TARAMALI ELEKTRON MİKROSKOBU BAHAR 2010



Benzer belgeler
Malzeme muayene metodları

İlk elektronik mikroskobu Almanya da 1931 yılında Max Knoll ve Ernst Ruska tarafından icat edilmiştir.

GEÇĐRĐMLĐ ELEKTRON MĐKROSKOBU

TARAMA ELEKTRON MİKROSKOBU SCANNING ELECTRON MICROSCOPE (SEM)

Alüminyum Test Eğitim ve Araştırma Merkezi. Mart 2017

SEM İncelemeleri için Numune Hazırlama

Bölüm 1 Maddenin Yapısı ve Radyasyon. Prof. Dr. Bahadır BOYACIOĞLU

X-Işınları. 4. Ders: X-ışını sayaçları. Numan Akdoğan.

X-IŞINLARI FLORESAN ve OPTİK EMİSYON SPEKTROSKOPİSİ

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

X IŞINLARININ NİTELİĞİ VE MİKTARI

X-IŞINI OLUŞUMU (HATIRLATMA)

Bahar Yarıyılı Bölüm-2 ve Bölüm-3 (Uygulamalar) Ankara A. OZANSOY

X-IŞINLARI KIRINIM CİHAZI (XRD) ve KIRINIM YASASI SİNEM ÖZMEN HAKTAN TİMOÇİN

Elektron ışını ile şekil verme. Prof. Dr. Akgün ALSARAN

1.ELEKTRON TARAMALI MİKROSKOP (SEM)

Paslanmaz Çelik Gövde. Yalıtım Sargısı. Katalizör Yüzey Tabakası. Egzoz Emisyonları: Su Karbondioksit Azot

X IŞINLARININ ELDE EDİLİŞİ

Elementel Analiz için X-ışını Spektrometresi

Modern Fiziğin Teknolojideki Uygulamaları

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

ANİZOTROPİ. Schmid s Tek kristle uygulandığında:

RADYASYON FİZİĞİ 3. Prof. Dr. Kıvanç Kamburoğlu

ALETLİ ANALİZ YÖNTEMLERİ. X-Işını Spektroskopisi Yrd. Doç. Dr. Gökçe MEREY

DPÜ %PER )QMW]SRPY 8EVEQEP )PIOXVSR 1MOVSWOSFY *)7)1 *MIPH )QMWWMSR 7GERRMRK )PIGXVSR 1MGVSWGSTI

Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar

RADYASYON FİZİĞİ 2. Prof. Dr. Kıvanç Kamburoğlu

RÖNTGEN FİZİĞİ 5 X-ışınlarının özellikleri, kalitesi ve kantitesi. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

X IŞINLARININ TARİHÇESİ

METALİK MALZEMELERİN GENEL KARAKTERİSTİKLERİ BAHAR 2010

TOZ METALURJİSİ Prof.Dr. Muzaffer ZEREN

İleri Elektronik Uygulamaları Hata Analizi

MMT407 Plastik Şekillendirme Yöntemleri

Harici Fotoelektrik etki ve Planck sabiti deney seti

X-IŞINI FLORESANS SPEKTROSKOPİSİ. X-ışınları spektrometresi ile numunelerin yarı kantitatif olarak içeriğinin belirlenmesi.

Bölüm 5. Tıbbi Görüntüleme Yöntemlerinin Temel İlkeleri. Prof. Dr. Bahadır BOYACIOĞLU

SU Lise Yaz Okulu 2. Ders, biraz (baya) fizik. Dalgalar Elektromanyetik Dalgalar Kuantum mekaniği Tayf Karacisim ışıması

I. Histoloji nedir? II. Niçin Histoloji öğreniyoruz? III. Histolojik inceleme nasıl yapılır?

2. HAFTA MİKROSKOPLAR

Kasetin arka yüzeyi filmin yerleştirildiği kapaktır. Bu kapakların farklı farklı kapanma mekanizmaları vardır. Bu taraf ön yüzeyin tersine atom

FZM 220. Malzeme Bilimine Giriş

Nanomalzemelerin Karakterizasyonu. Yapısal Karakterizasyon Kimyasal Karakterizasyon

SCHRÖDİNGER: Elektronun yeri (yörüngesi ve orbitali) birer dalga fonksiyonu olan n, l, m l olarak ifade edilen kuantum sayıları ile belirlenir.

X-Işınları. Çalışma Soruları. Doç. Dr. Numan Akdoğan Gebze Yüksek Teknoloji Enstitüsü Fizik Bölümü. X1 (X-ışınları hakkında genel bilgiler)

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1

METAL ANALİZ YÖNTEMİ (ALEVLİ ATOMİK ABSORPSİYON SPEKTROMETRE CİHAZI İLE )

X-IŞINLARININ ÖZELLİKLERİ VE ELDE EDİLMELERİ. X-ışınları Alman fizikçi Wilhelm RÖNTGEN tarafından 1895 yılında keşfedilmiştir.

MALZEME BİLGİSİ. Katı Eriyikler

RADYASYON ÖLÇÜM YÖNTEMLERİ

TOBB Ekonomi ve Teknoloji Üniversitesi. chem.libretexts.org

Laboratuarımız. Ankara Üniversitesi. Mühendislik Fakültesi Manyetik Malzemeler Araştırma Grubu. Ankara Üniversitesi

Güç kaynağı. Tüp Akımı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

Görüntüleme ve kontrastlama

FZM 220. Malzeme Bilimine Giriş

8.04 Kuantum Fiziği Ders VI

X-Işınları. Çalışma Soruları

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

RÖNTGEN FİZİĞİ 6. X-Işınlarının madde ile etkileşimi. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a

Dalton atom modelinde henüz keşfedilmedikleri için atomun temel tanecikleri olan proton nötron ve elektrondan bahsedilmez.

BÖLÜM 7. ENSTRÜMENTAL ANALİZ YÖNTEMLERİ Doç.Dr. Ebru Şenel

DEMOCRİTUS. Atom hakkında ilk görüş M.Ö. 400 lü yıllarda Yunanlı filozof Democritus tarafından ortaya konmuştur.

H a t ı r l a t m a : Şimdiye dek bilmeniz gerekenler: 1. Maxwell denklemleri, elektromanyetik dalgalar ve ışık

ATOM HAREKETLERİ ve ATOMSAL YAYINIM

h 7.1 p dalgaboyuna sahip bir dalga karakteri de taşır. De Broglie nin varsayımı fotonlar için,

Atomların bir arada tutulmalarını sağlayan kuvvetlerdir Atomlar daha düşük enerjili duruma erişmek (daha kararlı olmak) için bir araya gelirler

X-Işınları. 5. Ders: X-ışını kırınımı. Numan Akdoğan.

MIT Açık Ders Malzemeleri Fizikokimya II 2008 Bahar

Şekilde görüldüğü gibi Gerilim/akım yoğunluğu karakteristik eğrisi dört nedenden dolayi meydana gelir.

Atomlar ve Moleküller

X-Işınları. 1. Ders: X-ışınları hakkında genel bilgiler. Numan Akdoğan.

ELEKTRİKSEL ÖZELLİKLER

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Atom ve moleküller arası Atomsal bağlar

Valans elektronları kimyasal reaksiyona ve malzemenin yapısına katkı sağlar.

ELEKTRON IŞIN KAYNAĞI

KİMYASAL BAĞLAR İYONİK BAĞ KOVALANT BAĞ POLAR KOVALENT BAĞ APOLAR KOVALENT BAĞ

BÖLÜM 3 DİFÜZYON (YAYINIM)

Bölüm 8: Atomun Elektron Yapısı

ALETLİ ANALİZ YÖNTEMLERİ

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Temel kavramlar Atomsal yapı

KİMYA -ATOM MODELLERİ-

ALETLİ ANALİZ YÖNTEMLERİ

PLASTİK ŞEKİLLENDİRME YÖNTEMLERİ

MİKROSKOP ÇEŞİTLERİ. Doç.Dr.Engin DEVECİ

Element atomlarının atom ve kütle numaraları element sembolleri üzerinde gösterilebilir. Element atom numarası sembolün sol alt köşesine yazılır.

ATOMUN YAPISI. Özhan ÇALIŞ. Bilgi İletişim ve Teknolojileri

ALAN ETKİLİ TRANSİSTÖR

Kimyafull Gülçin Hoca

SORULAR (1-36) SORU -2 Aşağıdakilerden hangisi klavye ve farenin takıldığı portlardan biridir?

Manyetik Alan. Manyetik Akı. Manyetik Akı Yoğunluğu. Ferromanyetik Malzemeler. B-H eğrileri (Hysteresis)

3- KİMYASAL ELEMENTLER VE FONKSİYONLARI

RADYASYON ÖLÇÜM YÖNTEMLERİ DERS. Prof. Dr. Haluk YÜCEL RADYASYON DEDEKSİYON VERİMİ, ÖLÜ ZAMAN, PULS YIĞILMASI ÖZELLİKLERİ

Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 )

MALZEME BİLİMİ (DERS NOTLARI)

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları

İNSTAGRAM:kimyaci_glcn_hoca

Atomik Absorpsiyon Spektrofotometresi

1. Yarı İletken Diyotlar Konunun Özeti

6. Osiloskop. Periyodik ve periyodik olmayan elektriksel işaretlerin gözlenmesi ve ölçülmesini sağlayan elektronik bir cihazdır.

Transkript:

TARAMALI ELEKTRON MİKROSKOBU BAHAR 2010

TARİHSEL GELİ İM 1878 Abbe Işık şiddet sınırını buldu 1923 de Broglie elektronların dalga davranışına sahip olduğunu gösterdi 1926 Busch elektronların mağnetik alanda saptığını gösterdi 1932 Von Borris ve Ruska TEM i icat etti 1935 Max Knoll Đlk SEM i üretti 1938 Siemens Đlk ticari TEM üretti 1965 Đlk ticari SEM üretildi

TARİHSEL GELİ İM Max Knoll, 1935 te Berlinde ilk Taramalı Elektron Mikroskopu imal ettiğinde daha yüksek çözünürlüğe sahip olan Geçirimli Elektron Mikroskopunun-Transmission Electron Microscopy- gölgesinde kalmış olduğunu fark eder ve patent almaya gerek duymaz!!! Yıllar sonra Siemens und Halke Berlin de çalışan Von Borris ve Ruska-Yüksek çözünürlüklü TEM in mucitleri- Manfred von Ardenne adlı bir mucitin kendi özel laboratuarında geliştirilmesi için verilen SEM projesinin iptali için başvururlar. Şirket kendi parasını çöpe atma pahasına mucitleri kırmaz ve proje iptal edilir. Bu iki mucid SEM in hiçbir zaman TEM e rakip olamayacağı için iptalini istedikleri söylenir ancak muhtemeldir ki SEM in TEM e rakip olabileceği akıllarından geçmiş olabilir. Ancak şuda varki TEM de uygulanan real time mikroskopi tekniğinin o zamanki SEM makinalarında uygulanması oldukca zordu. Ancak elektroniğin gelişmesi ile buda aşılmış olmasına rağmen yinede SEM bir alternatif olarak düşünülmemiştir. Field Emission Gun-Alan Etkili Elektron Tabancalar icat edildiğinde bu görüş değişmiş ve SEM in potansiyeli fark edilmiş.

TARİHSEL GELİ İM Son yıllarda SEM lerde ortaya çıkan gelişmeler SEM in kullanım alanlarını genişletmiş ve malzeme analizinde artık birincil araç olarak kullanılmaya başlanmıştır. Son gelişmeler örneğin 0.5kV hızlandırma geriliminin kullanılması- Bilgisayarların efektif kullanımı ile dijital resimleme, kolon ve hassas elektronik kontroller EBSD ile oryantasyonların çıkarılması Düşük vakum altında biyolojik ve hassas numunelerin yüksek çözünürlükle incelenmesi vb.. Elektron sayıcı- Everhart-Thornley detektör ü, ilk defa Sir Charles Oatley önerilmiş ancak bugünlerde her firmanın neredeyse kendi geliştirdiği özel detektörler kullanılmaktadır. Si-Li X-ışını detektörlerinin dahada geliştirilmesi ile Malzeme analizleri daha hassas hala gelmiştir. Bunun en önemli kısmı kullanılan ekranlamanın daha düşük atom numaralı elementlerle yapılıp kalınlığının oldukca azaltılması SEM in analitik çözme kabiliyetinin artırılması ile sağlanmıştır.

TARİHSEL GELİ İM Çözünürlük

AVANTAJLAR-DEZAVANTAJLAR Avantajları Çözme Gücü Çözme Derinliği Büyütme Dezavantajları Vakum Đletken numune Bakım masrafları yüksek Pahalı ($300K)

KULLANIM YERLERİ Topografi Morfoloji Şekil, boyut, vs. Bileşim Kristalografik Bilgi

TANIM Taramalı Elektron Mikroskopu yüksek çözünürlüklü resim oluşturmak için vakum ortamında oluşturulan ve aynı ortamda elektromağnetik lenslerle inceltilen elektron demeti ile incelenecek malzemeyi analiz etme imkanı sunar. Mikroskopta oluşturulan resimler, elektron demetinin malzeme ile olan etkileşiminden ortaya çıkan ışımalar veya geri yansıyan elektronlar sayılarak oluşturulur. Bunlar Đkincil elektron yansımalı(secondary electron image) geri yansımaya uğramış elektronlar (backscattered electrons), karakteristik x ışınları, Auger elektronları, vs.

MİKROSKOP KOLONU Tipik bir Taramalı Elektron Mikroskopunun diyagramı yanda verilmiştir: Elektron tabancası Elektron Tabancası Yoğunlaştırma lensi Saptırma Bobinleri Tarama bobinleri Elektron demeti Yoğunlaştırıcı EM lensler Vakum Detektör Objektif lensi Son apertüre Detektör Görüntü Numune

MİKROSKOP KOLONU Elektron demeti Elektron tabancası Anot Yoğunlaştırma lensi TV ekranı Tarama bobinleri Gerisaçılım elektron dedektörü Numune platformu Đkincil elektron dedektörü Numune

SEM DONANIMI Vakum Sistemi Elektron Tabancası Elektromağnetik Mercekler Apertürler Numune Haznesi Elektron tabancası SEM kolonu Yoğunlaştırma Lensleri Görüntü Objektif Lensleri Tarama Bobinleri Dedektör SEM KOLONU.mov

VAKUM SİSTEMİ Mekanik Pompa(Fore-Rotary) 100-1000 Liter per minute 0.01 Torr sınırı vardır Difüzyon Pompası 100-1000 Liter per minute 10 -(5-7) Torr a ulaşılır

VAKUM SEM de vakum sistemi oldukca önemlidir, basınç elektron tabancasının çalışmasını engellemeyecek kadar düşük olmalıdır. Elektron yayan yüzeylerin koroze olmasını engellemek için düşük olması istenir. Tungsten filamant için 10-5 torr olması ve LaB6 filamant içinse 10-5 ile 10-6 torr arası ve FEG filament için 10-9 torr dur. Eğer iyi bir vakum yoksa yüzeyde pislikler birikecektir. Bu tür pislikler Elektron Tabanca haznesinde birikip performasını etkileyecektir. Çünkü bu tür yüzeyler voltaj ölçümlerinin hassasiyetini azaltır. Elektron tabancasının haznesi ve kolon ortak olarak vakuma alınır!!. SEM lerde difüzyon pompası kullanılır ve bazende rotary pompalarla desteklenir. Yüksek vakum için-feg- iyon pompaları kullanılır.

ELEKTRON TABANCALARI Neden ihtiyaç duyulur? Elektron tabancaları numune üzerine yoğunlaştıracak kadar elektron üreten kaynaklardır. 3 tür elektron tabancası mevcuttur!!! Hairpin Tungsten Lanthanum hexaboride (LaB6) Field emission electron tabancaları

ELEKTRON TABANCASI Filament, elektrik akımı verilerek ısıtılır. Bu sayede yeterli enerjiye sahip elektronlar filamentin ucunda birikerek bir elektron bulutu oluştururlar. Eğer filamente verilen akım kaldırılısa bu elektronlar filament tarafından tekrar absorbe edilirler. Eğer filamentin yanına bir pozitif yüklü bir plaka (Anot) yerleştirilirse, elektronlar bu anotun çekim etkisi altında kalırlar. Bu durumda da elektronlar anot tarafından absorbe edilirler. Eğer anotla elektron bulutu arasına negatif yüklü bir plaka (katod) yerleştirilirse anoda doğru yönlenen elektronlardan dikey doğrultuda bir ışınım elde edilir. Tungsten filament Wehlnet silindiri (-) (~500-50000V) Elektronlar W filament Elektron bulutu Katod (-) Anot (+) Anot(+) Apertüre Bahar Sem-gun.mov 2009

Tungsten filament Wehlnet silindiri (-) (~500-50000V) Elektronlar W filament Elektron bulutu Katod (-) Anot (+) Anot(+) Apertüre

ELEKTRON TABANCALARI Tungsten Tel filament ve LaB6 uç FEG filamantı

TUNGSTEN TABANCA Bu kaynakta yayınım yüzeyinin çok küçük olması için 120- µm tungsten tel ince uç biçimi verecek şekilde bükülmüştür. Đçinden geçen akımla filamant ısınır. Yeterince enerji verildiğinde elektronlar yüzeyi terk ederler. 2700 o C ye kadar ısı üretilir. 50-150 saat ömrü vardır. Ucuzdur 10-5 torr çalışma vakumuna ihtiyaç duyar.

LANTHANUM HEXABORIDE (LaB6) TABANCA Lanthanum hexaboride (LaB6) elektron tabancası kristal haldeki LaB6 in Tungsten veya Rhenium üzerine oturtulması ile oluşturulur. Voltaj uygulandığında kristal ısınır ve elektron yaymaya başlar. Düşük sıcaklıkta çalışır ve yüksek akımları kaldıracak kadar dayanıklıdır.

TERMOİONİK TABANCALAR Sıcaklık arttıkça filamentten ayrılan elektronların sayısı artar. J = AT 2 e Φ kt J=Elektron akışı A=Malzeme sabiti T=Filament sıcaklığı Φ=Đş fonksiyonu k=boltzman sabiti (1.38 x10-23 J/K)

FEG TABANCA FEG tabancası tungsten-zirconium uca sahiptir ve en iyi çözme gücüne ve performans a sahiptir. Yüksek vakumda ve yüksek mağnetik alan etkisiyle elektronlar telden çekilir. Bu tabancada ısıtma yoktur- Soğuk katod Diğer elektron tabancalarına karşı olan avantajları: Yüksek ışık verme kabiliyeti- daha fazla elektron- Elektronlar daha küçük bir alandan yayınırlar. Ve daha düşük enerjide elektron salınımı sağlar ve çözünürlüğü daha yüksektir. Tungsten elektrodun 1/10 u ve LaB6 in 1/5 i. BU tabancanın ömrü Tungsten filamantınkinden 1000 kat daha fazladır. 10-9 ve ya 10-10 vakum gerektirir. W filament Katot Anot Elektron demeti

ELEKTRON TABANCALARI Enerji dağılımının ( E/E) küçük olması elde edilen elektronların enerjilerinin birbirine yakın olması anlamına gelir. Bu sayede elde edilen görüntülerin kalitesi daha yüksek olur. Birim W LaB 6 FEG Φ (Eşik enerjisi) ev 4.5 2.4 4.5 Çalışma sıcaklığı K 2700 1700 300 Parlaklık A/m 2 10 9 5x10 10 10 13 Enerji saçılımı ev 3 1.5 0.3 Vakum Pa 10-2 10-4 10-8 Kullanım ömrü saat 100 500 >1000

Haftaya!! Saptırma bobinleri Mercekler Detektörler Numune-Elektron etkileşimi Daha sonraki hafta Resim oluşumu vs.. Kontrast tekniklerinin kullanımı

5.HAFTA

ELEKTRON-NUMUNE ETKİLE İMİ Filamentten elde edilen elektronların numune ile çarpışması sonucu ortaya çıkan sonuçlar iki kategoriye ayrılır: Elektron sinyalleri Photon sinyalleri Gelen elektronlar Gerisaçılan elektronlar X-ışınları Auger elektronları Katod ışıması Đkincil elektronlar Elastik olmayan bir şekilde saçılan elektronlar Saçılmayan elektronlar Elastik şekilde Saçılan elektronlar

ELEKTRON-NUMUNE ETKİLE İMİ Elektron demeti Numune yüzeyi Auger elektronlarının elde edildiği hacim (D 10Å) Geri saçılan elektronların elde edildiği hacim (D 1-2µ) Đkincil elektronların elde edildiği hacim. (D 100Å) X-ışınlarının elde edildiği hacim (D 5µ)

ELEKTRON-NUMUNE ETKİLE İMİ Đkincil elektronlar Gerisaçılan elektronlar Gelen Elektronlar Gelen Elektronlar Đkincil Elektronlar Gelen Elektronlar Gelen Elektronlar

İKİNCİL ELEKTRONLAR Bu elektronlar gelen elektronlar ile iletkenlik bandındaki zayıf bağlı elektronlar veya valans elektronları arasındaki elastik olmayan (enerji transferine yol açan) çarpışmadan dolayı meydan gelir. Transfer edilen enerji elektronların bağlanma enerjilerini yenmeye yeterli büyüklüktedir. Böylece incelenen numuneden elektron koparılmış olur. Gelen Elektronlar Gelen Elektronlar Đkincil Elektronlar Bu elektronlar ikincil elektronlar olarak isimlendirilir.

İKİNCİL ELEKTRONLAR Đkincil elektronlar düşük enerjili elektronlardır. Detektöre 100-300V arasında bir positif voltaj uygulanması ile kolaylıkla toplanabilirler. Bu yolla ikincil elektronların %50-100 arasındaki kısmı toplanabilir. Böylece incelenen bölgenin 3 boyutlu görüntüsü elde edilmiş olur. Çukurda kalan bölgelerden kaynaklanan ikincil elektronlar sayısı, tümseklerden kaynaklanan elektronların sayısından farklıdır. Bundan dolayı fotoğrafta değişik bölgeler için kontrast görülür.

GERİSAÇILAN ELEKTRONLAR Gerisaçılan elektronlar, gelen elektronlar ile incelenen numunedeki atomların çekirdekleri ile arasındaki elastik (enerji trasferi olamayan) çarpışmalardan dolayı oluşur. (Rutherford saçınımı) Numunedeki atomların atom numarası ne kadar büyük olursa o kadar çok sayıda gerisaçılan elektron elde edilir. Gelen Elektronlar Gelen Elektronlar Elastik çarpışmada, gelen elektronların enerji kaybı çok küçüktür (<1eV)

GERİSAÇILAN ELEKTRONLAR Gerisaçılan elektronlar ile elde edilen görüntüler, incelenen numunedeki atomların atom numaraları hakkında bilgi verir. Atomik numarası küçük olan elementler daha az sayıda elastik elektron yansıtır(düşük parlaklık) ve atom numarası büyüdükçe elastik bir şekilde yansıtılan elektronların sayısı artar (yüksek parlaklık). Atom numarasına bağlı olarak ortaya çıkan bu durum SEM fotoğrafında bir kontrast meydana getirir. C Fe Au

GÖRÜNTÜLEME MODLARI Đkincil Elektron Fotoğrafı Gerisaçılım Fotoğrafı Kursun-Kalay alaşımı. Gerisaçılan elektronların kullanıldığı fotoğrafta beyaz bölgeler Kursun konsantrasyonunun yüksek olduğu bölgelerdir.

DEDEKTÖRLER Đkincil Elektron Detektörü Gerisaçılan Elektron Detektörü

BÜYÜTME ORANI Taranan alanın boyutu küçültülürse büyütme oranı (magnification) artar. Numune üzerinde taranan alan I Katod tüpü üzerinde taranan alan L Büyütme oranı Alan 10x (1cm) 2 100x (1mm) 2 1Kx (100µ) 2 10Kx (10µ) 2 100Kx (1µ) 2 1Mx (100nm) 2 Büyütme oranı:m=l/i

BÜYÜTME ORANI

EDS ANALİZİ

EDS ANALİZİ Đkincil Elektronlar Numunenin yüzeyine yüksek enerjili elektronlar çarptığında bu çarpışmalardan dolayı, numune yüzeyinden bazı elektronlar kopar. Eğer bu elektronlar içteki (çekirdeğe yakın) orbitallerden koparılmışlarsa atomlar kararlıklarını kaybederler. Tekrar karalı hale gelebilmek için dış orbitallerdeki elektronlar iç orbitallerdeki boşlukları doldururlar. Gelen Elektronlar Dış orbitallerdeki elektronların enerjileri iç orbitallerdeki elektronların enerjilerinden daha yüksek olduğu için, dış orbital elektronları iç orbitalleri doldururken belli bir miktar enerji kaybetmek zorundadırlar. Bu kaybedilen enerji X-ışını şeklinde ortaya çıkar.

EDS ANALİZİ 6400 ev 7057 ev 704 ev Ortaya çıkan X-ışınlarının enerjisi ve dalgaboyu sadece atomla ilgili olmayıp o atomun alışverişde bulunan orbitalleri ile ilgili karakteristik bir özelliktir.

EDS ANALİZİ Orbitaller arasındaki elektron geçişi ve oluşan X-ışınlarının isimlendirilmesi. O N M K δ L γ L β L α L K K γ K α K β M α M β

EDS ANALİZİ Numuneden kaynaklanan x-ışınları yarıiletken detektör tarafından algılanır. Đletkenlik bandına geçen elektronlar, elektrik sinyaline dönüştürülür. x-ışını E= hc λ Đletkenlik bandı Valans bandı

EDS ANALİZİ Enerji (kev)

EDS ANALİZİ Ni bazlı alaşım Numune içindeki elementlerin yüzdeleri, elementlerin piklerinin altındaki alanlarla orantılıdır.

ARA

EDS HARİTASI Sadece, ilgi duyulan elementin sahip olduğu piklerin temsil ettiği X- ışınlarının seçilmesiyle ve sadece X ışınlarının EDX detektöründe sayılmasıyla, numune yüzeyindeki her bir nokta için o elementin göreceli oranı tespit edilebilir. Bu sayımların iki boyutlu dağılımı gösterimi (haritası) o elementin X-ışınları haritasını verir. SEM Fotoğrafı Cu Haritası

EDS HARİTASI SEM Fotoğrafı Ni Haritası Cu Haritası Sn Haritası Pb Haritası Ni,Pb ve Sn Haritası

EDS HARİTASI Si (Açık renk) Al (Açık renk)

EDS HARİTASI

EDS HARİTASI

EDS-DOĞRUSAL PROFİL

WDS ANALİZİ

WDS-EDS WDS:Wavelength Dispersive Spectrometry EDS:Energy Dispersive Spectrometry

FAZ DURUMU Faz farkına göre toplam şiddet değişmektedir. λ Faz farkı=0 Faz farkı=0.25λ Eğer faz farkı dalga boyunun tam katları ise toplam şiddet maksimum olmaktadır. Faz farkı=0.4λ Faz farkı=0.5λ Eğer faz farkı dalgaboyunun yarısının tek katları ise toplam şiddet sıfırdır. Faz farkı=0.75λ Faz farkı=λ

BRAG YASASI Θ Θ d hkl ΘΘ dsinθ dsinθ Ekstra mesafe= 2dSinΘ Dalga şiddetlerinin toplarının maksimum olması için ikinci ışının katettiği ekstra mesafe (faz farkı) dalga boyunun katları olmalıdır. nλ= 2dSinΘ

WDS ANALİZİ Kristal de kırılan x-ışınlarının ancak Bragg koşulunu sağlayan dalga boyuna sahip olanları güçlü bir şekilde yansıtılır ve detektör tarafından algılanır. Böylece detektörde x-ışınları enerjilerine göre değil dalga boylarına göre sınıflandırılmış olur. Elektron Demeti Kristal Rowland Çemberi Numune X-ışını dedektörü n λ= 2d sinθ

WDS DETECTOR Wdsrow.mov

EDS-WDS KAR ILA TIRILMASI

EDS-WDS KAR ILA TIRILMASI EDS Z 4 olan elementleri belirleyebilir. Çözünürlük 70-130 ev Aynı anda birçok elementi belirleyebilir. (Paralel teknik) SEM ve TEM ile birlikte kullanılabilir. Tipik olarak tarama için 2-3 dk yeterlidir. WDS Z 4 olan elementleri belirleyebilir. Çözünürlük 2-20 ev Elementler seri halde (ardışık olarak) belirlenir. Ancak çözünürlük oldukça yüksek. Yüksek oranda x-ışını oluşumuna ihtiyaç vardır. Bu yüzden dolayı TEM ile kullanılması zordur. Tipik olarak tarama saatler sürer.

EDS-WDS KAR ILA TIRILMASI 0.97 1.07 1.17 1.27 1.37 1.47 1.57 Energy (kev)

WDS HARİTASI Ni-19Si-3Nb-0.3B alaşımında WDS ile elde edilen B haritası

EDS-WDS KAR ILA TIRILMASI Gerisaçılım modu Nikel (EDS) Demir (EDS) Krom (EDS) Bor (WDS) Silisyum(WDS) Karbon(WDS)