MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

Benzer belgeler
MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

İleri Diferansiyel Denklemler

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

İleri Diferansiyel Denklemler

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler

Bekleme Hattı Teorisi

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

İleri Diferansiyel Denklemler

VEKTÖR UZAYLARI 1.GİRİŞ

İÇİNDEKİLER. Ön Söz Saymanın Temel Kuralları Permütasyon (Sıralama) Kombinasyon (Gruplama) Binom Açılımı...

EME Sistem Simülasyonu. Giriş. Olasılık Dağılımı. Rassal Degiskenler

Tesadüfi Değişken. w ( )

İleri Diferansiyel Denklemler

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir.

Matris Cebiriyle Çoklu Regresyon Modeli

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

RD lerin Fonksiyonları

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar

KUADRATİK FORM. Tanım: Kuadratik Form. Bir q(x 1,x 2,,x n ) fonksiyonu

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

GEO182 Lineer Cebir. Matrisler. Matrisler. Dersi Veren: Dr. İlke Deniz Derse Devam: %70. Vize Sayısı: 1

Rastgele değişken nedir?

İleri Diferansiyel Denklemler

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz.

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

MAK 210 SAYISAL ANALİZ

DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS Çok Değişkenli İstatistik EKO428 Bahar Ön Koşul Dersin Dili

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

Cebir 1. MIT Açık Ders Malzemeleri

A (B C) = {4, 5, 6} {2, 3, 4, 6, 7} = {4, 6} ; ve (A B) (A C) = {4, 6} {6} = {4, 6}. 6. Dağıtıcı yasayı Venn şeması yoluyla doğrulayınız.

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

ÖZDEĞERLER- ÖZVEKTÖRLER

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

Ders 4: Rastgele Değişkenler ve Dağılımları

İçindekiler. Ön Söz... xiii

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

Ders 9: Bézout teoremi

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu

Appendix B: Olasılık ve Dağılım Teorisi

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

altında ilerde ele alınacaktır.

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

ÖZEL EGE LİSESİ 10. OKULLARARASI MATEMATİK YARIŞMASI 10. SINIFLAR SORULARI

Özdeğer ve Özvektörler

Matrisler ve matris işlemleri

İSTATİSTİK VE OLASILIK SORULARI

ab H bulunur. Şu halde önceki önermenin i) koşulu da sağlanır ve H G bulunur.

Prof.Dr.F.Nejat EKMEKCİ, Prof. Dr. Yusuf YAYLI, BAHAR

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ İktisat Hakkında İktisatta Grafik ve Matematik Kullanımı 13

İleri Diferansiyel Denklemler

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

İSTATİSTİK DERS NOTLARI

BÖLÜM 24 PAULI SPİN MATRİSLERİ

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

Birden Fazla RDnin Bileşik Olasılık Fonksiyonları

SÜREKLİ RASSAL DEĞİŞKENLER

İleri Diferansiyel Denklemler

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

OLASILIK ve KURAMSAL DAĞILIMLAR

x 0 = A(t)x + B(t) (2.1.2)

Transkript:

MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

14.30 Ekonomide İstatistiksel Yöntemlere Giriş Ders Notları 10 Konrad Menzel 12 Mart 2009 1. 2 veya Daha Fazla Rasgele Değişkenin Fonksiyonları 2 veya daha fazla rasgele değişkenin birleşik dağılımı hakkında hâlihazırda öğrendiklerimizi tekrarlayalım. Diyelim ki X 1, X 2,,X n var, Eğer X 1,,X n kesikli ise, onların birleşik p.d.f. si ile verilir. Eğer X 1,,X n sürekli ise, onların birleşik p.d.f. si pozitif bir fonksiyondur, f X1,,Xn (x 1,,x n ), bu nedenle herhangi bir D n için X 1,,X n bağımsızdır eğer aşağıdaki sağlanırsa Bunun aşağıdakine eşit olduğunu hatırlayınız, Şimdi yukarıda tartışılan tek değişkenli durumdan nasıl 2 veya daha fazla boyuta geneleme yapacağımıza bakalım. Tek boyutlu durumda olduğu gibi yine üç durumu ayırt edeceğiz: 1. İlgili değişken X 1,,X n kesiklidir 2. İlgili değişken X 1,,X n süreklidir 3. X süreklidir ve u(x 1,,X n ) n-boyutlu bire-bir bir fonksiyondur.

1.1. Kesikli Durum Varsayalım ki X 1,, X n birleşik yoğunluğu p.d.f. f X1,,Xn (x 1,,x n ) ile kesiklidir ve Y 1,,Y m m tane fonksiyon ile veriliyor Aynı zamanda, Bu durumda ve Y 1,,Y m in birleşik p.d.f.si aşağıdaki ile verilir. Örnek 1(Binom Rasgele Değişkenlerin Toplaması). Varsayalım ki X B(m, p) ve Y B(n, p) p.d.f.si aşağıdaki gibi olan bağımsız binom rasgele değişkenler olsun. Eğer Z = X + Y olarak tanımlarsak, p.d.f. f z (z) nedir? X ardışık m bağımsız deneydeki ve Y ise n deneydeki başarı sayısı olduğu için (her ikisi de aynı başarı olasılığına sahiptir), o zaman Z nin de m+n denemendeki p olasılıklı başarıların toplamı olması gerektiği bir ilk tahmin olarak söylenebilir. Yani Z B(m + n, p). Bu doğru olacakmış gibi görünüyor, ancak biçimsel olarak bunu kontrol etmemiz gerekiyor:

p z (1 p) n -z terimi k ye bağlı değildir, bu nedenle onu toplamdan çekebiliriz. Diğer taraftan, aşağıdakini iddia ediyorum, Gerçekten de, sayma kuralını kullanarak bunu gösterebiliriz: çarpım kuralı ve kombinasyon formülü ile, ( )( ) terimi m sayılı bir gruptan çekilen k eleman içeren bir küme ile n sayılı başka bir gruptan çekilen z-k eleman içeren farklı küme sayısına karşılık gelir. Bütün k değerleri üzerinden toplayarak, birleştirilmiş iki kümeden (yani, m + n elemanlı bir küme) bir z kümesinin elemanlarını çekmenin toplam yollarının sayısını elde ederiz. Kombinasyon formülüne göre bu küme ( ) ye eşittir, bu da ispatlamaya çalıştığımız eşitliğin sağ tarafıdır Bütün parçaları bir araya getirecek olursak, Böylece gerçekten Z B(m + n, p). Bir tedbir notu olarak, genel olarak aynı dağılım ailesinden bu durumda binom gelen iki bağımsız rasgele değişken X ile Y nin toplamı olan Z aynı aileye ait olmayacaktır. Bu bağlamda, binom dağılım çok özel bir durumdur ve aynı özeliğe sahip sadece birkaç tane daha yaygın olarak kullanılan dağılım vardır. Örneğin, Eğer X B(m, p X ) iken Y B(m, p Y ) ve p X p Y ise, yukarıda elde edilenler hiçbir işe yaramayacaktır. 1.2 Sürekli Durum Varsayalım ki X 1,, X n birleşik yoğunluğu yani f X1,,Xn (x 1,,x n ) p.d.f.si ile süreklidir ve Y (kavramı basit tutmak için sadece bir değişken kullanalım) aşağıdaki fonksiyon ile verilmektedir. Eğer ise, o zaman Y nin p.d.f.si aşağıdaki ile verilir:

2. Bire-Bir Dönüşüm için Değişken Değiştirme Formülü Bu da yine sadece sürekli değişkenler ile çalışan özel bir durumdur: A X 1,,X n nin destekleyeni olsun, yani ve B de Y 1,,Y n indirgenmiş destekleyeni olsun, yani Varsayalım ki Y 1,,Y n türevlenebilir bire-bir dönüşümünden elde edilen X 1,,X n den elde edilsin, Yani (x 1,, x n ) A nın her değeri (y 1,, y n ) B nin birer elamanıyla eşleşmektedir. Bu durumda [s 1 (x 1,, x n ),, s n (x 1,, x n )] nin tersini tanımlayabiliriz, böylece Eğer s 1 (.),, s n (.) B üzerinden türevlenebilirse aşağıdaki matrisini tanımlarız. Kısmı türevin bu matrisi aynı zamanda Jacobian ın ters dönüşümü olarak adlandırılır. Doğrusal Cebir i almayanların, 2 ye 2 durumlarını çalışmaları yeterlidir. İkiye iki durumlarında Matris A nın determinantının aşağıdaki gibi hesaplandığını bilmeniz gerekiyor:

Önerme 1. X 1,, X n yukarıda vurgulandığı gibi Y 1,, Y n ile eşleşmesi bire-bir ve tersi olan s 1 (.),, s n (.) türevlenebilir ise, o zaman Y 1,, Y n nin birleşik p.d.f.si aşağıdaki ile verilir. 2.1 Doğrusal Dönüştürme X rasgele değişkenlerin bir vektörü olsun, yani det(a) 0 olan bir nxn matris A için, ve Bu durumda doğrusal eşleştirme (mapping) Y = AX bire-birdir (matrisin tersi olduğu için) ve değişken değiştirme formülünü kullanarak Y nin birleşik dağılımını bulabiliriz. Örnek 2. Bunun ekonomideki önemini görmek için, varsayalım ki Boston daki portakal suyu piyasası için basit (kısmı denge) bir modelimiz var. Firmalar fiyat p nin bir doğrusal fonksiyonu( s ve s katsayılı) olan miktar q s i arz etmek niyetindedirler. q s = s + s p + u s Burada u s rasgele bir değişkendir (diyelim ki Florida daki güneşli saatler gibi). Tüketiciler başka bir tesadüfi şok u d veriyken (diyelim ki gelir) miktar q d yi talep ederler. q d = d - d p + u d Denge durumunda, arz talebe eşittir, yani fiyatlar öyledir ki q s = q d = q dir ve fiyatlar ile miktarlar beraber aşağıdaki ilişki tarafından belirlenir.

Fiyat ve miktarların birleşik dağılımını elde edeceğimiz şokların (u d, u s ) birleşik p.d.f.si f U (u s, u d ) yi biliyor olabiliriz ya da varsayabiliriz. Bu birleşik p.d.f. kesin şekilde Jacobian a (sol taraftaki matris) bağlı olacaktır. Bu durumda det(j) = d + s dir, bu nedenle eğer arz veya talep önemli (nontrivial) bir eğime sahip ise, şoklardan fiyata ve miktara dönüşüm bire-birdir ve sonuçta ortaya çıkan birleşik p.d.f. aşağıdaki gibidir: Bu durum, bu derste işleyeceklerimizden biraz uzak gibidir ancak Jacobian terimi d + s piyasa dengesi aracılığıyla fiyat ve miktarın karşılıklı bağımlılığını yakalar. Bunun, 14.32 dersinde piyasa sonuçlarından arz ve talebin ayrı ayrı tahmin edilmesini zorlaştıran eşanlılık problemi olarak adlandırılan durumun kaynağı olduğu ortaya çıkmıştır. Bu Ekonometrinin temel problemlerinden biridir. 2.2. X +Y nin Dağılımı (Bükülme) Varsayalım ki X ve Y bağımsız sürekli rasgele değişkenlerdir ve p.d.f.leri, sırasıyla, fx(x) ve fy(y) dir ve böylece rasgele değişkenlerin birleşik p.d.f.leri f XY (x, y) = f X (x)f Y (y) dir. Z = X + Y nin p.d.f.si nedir? Örnek 3. Bunun gibi bir örneği sınıfta yaptığımızı hatırlayınız: çim biçme makinesindeki iki bujini ömrüne bakmıştık, ve P(X + Y z) olasılığı {(x, y) : y z x} ile tanımlanmış üçgen üzerinden f XY (x, y) birleşik yoğunluğun integrali olduğu ortaya çıkmıştı. Bu durumda Z nin c.d.f.si aşağıdaki gibidir: Buradan, Z nin yoğunluğunu elde edebiliriz, Rasgele değişken Z = X + Y, X ve Y nin büklümü olarak ta adlandırılır. Son formülün sadece bağımsız rasgele değişkenlerin toplanması halinde geçerli olduğunu not ediniz. Örnek 4. Önceki örnekteki tartışma 2-adım yönteminin çizgisiyle aynıydı ve değişkenlerin dönüşümü formülünü kestirme bir yol olarak kullanmanın mümkün olup olmayacağı merak edilebilir. (X, Y) den Z ye eşleme açıkça bire-bir değildir, bu nedenle değişkenlerin dönüşüm formülünü doğrudan kullanamayız. Ancak, aşağıdaki hileyi yapabiliriz: aşağıdakiler tanımlayalım.

O zaman, ters dönüşüm şöyle tanımlanır: Bu durumda Bundan ötürü, Birleşik p.d.f. yi w üzerinden integralini alarak Z nin marjinal p.d.f.sini elde edebiliriz artık. Bu bir önceki türetmeden elde edilen formülün aynısıdır. Örnek 5. Şimdiye kadar üstel dağılımın birkaç örneğini gördük (çim biçme makinesi örneğindeki gibi). X ve Y bağımsız üstel rasgele değişkenlerdir ve marjinal p.d.f.leri şöyle olsun: Son formül ile, Z = X + Y nin p.d.f.si aşağıdaki gibidir:

Burada, ikinci adımdaki integralin limiti X ve Y nin desteğinin pozitif reel sayılar ile sınırlı olması gerçeğinden gelmektedir. Yani z < 0 için f X (z) sıfırdır, halbuki z > w için f Y (z - w) sıfır olur.