluğu % 100 olarak kabul edilir; diğer piklerin bağıl bolluklarının hesaplanmasında kullanılır.

Kütle spektrumu ile : 1- Maddenin molekül ağırlığı 2- Bazı izotopların varlığı 3- Molekülde azot varlığı Azot kuralı= Molekül kütlesi çiftse (sıfır dahil), çift sayıda azot içerir Molekül kütlesi tekse, tek sayıda azot içerir.

Temel pik (MA=142) Moleküler İyon (M +. )