GEOTEKNİK DEPREM MÜHENDİSLİĞİ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "GEOTEKNİK DEPREM MÜHENDİSLİĞİ"

Transkript

1 GEOTEKNİK DEPREM MÜHENDİSLİĞİ Prof. Dr. B. Sadık Bakır ODTÜ İnşaat Mühendisliği Bölümü

2 Fay Hareketi ve Deprem

3 Deprem Büyüklüğü Deprem sırasında açığa çıkan enerjinin niteliksel ifadesidir - Richter yerel deprem büyüklüğü - Yüzey dalgası büyüklüğü - Moment büyüklüğü M w = (log 10 M 0 / 1.5) 10.7 M 0 = μ A d (sismik moment dyne cm) Burada, μ: yırtılma mukavemeti; A: fayın yırtılma yüzey alanı; d: ortalama fay atımı 17 Ağustos 1999 Kocaeli Depremi: μ = 3E10 N/m 2 ; A= 130 km x 18 km; d = 1.6 m M w = 7.3 olarak hesaplanmaktadır

4 Deprem Şiddeti Depremin spesifik bir sahada gözlenen hasarına ve insan algılarına bağlı niceliksel ifadesidir - MMI: modifiye Mercalli ölçeği (I XII) - RF: Rossi Forel ölçeği (I X) - JMA: Japonya Meteoroloji ajansı ölçeği (I XII) - MSK: Medvedev Spoonheuer Karnik ölçeği (I XII) Türkiye de genellikle MSK ölçeği kullanılmaktadır

5

6 Depremin zemin davranışı üzerindeki genel etkileri Yerel zemin koşulları deprem hareketi parametrelerini ve zemin mukavemetini büyük ölçüde etkileyebilmektedir. - İvme büyütmesi - Alüvyon zeminlerde yüksek frekansların filtrelenmesi - Spektral davranış parametrelerinde değişiklikler - Temel zeminlerinde taşıma gücü kaybı (kumlarda sıvılaşma, killerde yumuşama)

7 Kayma Modülü (G) ve Sönüm Oranının Deformasyonla Değişimi (Ishihara, 1996)

8 Farklı Zemin Koşulları için Ortalama İvme Spektrumları ( Seed ve Idriss, 1983)

9 Türkiye Deprem Yönetmeliği (BİNA TÜRÜ YAPILAR İÇİN GEÇERLİDİR!) BÖLÜM 6 TEMEL ZEMİNİ VE TEMELLER İÇİN DEPREME DAYANIKLI TASARIM KURALLARI Sismik tasarım felsefesi (1.2. Genel İlkeler 1.2.1) Bu yönetmelikte depreme dayanıklı bina tasarımının ana ilkesi; hafif şiddetteki depremlerde binalardaki yapısal ve yapısal olmayan sistem elemanlarının herhangi bir hasar görmemesi, orta şiddetteki depremlerde yapısal ve yapısal olmayan elemanlarda oluşabilecek hasarın sınırlı ve onarılabilir düzeyde kalması, şiddetli depremlerde ise can güvenliğinin sağlanması amacı ile kalıcı hasar oluşumunun sınırlandırılmasıdır

10

11 Deprem Yükleri Altında Temel Tasarımı Deprem yükleri, istisnalar dışında, bina tipi yapılar için tepki spektrumu ile tanımlanır. Yerel zemin koşullarının deprem yükleri üzerindeki etkisi zemin sınıfı yoluyla dikkate alınır. Deprem Yönetmeliği Bölüm 2.4 (denklem 2.1): A(T)=A 0 I S(T) A(T): Spektral ivme katsayısı A 0 : Etkin yer ivmesi katsayısı I: Bina önem katsayısı S(T): Spektrum katsayısı S ae (T) = A(T) g {%5 sönüm oranına için elastik spektral ivme}

12

13

14

15

16

17

18 Türkiye Deprem Yönetmeliğinde Farklı Zemin Sınıfları İçin Tanımlanan Spektral Eğrilerin (Spektrum katsayısı Eğrileri) Karşılaştırılması

19 Deprem Yönetmeliği nde yer alan elastik tasarım tepki spektrumunun derin alüvyon zeminlerde aşılma olasılığı vardır. Bu durumda, özellikle yüksek yapı sınıfına giren yapılara etkiyecek deprem kuvvetlerinin güvensiz tarafta hesaplanması söz konusudur. Böyle bir durumda deprem sırasında yapı üzerine etkiyen yükler olması gerekenden daha düşük hesaplanmış olacaktır.

20 Zemin Özelliklerinin Belirlenmesi (zemin etüt çalışması, idealize zemin profilinin oluşturulması ve yerel zemin sınıfının belirlenmesi Deprem riski yüksek bölgelerde ve özellikle derin alüvyon zeminler içeren sahalarda zemin etüt çalışması daha detaylı yapılmalıdır. Jeofizik arazi deneyleri (sismik, mikrotremör, v.b.) zemin profilinin dinamik özelliklerini belirlemek açısından önem kazanır (kayma dalgası hızları ve zemin hakim periyodu: T=4H/V s ). Ayrıca, laboratuvarda dinamik deneyler (üç eksenli veya basit kesme deneyleri) ile kumlu zeminlerde sıvılaşma direncinin, killi zeminlerde ise yumuşama potansiyelinin araştırılması gerekebilir.

21 Temel sistemi seçilmeden önce sıvılaşma potansiyelinin ve deprem sonrası olası oturmaların değerlendirilmesi gereklidir. Sıvılaşmanın mümkün olduğu ve büyük miktarlarda oturma beklenen durumlarda zemin iyileştirmesi veya uygun temel sisteminin seçilmesi gerekebilir (rijit radye temel gibi). Ayrıca, özel durumlarda spesifik alanlar için dinamik zemin davranışı analizleri (sahaya özel analiz) yapılarak tasarım tepki spektrumu veya zaman tanım düzleminde deprem yer hareketi elde edilebilir.

22 Zemin Sıvılaşması

23 Zemin Sıvılaşması Nedir? Sıvılaşma, sismik sarsıntı gibi hızlı ve tekrarlı yükler altında granüler zeminlerin (kum) yumuşaması ve mukavemetini kaybetmesi olarak tanımlanabilir. Tipik olarak, dinamik yükler altında hacimsel küçülme eğilimi gösterebilen suya doygun gevşek kumlara özgüdür. Sismik sarsıntı esnasında gevşek kumun hacimsel küçülmesi sonucunda boşluk suyunda basınç artışları meydana gelir. Bu duruma bağlı olarak zeminde efektif gerilmeler ve dolayısıyla kayma direnci azalır. σ = σ u => τ = c' + σ' tan φ' Boşluk suyu basıncının toplam basınca eşitlenmesi durumunda zemin kayma direncini tamamen kaybederek sıvı davranışı gösterecektir.

24 Üç Eksenli Dinamik Yükleme Altında Deneysel Gözlem (Ishihara, 1996)

25 Zemin Sıvılaşması Kanıtlar ve Sonuçlar Kum volkanları (sıvılaşmanın açık kanıtı) Deprem sırasında zemin dalgalanmaları Deprem sonrasında zemin yüzeyinde göllenme Eğimli yüzeylerde yanal yayılmalar Deprem sonrası zemin yüzeyinde oturmalar Şev stabilitesi kaybı Yapı temellerinde deplasmanlar Sıvılaşan zeminin deprem dalgalarını sönümlemesi nedeniyle yer hareketi üzerinde doğal izolatör etkisi

26 Sıvılaşmanın Yapılar Üzerindeki Olumsuz Etkileri Temel zeminlerinde taşıma gücü kaybı Temellerin farklı oturması sonucunda üstyapıda gerilme artışı ve hasar oluşumu İstinat yapıları üzerinde basınç artışları ve hasar oluşumu Gömülü yapıların (boru hattı, yakıt tankı gibi) zemin yüzeyine itilmesi Candamarı yapıları (boru hattı, kablo sistemleri gibi) hasarları

27 Sıvılaşmayı Etkileyen Faktörler Dane çapı dağılımı (iyi derecelenmiş kumlarda sıvılaşma direnci daha yüksektir) Relatif (bağıl) yoğunluk (sıvılaşma direnci artan relatif yoğunlukla birlikte artar) Dinamik yüklemenin süresi ve genliği (artan süre ve genlikle birlikte sıvılaşma eğilimi artar) Drenaj şartları (deprem sırasında boşluk suyunun drene olamaması sonucunda sıvılaşma eğilimi artar)

28 Potansiyel Sıvılaşma Tehlikesinin Değerlendirilmesi - Cevaplanması Gereken Sorular - 1. Zemin sıvılaşabilir nitelikte mi? 2. Zeminin sıvılaşabilir olması durumunda sahada sıvılaşmayı tetikleyebilecek sismik aktivite muhtemel mi? 3. Sıvılaşma meydana gelmesi durumunda yapısal hasar oluşması mümkün mü? Yukarıdaki soruların herhangi birisinin cevabının hayır olması durumunda sıvılaşma problemi yoktur. Aksi takdirde önlem alınması gerekecektir.

29 Sıvılaşan zeminlerde taşıma kapasitesi kaybı sonucunda oluşan aşırı temel deplasmanları

30 Sıvılaşan zeminlerde kazıklı temel hasarları

31 Sıvılaşma, eğimli sahalarda yanal yayılma formunda büyük deplasmanlara neden olabilir

32 Zemin Sıvılaşmasına Bağlı Yanal Yayılma ve Aşırı Oturma Hasarı (Sapanca Gölü sahili)

33 Sıvılaşma Tahkiki Deprem Yönetmeliği ne göre sıvılaşma potansiyeline sahip zeminlerde arazi ve laboratuvar verilerine dayanan sıvılaşma analizlerinin yapılması zorunludur. Spesifik bir saha için sıvılaşma tahkiki aşağıdaki yaklaşımlarla yapılabilir: 1. Sahada yapılan zemin penetrasyon deneylerinin (SPT) korelasyonu yoluyla (Seed ve diğerleri, 1975) 2. Laboratuvar deneyleri yardımıyla

34 Saha Penetrasyon Deneyleri Yoluyla Sıvılaşma Tahkiki (Seed Yöntemi) Sıvılaşma için güvenlik sayısı: FS = CRR / CSR (>1 sıvılaşma tehlikesi mevcut değil Eurocode: >1.2) CRR (tekrarlı kayma mukavemeti oranı): SPT deneyi sonuçlarına bağlı olarak zeminin sıvılaşma direncini temsil eder CSR (tekrarlı gerilme oranı): Depremin sıvılaştırma talebini temsil eder

35 Siltli kumlar ve 7.5 büyüklüğündeki bir deprem için (N 1 ) 60 değerleri ile sıvılaşmaya neden olan gerilme oranları arasındaki ilişki (Seed ve diğerleri, 1975)

36 CSR Değerinin Hesaplanması a maks τ = F A γ h = g maks a maks h γ depremdeki en yüksek tekrarlı kayma gerilmesi τ maks CSR τ σ av amax o = = 0.65 r σ σ o g o d

37 CSR Değerinin Hesaplanması Burada, τ av = ortalama tekrarlı kayma gerilmesi σ o CSR = efektif düşey gerilme τ σ av amax o = = 0.65 r σ σ o g o σ o = toplam düşey gerilme a max = zemin yüzünde oluşacak en büyük yer ivmesi g = yerçekimi ivmesi r d = zemin kolonunun rijitliğine ve derinliğine bağlı gerilme azalım katsayısı d

38 Gerilme Azalım Katsayısı τ av zeminin rijit davranış yaptığı kabulüne göre hesaplanmıştır. Gerçekte zemin deforme olarak kayma gerilmesinin rijit kabule nazaran daha düşük gerçekleşmesine neden olur. Bu durumu dikkate almak üzere r d düzeltme faktörü tanımlanmıştır. r rd d = z ( z 9.15 m) = z (9.15m z 23 m) Z: yüzeyden itibaren derinlik (metre cinsinden)

39 Derinlik düzeltme faktörünün değişimi

40 SPT Deneyi Verilerinden CRR Değerinin Bulunması Arazide kaydedilen ham SPT-N darbe sayılarının düzeltilmesi gerekmektedir. N 1,60 =N C N C R C S C B C E C N 2.2 = 1.7 σ v ( ) P a C R, C S, C B ve C E sırası ile tij boyu, standart olmayan numune alıcı, sondaj kuyusu çapı ve tokmak enerji oranı için düzeltme faktörleridir.

41 Siltli kumlar ve 7.5 büyüklüğündeki bir deprem için (N 1 ) 60 değerleri ile sıvılaşmaya neden olan gerilme oranları arasındaki ilişki (Seed ve diğerleri, 1975)

42 Zeminin İnce Dane Oranı (FC) için Düzeltme Yapılması N = α + βn 1,60,C 1,60 S (FC) %5 için α=0 ve β=1.0 %5<FC<%35 için 190 α = exp 1.76 ( FC ) FC β = ( ) 1000 FC %35 için α=5.0 ve β=1.2 olarak alınmaktadır.

43 M=7.5 büyüklüğünde bir deprem için sıvılaşma direnci aşağıdaki denklemle hesaplanabilir. CRR 1 N = 1,60 2 N + + 1,60 10N1,

44 ÖRNEK CSR Şekilde gösterilen arazide kum tabakasından alınan örneklerde silt-kil oranı % 4 ve kum tabakasında yapılan SPT deneyinde N=19 olarak belirlenmiştir (tokmak enerji verimi %60). Büyüklüğü 6.7 olan bir depremde sahada maksimum yüzey ivmesi a max =0.40g olarak hesaplanmaktadır. Yüzeyden 9 m derinlikte kum tabakasının sıvılaşmaya karşı güvenlik sayısını hesaplayınız. = a r σ max v 0.65 d g σ v r d = x9 = 0.93 σ v = (18x8 )+ (1x19) = 163 kpa σ v = ( )x8 + 1x( ) = 74.8 kpa 0.40g 163 CSR = = 0.49 g 74.8

45 2.2 C N = = ( ) 100 N1 = 19 x1.13= ( ) 1.81 MSF = 37.9 M w (FC) %5 için α=0 ve β=1.0 N = α + βn = 0 + (1) x(21.5) = ,60,C 1,60 S CRR ( = + + = [ 10x ]

46 10 MSF = M w = = / FS=( CRR CSR )MSF=( 0.24 ) *1.33 =

47 Sıvılaşmaya karşı güvenlik sayısı FS= CRR 7.5 ( )MSF CSR MSF= deprem büyüklüğü derecelendirme katsayısı MSF=10 /M w Burada, M w = deprem büyüklüğü

48 Sıvılaşmadan Kaynaklanan Oturmaların Tahmin Edilmesi Deprem sonrası oturmaların tahmini için kullanılabilecek yöntemlerden birisi Ishihara-Yoshimine yöntemidir (temiz kumlar için) Yöntemde, zeminde deprem sonrası oluşacak oturma, SPT korelasyonuna bağlı olarak izleyen şekil yardımıyla tahmin edilir. Korelasyondaki SPT darbe sayılarının %90 enerji seviyesine karşı geldiği unutulmamalıdır. Zeminde oturma H = H. ε v ifadesi ile hesaplanır. H tabaka kalınlığıdır.

49 Temiz kumlardan oluşan zemin tabakalarında deprem sonrası oturmaların tahmini için Ishihara- Yoshimine abağı (1992)

50 Yüzeysel Temeller için Zımbalama Tahkiki Yüzeysel temeller üzerinde yer alan binalarda deprem sırasında sıvılaşma ile ilişkili olarak batma ve yanal eğilmeler meydana gelmektedir. Geçmiş depremlerden edinilen tecrübeler doğrultusunda, temelin hemen altında sıvılaşmayan bir kabuk tabakası, sıvılaşmadan kaynaklanan bu gibi olumsuz etkileri büyük ölçüde azaltmaktadır. Kritik kabuk kalınlığının, temel taban basıncı ve sarsıntı şiddetinin yanında, kabuk tabakasının kayma direncine bağlı olduğunu, temel genişliğinin 2-3 katını geçmediğini gösteren çalışmalar vardır. 50

51 Yüzeysel Temeller için Zımbalama Tahkiki (devam) Temelin altında sıvılaşmayan bir tabaka yer alması durumunda, bu tabaka içerisinde zımbalamaya karşı oluşacak direncin yapıdan aktarılan yükü karşılayıp karşılayamayacağı aşağıdaki güvenlik sayısı ifadesiyle belirlenir. FS = R / P = [2(B+L) Tτ f ] / P Burada, B ve L: temel boyutları T: temelin altında sıvılaşmayan tabakanın kalınlığı τ f : sıvılaşmayan zemin tabakasının kayma mukavemeti P: üstyapıdan temele aktarılan yük (hareketli ve deprem dahil tüm yükler) 51

52 Sıvılaşmaya Karşı Alınabilecek Önlemler 1. Zeminde sıvılaşma meydana gelmesinin önlenmesi Yoğunlaştırma (ağırlık düşürme, vibroflotasyon vb.) Sertleştirme (enjeksiyon, derin karıştırma vb.) Zeminin sıvılaşma hassasiyetine sahip olmayan zeminlerle değiştirilmesi Su tablasının düşürülmesi (oturma problemlerine neden olabilir) 2. Sıvılaşma sonucu ortaya çıkabilecek hasarın azaltılması Uygun temel sistemi seçilmesi (veya temellerin güçlendirilmesi) Üstyapıya ilişkin çözümler (çeşitli yöntemlerle güçlendirme

53 Ağırlık Düşürerek Yoğunlaştırma Aşırı titreşim ve ekipman boyutları nedeniyle yerleşim alanlarında uygulanması mümkün değil

54 Enjeksiyon Yoluyla Sıvılaşmaya Karşı Zemin İyileştirmesi (Sızma ve Sıkıştırma)

55 Jet-grout kolonu uygulama Vibroflotasyon taş kolon uygulaması

56 Sıvılaşabilir Zeminlerde Kazık Uygulamaları Sıvılaşma potansiyeline sahip zeminlerde yapılacak kazıklı temel uygulamalarında çakma veya vibreks kazık tercih edilmelidir. Böylece, kumlu zeminlerin relatif yoğunluğunun, dolayısıyla da sıvılaşma direncinin artırılması mümkündür. Yerinde dökme kazık kullanılması durumunda ise zemin sıvılaşması etkilerinin sınırlanması amacıyla, kazıkların yanısıra zemin iyileştirmesi (taş kolon / jet-grout kolonu) yapılabilir.

57 Sıvılaşmaya Karşı Zemin İyileştirilmesi ve Kanıtlama

58 Zemin ve Öngörülen Sismik Tehlike Özellikleri Zemin tipi: İnce orta kalın siltli killi kum ve siltli kum İnce Dane Oranı: 15% - 25% (siltli killi kum), 15% - 40% (siltli kum) Eşdeğer SPT-N değerleri: Siltli killi kum tabakası için 10 25; siltli kum tabakası için 8 14 Yeraltı suyu seviyesi: Zemin yüzeyinden ~ 1 m derinlikte Deprem büyüklüğü (M w ): 7 Maksimum yüzey ivmesi: 0.35g

59 Binanın Konumu Back Yard Application Building Way to Garage 17 m 20 m Front Yard Street Buildings with 4 to 5 Stories Main Avenue

60 Binanın Plan Görünüşü

61 Zemin ve Bina Temeli Kesiti

62 Zemin İyileştirmesi (Enjeksiyon) Öncesi ve Sonrasında Eşdeğer SPT-N Darbe Sayıları (DPT 1, Depo) 0 Corrected N values Depth (m) SPT- N values before improvement SPT-N values after improvement

63 Zemin İyileştirmesi Öncesi ve Sonrası (Depo) 0 1 Shear stress (kpa) Due to earthquake (demand) Liquefaction resistance before improvement FS values FS before improvement FS after improvement 2 Foundation base level Liquefaction resistance after improvement Depth (m)

64 Zemin İyileştirmesi (Enjeksiyon) Öncesi ve Sonrasında Eşdeğer SPT-N Darbe Sayıları (DPT 4, Oturma Odası) 0 Corrected N values Depth (m) SPT- N values bef ore improvement SPT-N values af ter improvement

65 Zemin İyileştirmesi Öncesi ve Sonrası (Oturma Odası) Shear stress (kpa) Due to eartquake (demand) Liquefaction resistance before improvement Liquefaction resistance after improvement Foundation base level FS values FS before improvement FS after improvement Depth (m)

66 Deprem Bölgelerinde Temel Sistemi Seçimi Z3 ve Z4 sınıfına giren zeminler üzerinde yer alan yapılarda zemin özelliklerine bağlı olarak radye veya şerit temeller tercih edilebilir Hafif yapılarda tekil temeller birbirine bağ kirişleri ile bağlanarak davranış bütünlüğü sağlabilir Aşırı oturma, farklı oturma, hidrostatik kaldırma basıncı, yetersiz taşıma kapasitesi veya, sıvılaşma potansiyeli olan zeminlerde zemin iyileştirme uygulamaları, yüzer veya kazık temel seçenekleri değerlendirilmelidir.

67 Radye Temel Tipleri

68 Temel Sisteminin Geoteknik Tasarımı - Güvenli temel basıncı hesaplanması - Toplam ve farklı oturmaların hesaplanması - Zemin-yapı ilişkisinin kurulması için yatak katsayısının belirlenmesi - Kazıklı temel uygulamalarında kazıklara etkiyecek yatay yüklerin hesaplanması

69 TEMEL TAŞIMA KAPASİTESİ γ: zemin birim hacim ağırlığı c: kohezyon ϕ: içsel sürtünme açısı q f 1 = γ B Nγ + c Nc + γ D 2 f N Zemin taşıma kapasitesine ulaşıldığı durumda göçme mekanizması oluşur q

70 Temeller Üzerine Etkiyen Sismik Yükler Yapının ağırlık merkezinin pozisyonuna bağlı olarak temel üzerinde iki farklı etki ortaya çıkmaktadır: 1. Eksantrik yükleme (temel seviyesinde etkiyen moment sonucu) 2. Yatay yükleme Sonuç itibariyle statik koşullarda yeterli olan temel taşıma kapasitesi sismik koşullarda aşılabilmektedir. H V h M H

71 Sismik Taşıma Kapasitesi (Yılmaz, 2004) Aşırı eksantrisite (dış merkezlilik) durumunda temel göçmesi ve temelin zeminden ayrılması (uplift) Sınırlı eksantrisite durumunda temel göçmesi

72 Dış merkez yükler temel taşıma kapasitesinde azalmaya yol açar: B : etkili genişlik e: dış merkezlik q λ f cd 1 = c Nc λcd + D f γ Nq λqd + γ B N 2, λ, λ = derinlik faktörleri qd γd Qu = q f A Burada, A etkili temel alanıdır Düşey yükün etkili genişliğin ortasında olduğu kabul edilir. γ λ γd

73 Dikdörtgen temellerde dış merkezlik için taşıma kapasitesi denklemi (a) Düşey yükten doğan dış merkezlik e B =M B /Q e L =M L /Q (b) Devirici moment kaynaklı dış merkezlik

74 L B u u d qd cd s qs cs d s qd qs q f cd cs c u e L L e B B B xl A alan etkili A A q Q faktörleri derinlik faktörleri şekil N B N D N c q 2 2,,,, 2 1 = = = = = = = + + = γ γ γ γ γ λ λ λ λ λ λ λ λ γ λ λ γ λ λ

75 Geoteknik Faktörlerin Hasar Formları Ve Hasar Dağılımı Üzerindeki Etkileri: Adapazarı ndan Öğrenilenler

76 Adapazarı Şehir Merkezi Can kaybı: 3694 (şehir nüfusunun yaklaşık %2si) Çöken veya ağır hasar gören bina sayısı: 2844 (bina stoğunun yaklaşık %12si)

77 Bina Stoğu Genel Özellikleri 1 3 katlı yığma binalar (T = s) 3 6 katlı betonarme çerçeve içerisine tuğla dolgu duvarlı binalar - genellikle yüksek girişli (T = s) 3 ve daha fazla katlı binaların çok büyük bölümü radye temellere sahip

78 Adapazarı civarının jeolojik ana hatları

79 Adapazarı nda hasar belirleme çalışmasının yapıldığı alan ve anakaya derinliğinin değişimi

80 Deprem sonrası İzmit Caddesi (Pabuççular (7) ve Yenicami (9) Mahalleleri sınırı).

81 Çöken binalar (Pabuççular (7) ve Yenicami (9) mahalleleri sınırı).

82 Adapazarı nda hasar belirleme çalışmasının yapıldığı alan ve anakaya derinliğinin değişimi

83 Dönme formunda aşırı temel deplasmanlarına maruz kalan binalar (Tığcılar Mahallesi (12) )

84 Oturma formunda temel deplasmanları (Tığcılar Mahallesi (12))

85 Yol ve kaldırımlarda meydana gelen kırıklar (Cumhuriyet Mahallesi ( 16))

86 Adapazarı nda Bina Hasarına İlişkin Gözlemler Temel deplasmanlarına maruz kalmış olan binalarda yapısal hasar yok veya daha az - Can kaybı riski yok Ağır yapısal hasarlı veya çökmüş olan binalarda temel deplasmanı mevcut değil - Yüksek can kaybı riski mevcut -

87 Derin sondaj logları ve 1- boyutlu mukabele analizinde kullanılan tipik zemin profili

88 Adapazarı nda 17 Ağustos depreminde alınan kayıt ve farklı aluvyon derinlikleri için yüzeyde hesaplanan ivme-zaman değişimleri a max = 419 cm/s 2 Bedrock at 200 m. a max = 381 cm/s 2 Bedrock at 175 m. Acceleration (cm/sec 2 ) a max = 426 cm/s 2 a max = 482 cm/s 2 Bedrock at 150 m. Bedrock at 125 m. 500 SAKARYA (SKR) E-W a max = 398 cm/s 2 17August Time (s)

89 17 Ağustos depreminde kaydedilen ve hesaplanan yer hareketlerinin %5 sönüm için ivme spektrumları (kalın kesik çizgi 1998 Deprem Yönetmeliği tasarım spektrumudur) Spectral Acceleration (g) H=125m H=150m H=175m H=200m SAKARYA (İMAR) E-W LEDS Period(s)

90 Dikkatiniz için teşekkürler

ÖN SÖZ... ix BÖLÜM 1: GİRİŞ Kaynaklar...6 BÖLÜM 2: TEMEL KAVRAMLAR... 7

ÖN SÖZ... ix BÖLÜM 1: GİRİŞ Kaynaklar...6 BÖLÜM 2: TEMEL KAVRAMLAR... 7 ÖN SÖZ... ix BÖLÜM 1: GİRİŞ... 1 Kaynaklar...6 BÖLÜM 2: TEMEL KAVRAMLAR... 7 2.1 Periyodik Fonksiyonlar...7 2.2 Kinematik, Newton Kanunları...9 2.3 D Alembert Prensibi...13 2.4 Enerji Metodu...14 BÖLÜM

Detaylı

INM 308 Zemin Mekaniği

INM 308 Zemin Mekaniği Hafta_12 INM 308 Zemin Mekaniği Zeminlerin Taşıma Gücü; Kazıklı Temeller Yrd.Doç.Dr. İnan KESKİN inankeskin@karabuk.edu.tr, inankeskin@gmail.com www.inankeskin.com ZEMİN MEKANİĞİ Haftalık Konular Hafta

Detaylı

Sıvılaşma hangi ortamlarda gerçekleşir? Sıvılaşmaya etki eden faktörler nelerdir? Arazide tahkik; SPT, CPT, Vs çalışmaları

Sıvılaşma hangi ortamlarda gerçekleşir? Sıvılaşmaya etki eden faktörler nelerdir? Arazide tahkik; SPT, CPT, Vs çalışmaları SIVILAŞMA Sıvılaşma Nedir? Sıvılaşma hangi ortamlarda gerçekleşir? Sıvılaşmaya etki eden faktörler nelerdir? Sıvılaşmanın Etkileri Geçmiş Depremlerden Örnekler Arazide tahkik; SPT, CPT, Vs çalışmaları

Detaylı

DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-2016 GÜZ YARIYILI

DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-2016 GÜZ YARIYILI DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-2016 GÜZ YARIYILI Yrd. Doç. Dr. Uğur DAĞDEVİREN 2 3 Genel anlamda temel mühendisliği, yapısal yükleri zemine izin verilebilir

Detaylı

DEPREM HESABI. Doç. Dr. Mustafa ZORBOZAN

DEPREM HESABI. Doç. Dr. Mustafa ZORBOZAN BETONARME YAPI TASARIMI DEPREM HESABI Doç. Dr. Mustafa ZORBOZAN Mart 2009 GENEL BİLGİ 18 Mart 2007 ve 18 Mart 2008 tarihleri arasında ülkemizde kaydedilen deprem etkinlikleri Kaynak: http://www.koeri.boun.edu.tr/sismo/map/tr/oneyear.html

Detaylı

AKADEMİK BİLİŞİM Şubat 2010 Muğla Üniversitesi GEOTEKNİK RAPORDA BULUNAN HESAPLARIN SPREADSHEET (MS EXCEL) İLE YAPILMASI

AKADEMİK BİLİŞİM Şubat 2010 Muğla Üniversitesi GEOTEKNİK RAPORDA BULUNAN HESAPLARIN SPREADSHEET (MS EXCEL) İLE YAPILMASI AKADEMİK BİLİŞİM 2010 10-12 Şubat 2010 Muğla Üniversitesi GEOTEKNİK RAPORDA BULUNAN HESAPLARIN SPREADSHEET (MS EXCEL) İLE YAPILMASI 1 ZEMİN İNCELEME YÖNTEMLERİ ZEMİN İNCELEMESİ Bir alanın altındaki arsanın

Detaylı

EK-2 BERGAMA OVACIK ALTIN İŞLETMESİ TÜBİTAK RAPORU ELEŞTİRİSİ NE İLİŞKİN GÖRÜŞLER

EK-2 BERGAMA OVACIK ALTIN İŞLETMESİ TÜBİTAK RAPORU ELEŞTİRİSİ NE İLİŞKİN GÖRÜŞLER EK- BERGAMA OVACIK ALTIN İŞLETMESİ TÜBİTAK RAPORU ELEŞTİRİSİ NE İLİŞKİN GÖRÜŞLER Rüştü GÜNER (İnş. Y. Müh.) TEMELSU Uluslararası Mühendislik Hizmetleri A.Ş. ) Varsayılan Zemin Parametreleri Ovacık Atık

Detaylı

Üst yapı yüklerinin bir bölümü ya da tümünü zemin yüzünden daha derinlerdeki tabakalara aktaran

Üst yapı yüklerinin bir bölümü ya da tümünü zemin yüzünden daha derinlerdeki tabakalara aktaran Üst yapı yüklerinin bir bölümü ya da tümünü zemin yüzünden daha derinlerdeki tabakalara aktaran temel derinliği/temel genişliği oranı genellikle 4'den büyük olan temel sistemleri derin temeller olarak

Detaylı

Yalova Çevre ve Şehircilik İl Müdürlüğü. ZEMIN VE TEMEL ETÜT RAPORLARı, KARŞıLAŞıLAN PROBLEMLER

Yalova Çevre ve Şehircilik İl Müdürlüğü. ZEMIN VE TEMEL ETÜT RAPORLARı, KARŞıLAŞıLAN PROBLEMLER Yalova Çevre ve Şehircilik İl Müdürlüğü ZEMIN VE TEMEL ETÜT RAPORLARı, KARŞıLAŞıLAN PROBLEMLER FORMAT Mülga Bayındırlık ve İskan Bakanlığı nın Zemin ve Temel Etüdü Raporunun Hazırlanmasına İlişkin Esaslar

Detaylı

(z) = Zemin kütlesinden oluşan dinamik aktif basıncın derinliğe göre değişim fonksiyonu p pd

(z) = Zemin kütlesinden oluşan dinamik aktif basıncın derinliğe göre değişim fonksiyonu p pd BÖLÜM 6 TEMEL ZEMİNİ VE TEMELLER İÇİN DEPREME DAYANIKLI TASARIM KURALLARI 6.0. SİMGELER A o C h C v H I i K as K ad K at K ps K pd K pt P ad P pd = Bölüm 2 de tanımlanan Etkin Yer İvmesi Katsayısı = Toprak

Detaylı

DEPREME DAYANIKLI TEMEL TASARIMI

DEPREME DAYANIKLI TEMEL TASARIMI DEPREME DAYANIKLI TEMEL TASARIMI Doç. Dr. Gürkan Özden Dokuz Eylül Üniversitesi İnşaat Mühendisliği Bölümü ve Deprem Araştırma ve Uygulama Merkezi Geoteknik Temel Tasarım Aşamaları Zemin geometrisi Zemin

Detaylı

BİNA VE BİNA TÜRÜ YAPILAR (KATEGORİ 2 ve 3) İÇİN PARSEL BAZINDA DÜZENLENECEK ZEMİN VE TEMEL ETÜDÜ (GEOTEKNİK) DEĞERLENDİRME RAPORU FORMATI

BİNA VE BİNA TÜRÜ YAPILAR (KATEGORİ 2 ve 3) İÇİN PARSEL BAZINDA DÜZENLENECEK ZEMİN VE TEMEL ETÜDÜ (GEOTEKNİK) DEĞERLENDİRME RAPORU FORMATI TMMOB İNŞAAT MÜHENDİSLERİ ODASI Necatibey Cad. No:57 Kızılay / Ankara Tel: (0 312) 294 30 00 - Faks: (0 312) 294 30 88 www.imo.org.tr imo@imo.org.tr BİNA VE BİNA TÜRÜ YAPILAR (KATEGORİ 2 ve 3) İÇİN PARSEL

Detaylı

İNM Ders 9.2 TÜRKİYE DEPREM YÖNETMELİĞİ

İNM Ders 9.2 TÜRKİYE DEPREM YÖNETMELİĞİ İNM 424112 Ders 9.2 TÜRKİYE DEPREM YÖNETMELİĞİ Türkiye Deprem Yönetmelikleri Türkiye de deprem zararlarının azaltılmasına yönelik çalışmalara; 32.962 kişinin ölümüne neden olan 26 Aralık 1939 Erzincan

Detaylı

Sığ temellerin tasarımı ve oturmaların hesabı. Prof Dr Gökhan Baykal

Sığ temellerin tasarımı ve oturmaların hesabı. Prof Dr Gökhan Baykal Sığ temellerin tasarımı ve oturmaların hesabı Prof Dr Gökhan Baykal Program Killerin ve kumların temel davranış özellikleri Yüzeysel temellerin tanımı Tasarım esasları Taşıma gücü Gerilme dağılımları Oturma

Detaylı

Zemin ve Asfalt Güçlendirme

Zemin ve Asfalt Güçlendirme Zemin ve Asfalt Güçlendirme Zemin iyileştirmenin temel amacı mekanik araçlarla zemindeki boşluk oranının azaltılması veya bu boşlukların çeşitli malzemeler ile doldurulması anlaşılır. Zayıf zeminin taşıma

Detaylı

BÖLÜM 6 - TEMEL ZEMİNİ VE TEMELLER İÇİN DEPREME DAYANIKLI TASARIM KURALLARI 6.1. KAPSAM

BÖLÜM 6 - TEMEL ZEMİNİ VE TEMELLER İÇİN DEPREME DAYANIKLI TASARIM KURALLARI 6.1. KAPSAM TDY 2007 Öğr. Verildi BÖLÜM 6 - TEMEL ZEMİNİ VE TEMELLER İÇİN DEPREME DAYANIKLI TASARIM KURALLARI 6.1. KAPSAM Deprem bölgelerinde yapılacak yeni binalar ile deprem performansı değerlendirilecek veya güçlendirilecek

Detaylı

TEMEL İNŞAATI ŞERİT TEMELLER

TEMEL İNŞAATI ŞERİT TEMELLER TEMEL İNŞAATI ŞERİT TEMELLER Kaynak; Temel Mühendisliğine Giriş, Prof. Dr. Bayram Ali Uzuner 1 2 Duvar Altı (veya Perde Altı) Şerit Temeller (Duvar Temelleri) 3 Taş Duvar Altı Şerit Temeller Basit tek

Detaylı

YTÜ İnşaat Fakültesi Geoteknik Anabilim Dalı. Ders 5: İÇTEN DESTEKLİ KAZILAR. Prof.Dr. Mehmet BERİLGEN

YTÜ İnşaat Fakültesi Geoteknik Anabilim Dalı. Ders 5: İÇTEN DESTEKLİ KAZILAR. Prof.Dr. Mehmet BERİLGEN YTÜ İnşaat Fakültesi Geoteknik Anabilim Dalı Ders 5: İÇTEN DESTEKLİ KAZILAR Prof.Dr. Mehmet BERİLGEN İçten Destekli Kazılar İçerik: Giriş Uygulamalar Tipler Basınç diagramları Tasarım Toprak Basıncı Diagramı

Detaylı

İNM Ders 4.1 Dinamik Etkiler Altında Zemin Davranışı

İNM Ders 4.1 Dinamik Etkiler Altında Zemin Davranışı İNM 424112 Ders 4.1 Dinamik Etkiler Altında Zemin Davranışı Yrd. Doç. Dr. Pelin ÖZENER İnşaat Mühendisliği Bölümü Geoteknik Anabilim Dalı DİNAMİK ETKİLER ALTINDA ZEMİN DAVRANIŞI Statik problemlerde olduğu

Detaylı

İMAR PLANINA ESAS JEOLOJİK-JEOTEKNİK ETÜT RAPORU

İMAR PLANINA ESAS JEOLOJİK-JEOTEKNİK ETÜT RAPORU AR TARIM SÜT ÜRÜNLERİ İNŞAAT TURİZM ENERJİ SANAYİ TİCARET LİMİTED ŞİRKETİ İMAR PLANINA ESAS JEOLOJİK-JEOTEKNİK ETÜT RAPORU ÇANAKKALE İLİ GELİBOLU İLÇESİ SÜLEYMANİYE KÖYÜ TEPELER MEVKİİ Pafta No : ÇANAKKALE

Detaylı

DEPREME DAYANIKLI YAPI İNŞAATI SORULAR

DEPREME DAYANIKLI YAPI İNŞAATI SORULAR DEPREME DAYANIKLI YAPI İNŞAATI SORULAR 1- Dünyadaki 3 büyük deprem kuşağı bulunmaktadır. Bunlar nelerdir. 2- Deprem odağı, deprem fay kırılması, enerji dalgaları, taban kayası, yerel zemin ve merkez üssünü

Detaylı

SIVILAŞMANIN TANIMI. Sıvılaşma için Fiziksel süreç. sıvılaşma olması için için SIVILAŞMA TÜRLERİ ZEMİNLERDE SIVILAŞMA ANALİZ VE İYİLEŞTİRME YÖNTEMLERİ

SIVILAŞMANIN TANIMI. Sıvılaşma için Fiziksel süreç. sıvılaşma olması için için SIVILAŞMA TÜRLERİ ZEMİNLERDE SIVILAŞMA ANALİZ VE İYİLEŞTİRME YÖNTEMLERİ ZEMİNLERDE SIVILAŞMA ANALİZ VE İYİLEŞTİRME YÖNTEMLERİ SIVILAŞMANIN TANIMI Sıvılaşma, yeraltı su seviyesi altındaki tabakaların geçici olarak mukavemetlerini kaybederek, katı yerine viskoz sıvı gibi davranmaları

Detaylı

Zeminlerin Sıkışması ve Konsolidasyon

Zeminlerin Sıkışması ve Konsolidasyon Zeminlerin Sıkışması ve Konsolidasyon 2 Yüklenen bir zeminin sıkışmasının aşağıdaki nedenlerden dolayı meydana geleceği düşünülür: Zemin danelerinin sıkışması Zemin boşluklarındaki hava ve /veya suyun

Detaylı

Konsol Duvar Tasarımı

Konsol Duvar Tasarımı Mühendislik Uygulamaları No. 2 06/2016 Konsol Duvar Tasarımı Program: Konsol Duvar Dosya: Demo_manual_02.guz Uygulama: Bu bölümde konsol duvar tasarımı ve analizine yer verilmiştir. 4.0 m yüksekliğinde

Detaylı

Laboratuar Kayma Mukavemeti Deneyleri

Laboratuar Kayma Mukavemeti Deneyleri Laboratuar Kayma Mukavemeti Deneyleri 1 Kesme deneyleri: Bu tip deneylerle zemin kütlesinden numune alınan noktadaki kayma mukavemeti parametreleri belirilenir. 2 Kesme deneylerinin amacı; doğaya uygun

Detaylı

İSTİNAT YAPILARI TASARIMI

İSTİNAT YAPILARI TASARIMI İSTİNAT YAPILARI TASARIMI İstinat Duvarı Tasarım Kriterleri ve Tasarım İlkeleri Yrd. Doç. Dr. Saadet BERİLGEN İnşaat Mühendisliği Bölümü Geoteknik Anabilim Dalı Devrilmeye Karşı Güvenlik Devrilmeye Karşı

Detaylı

T.C. İSTANBUL ÜNİVERSİTESİ

T.C. İSTANBUL ÜNİVERSİTESİ T.C. İSTANBUL ÜNİVERSİTESİ İnşaat Mühendisliği Bölümü Yüzeysel Temeller 2015 2016 Öğretim Yılı Güz Dönemi Doç. Dr. Sadık ÖZTOPRAK Mayne et al. (2009) 2 ÖZTOPRAK, 2014 1 Zemin İncelemesi Sondaj Örselenmiş

Detaylı

MEVZİİ İMAR PLANINA ESAS JEOLOJİK-JEOTEKNİK ETÜT RAPORU

MEVZİİ İMAR PLANINA ESAS JEOLOJİK-JEOTEKNİK ETÜT RAPORU SINIRLI SORUMLU KARAKÖY TARIMSAL KALKINMA KOOP. MEVZİİ İMAR PLANINA ESAS JEOLOJİK-JEOTEKNİK ETÜT RAPORU ÇANAKKALE İLİ BAYRAMİÇ İLÇESİ KARAKÖY KÖYÜ Pafta No : 1-4 Ada No: 120 Parsel No: 61 DANIŞMANLIK ÇEVRE

Detaylı

Prof. Dr. Osman SİVRİKAYA Zemin Mekaniği I Ders Notu

Prof. Dr. Osman SİVRİKAYA Zemin Mekaniği I Ders Notu HAFTALIK DERS PLANI Hafta Konular Kaynaklar 1 Zeminle İlgili Problemler ve Zeminlerin Oluşumu [1], s. 1-13 2 Zeminlerin Fiziksel Özellikleri [1], s. 14-79; [23]; [24]; [25] 3 Zeminlerin Sınıflandırılması

Detaylı

Ek-3-2: Örnek Tez 1. GİRİŞ

Ek-3-2: Örnek Tez 1. GİRİŞ 1 Ek-3-2: Örnek Tez 1. GİRİŞ.. 2 2. GENEL KISIMLAR 2.1. YATAY YATAK KATSAYISI YAKLAŞIMI Yatay yüklü kazıkların analizinde iki parametrenin bilinmesi önemlidir : Kazığın rijitliği (EI) Zeminin yatay yöndeki

Detaylı

ZEMİNLERİN GERİLME-ŞEKİL DEĞİŞTİRME DAVRANIŞI VE KAYMA MUKAVEMETİ

ZEMİNLERİN GERİLME-ŞEKİL DEĞİŞTİRME DAVRANIŞI VE KAYMA MUKAVEMETİ ZEMİNLERİN GERİLME-ŞEKİL DEĞİŞTİRME DAVRANIŞI VE KAYMA MUKAVEMETİ GİRİŞ Zeminlerin gerilme-şekil değiştirme davranışı diğer inşaat malzemelerine göre daha karmaşıktır. Zeminin yük altında davranışı Başlangıç

Detaylı

8. TOPRAK ZEMİNLERİN TAŞIMA GÜCÜ (BEARING CAPACITY OF SOILS)

8. TOPRAK ZEMİNLERİN TAŞIMA GÜCÜ (BEARING CAPACITY OF SOILS) 8. TOPRAK ZEMİNLERİN TAŞIMA GÜCÜ (BEARING CAPACITY OF SOILS) TEMELLER (FOUNDATIONS) Temel, yapı ile zeminin arasındaki yapısal elemandır. Yapı yükünü zemine aktaran elemandır. Temeller, yapıdan kaynaklanan

Detaylı

Zemin Suyu. Yrd.Doç.Dr. Saadet BERİLGEN

Zemin Suyu. Yrd.Doç.Dr. Saadet BERİLGEN Zemin Suyu Yrd.Doç.Dr. Saadet BERİLGEN Giriş Zemin içinde bulunan su miktarı (su muhtevası), zemin suyundaki basınç (boşluk suyu basıncı) ve suyun zemin içindeki hareketi zeminlerin mühendislik özelliklerini

Detaylı

Dolgu ve Yarmalarda Sondaj Çalışması ve Değerlendirmesi. HAZIRLAYAN Özgür SATICI Mad. Yük. Jeo. Müh. (MBA)

Dolgu ve Yarmalarda Sondaj Çalışması ve Değerlendirmesi. HAZIRLAYAN Özgür SATICI Mad. Yük. Jeo. Müh. (MBA) Dolgu ve Yarmalarda Sondaj Çalışması ve Değerlendirmesi HAZIRLAYAN Özgür SATICI Mad. Yük. Jeo. Müh. (MBA) İçerik Yarmalarda sondaj Dolgularda sondaj Derinlikler Yer seçimi Alınması gerekli numuneler Analiz

Detaylı

Hamza GÜLLÜ Gaziantep Üniversitesi

Hamza GÜLLÜ Gaziantep Üniversitesi Hamza GÜLLÜ Gaziantep Üniversitesi ZM14 Geoteknik Deprem Mühendisliği Plaxis ile dinamik analiz (2) Sismik risk ve zeminin dinamik davranışı (3) Sıvılaşma (4) Dalga yayılımı (1) Titreşime Maruz Kalan Bir

Detaylı

ANALİZ YÖNTEMLERİ. Şevlerin duraylılığı kaya mekaniği ve geoteknik bilim dallarının en karmaşık konusunu oluşturmaktadır.

ANALİZ YÖNTEMLERİ. Şevlerin duraylılığı kaya mekaniği ve geoteknik bilim dallarının en karmaşık konusunu oluşturmaktadır. ŞEV STABİLİTESİ VE GÜVENSİZ ŞEVLERİN İYİLEŞTİRİLMESİ Y.Doç.Dr. Devrim ALKAYA PAMUKKALE ÜNİVERSİTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ŞEVLERİN DURAYLILIĞI Şevlerin duraylılığı kaya mekaniği ve geoteknik bilim

Detaylı

Bahar. Yrd. Doç. Dr. Burhan ÜNAL. Yrd. Doç. Dr. Burhan ÜNAL Bozok Üniversitesi n aat Mühendisli i Bölümü 1.

Bahar. Yrd. Doç. Dr. Burhan ÜNAL. Yrd. Doç. Dr. Burhan ÜNAL Bozok Üniversitesi n aat Mühendisli i Bölümü 1. Su Yapıları II Dolgu Barajlar Yrd. Doç. Dr. Burhan ÜNAL Bozok Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Mühendisliği Bölümü Yozgat Yrd. Doç. Dr. Burhan ÜNAL Bozok Üniversitesi n aat Mühendisli

Detaylı

Hafta_3. INM 405 Temeller. Temel Türleri-Yüzeysel temeller. Yrd.Doç.Dr. İnan KESKİN.

Hafta_3. INM 405 Temeller. Temel Türleri-Yüzeysel temeller. Yrd.Doç.Dr. İnan KESKİN. Hafta_3 INM 405 Temeller Temel Türleri-Yüzeysel temeller Yrd.Doç.Dr. İnan KESKİN inankeskin@karabuk.edu.tr, inankeskin@gmail.com TEMELLER Hafta Konular 1 Ders Amacı-İçeriği, Zemin İnceleme Yöntemleri 2

Detaylı

DEPREME DAYANIKLI YAPI TASARIMI

DEPREME DAYANIKLI YAPI TASARIMI DEPREME DAYANIKLI YAPI TASARIMI Depremle İlgili Temel Kavramlar 2 2. Hafta Yrd. Doç. Dr. Alper CUMHUR Kaynak: Sakarya Üniversitesi / İnşaat Mühendisliği Bölümü / Depreme Dayanıklı Betonarme Yapı Tasarımı

Detaylı

İNM Ders 2.2 YER HAREKETİ PARAMETRELERİNİN HESAPLANMASI. Yrd. Doç. Dr. Pelin ÖZENER İnşaat Mühendisliği Bölümü Geoteknik Anabilim Dalı

İNM Ders 2.2 YER HAREKETİ PARAMETRELERİNİN HESAPLANMASI. Yrd. Doç. Dr. Pelin ÖZENER İnşaat Mühendisliği Bölümü Geoteknik Anabilim Dalı İNM 424112 Ders 2.2 YER HAREKETİ PARAMETRELERİNİN HESAPLANMASI Yrd. Doç. Dr. Pelin ÖZENER İnşaat Mühendisliği Bölümü Geoteknik Anabilim Dalı YER HAREKETİ PARAMETRELERİNİN HESAPLANMASI Yapıların Depreme

Detaylı

İNŞAAT MÜHENDİSLERİ ODASI- İZMİR ŞUBESİ

İNŞAAT MÜHENDİSLERİ ODASI- İZMİR ŞUBESİ İNŞAAT MÜHENDİSLERİ ODASI- İZMİR ŞUBESİ GEOTEKNİK UYGULAMA PROJESİ ÖRNEĞİ 08.07.2014 Proje Lokasyonu Yapısal/Geoteknik Bilgiler Yapı oturum alanı yaklaşık 15000 m2 Temel alt kotu -13.75 m Konut Kulesi

Detaylı

YAPAN: ESKISEHIR G TIPI LOJMAN TARİH: 15.02.2010 REVİZYON: Hakan Şahin - ideyapi Bilgisayar Destekli Tasarım

YAPAN: ESKISEHIR G TIPI LOJMAN TARİH: 15.02.2010 REVİZYON: Hakan Şahin - ideyapi Bilgisayar Destekli Tasarım YAPAN: PROJE: TARİH: 15.02.2010 REVİZYON: Hakan Şahin - ideyapi Bilgisayar Destekli Tasarım YAPI GENEL YERLEŞİM ŞEKİLLERİ 1 4. KAT 1 3. KAT 2 2. KAT 3 1. KAT 4 ZEMİN KAT 5 1. BODRUM 6 1. BODRUM - Temeller

Detaylı

ZEMİNLERİN KAYMA DİRENCİ

ZEMİNLERİN KAYMA DİRENCİ ZEMİNLERİN KYM İRENİ Problem 1: 38.m çapında, 76.m yüksekliğindeki suya doygun kil zemin üzerinde serbest basınç deneyi yapılmış ve kırılma anında, düşey yük 129.6 N ve düşey eksenel kısalma 3.85 mm olarak

Detaylı

Ders Notları 3 Geçirimlilik Permeabilite

Ders Notları 3 Geçirimlilik Permeabilite Ders Notları 3 Geçirimlilik Permeabilite Zemindeki mühendislik problemleri, zeminin kendisinden değil, boşluklarında bulunan boşluk suyundan kaynaklanır. Su olmayan bir gezegende yaşıyor olsaydık, zemin

Detaylı

BETONARME-II ONUR ONAT HAFTA-1 VE HAFTA-II

BETONARME-II ONUR ONAT HAFTA-1 VE HAFTA-II BETONARME-II ONUR ONAT HAFTA-1 VE HAFTA-II GENEL BİLGİLER Yapısal sistemler düşey yüklerin haricinde aşağıda sayılan yatay yüklerin etkisine maruz kalmaktadırlar. 1. Deprem 2. Rüzgar 3. Toprak itkisi 4.

Detaylı

10. KONSOLİDASYON. Konsolidasyon. σ gerilmedeki artış zeminin boşluk oranında e azalma ve deformasyon yaratır (gözeneklerden su dışarı çıkar).

10. KONSOLİDASYON. Konsolidasyon. σ gerilmedeki artış zeminin boşluk oranında e azalma ve deformasyon yaratır (gözeneklerden su dışarı çıkar). . KONSOLİDASYON Konsolidasyon σ gerilmedeki artış zeminin boşluk oranında e azalma ve deformasyon yaratır (gözeneklerden su dışarı çıkar). σ nasıl artar?. Yeraltısuyu seviyesi düşer 2. Zemine yük uygulanır

Detaylı

Temeller. Onur ONAT Tunceli Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

Temeller. Onur ONAT Tunceli Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli Temeller Onur ONAT Tunceli Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli 1 Temel Nedir? Yapısal sistemlerin üzerindeki tüm yükleri, zemine güvenli bir şekilde aktaran yapısal elemanlara

Detaylı

KİLLİ ZEMİNLERE OTURAN MÜNFERİT KAZIKLARIN TAŞIMA GÜCÜNÜN MS EXCEL PROGRAMI KULLANILARAK HESAPLANMASI. Hanifi ÇANAKCI

KİLLİ ZEMİNLERE OTURAN MÜNFERİT KAZIKLARIN TAŞIMA GÜCÜNÜN MS EXCEL PROGRAMI KULLANILARAK HESAPLANMASI. Hanifi ÇANAKCI KİLLİ ZEMİNLEE OTUAN MÜNFEİT KAZIKLAIN TAŞIMA GÜCÜNÜN MS EXCEL POGAMI KULLANILAAK HESAPLANMASI Hanifi ÇANAKCI Gaziantep Üniersitesi, Müh. Fak. İnşaat Mühendisliği Bölümü. 27310 Gaziantep Tel: 0342-3601200

Detaylı

Şev Stabilitesi I. Prof.Dr.Mustafa KARAŞAHİN

Şev Stabilitesi I. Prof.Dr.Mustafa KARAŞAHİN Şev Stabilitesi I Prof.Dr.Mustafa KARAŞAHİN Farklı Malzemelerin Dayanımı Çelik Beton Zemin Çekme dayanımı Basınç dayanımı Kesme dayanımı Karmaşık davranış Boşluk suyu! Zeminlerin Kesme Çökmesi

Detaylı

İZMİR İLİ BUCA İLÇESİ 8071 ADA 7 PARSEL RİSKLİ BİNA İNCELEME RAPORU

İZMİR İLİ BUCA İLÇESİ 8071 ADA 7 PARSEL RİSKLİ BİNA İNCELEME RAPORU İZMİR İLİ BUCA İLÇESİ 8071 ADA 7 PARSEL RİSKLİ BİNA İNCELEME RAPORU AĞUSTOS 2013 1.GENEL BİLGİLER 1.1 Amaç ve Kapsam Bu çalışma, İzmir ili, Buca ilçesi Adatepe Mahallesi 15/1 Sokak No:13 adresinde bulunan,

Detaylı

1.1 Statik Aktif Durum için Coulomb Yönteminde Zemin Kamasına Etkiyen Kuvvetler

1.1 Statik Aktif Durum için Coulomb Yönteminde Zemin Kamasına Etkiyen Kuvvetler TEORİ 1Yanal Toprak İtkisi 11 Aktif İtki Yöntemi 111 Coulomb Yöntemi 11 Rankine Yöntemi 1 Pasif İtki Yöntemi 11 Coulomb Yöntemi : 1 Rankine Yöntemi : 13 Sükunetteki İtki Danimarka Kodu 14 Dinamik Toprak

Detaylı

Taşıyıcı Sistem İlkeleri

Taşıyıcı Sistem İlkeleri İTÜ Mimarlık Fakültesi Mimarlık Bölümü Yapı ve Deprem Mühendisliği Çalışma Grubu BETONARME YAPILAR MIM 232 Taşıyıcı Sistem İlkeleri 2015 Bir yapı taşıyıcı sisteminin işlevi, kendisine uygulanan yükleri

Detaylı

Anıl ERCAN 1 Özgür KURUOĞLU 2 M.Kemal AKMAN 3

Anıl ERCAN 1 Özgür KURUOĞLU 2 M.Kemal AKMAN 3 Düzce Akçakoca Ereğli Yolu Km: 23+770 23+995 Dayanma Yapısı Taban Zemini İyileştirme Analizi Düzce Akçakoca Ereğli Road Km: 23+770 23+995 Retaining Structure Ground Improvement Analysis Anıl ERCAN 1 Özgür

Detaylı

İNM 305 ZEMİN MEKANİĞİ

İNM 305 ZEMİN MEKANİĞİ İNM 305 ZEMİN MEKANİĞİ 2015-2016 GÜZ YARIYILI Prof. Dr. Zeki GÜNDÜZ 1 2 Zeminde gerilmeler 3 ana başlık altında toplanabilir : 1. Doğal Gerilmeler : Özağırlık, suyun etkisi, oluşum sırası ve sonrasında

Detaylı

EŞDEĞER DEPREM YÜKÜ YÖNTEMİ İLE BETONARME KIZAĞIN DEPREM PERFORMANSININ İNCELENMESİ

EŞDEĞER DEPREM YÜKÜ YÖNTEMİ İLE BETONARME KIZAĞIN DEPREM PERFORMANSININ İNCELENMESİ EŞDEĞER DEPREM YÜKÜ YÖNTEMİ İLE BETONARME KIZAĞIN DEPREM PERFORMANSININ İNCELENMESİ Dünya ticaretinin önemli bir kısmının deniz yolu taşımacılığı ile yapılmakta olduğu ve bu taşımacılığının temel taşını

Detaylı

7. Self-Potansiyel (SP) Yöntemi...126 7.1. Giriş...126

7. Self-Potansiyel (SP) Yöntemi...126 7.1. Giriş...126 İÇİNDEKİLER l.giriş...13 1.1. Jeofizik Mühendisliği...13 1.1.1. Jeofizik Mühendisliğinin Bilim Alanları...13 1.1.2. Jeofizik Mühendisliği Yöntemleri...13 1.2. Jeofizik Mühendisliğinin Uygulama Alanları...14

Detaylı

ZEMİNDE GERİLMELER ve DAĞILIŞI

ZEMİNDE GERİLMELER ve DAĞILIŞI ZEMİNDE GERİLMELER ve DAĞILIŞI MALZEMELERİN GERİLME ALTINDA DAVRANIŞI Hooke Yasası (1675) σ ε= ε x = υε. E τzx E γ zx= G= G 2 1 z ( +υ) BOL 1 DOĞAL GERİLMELER Zeminler elastik olsalardı ν σx = σz 1 ν Bazı

Detaylı

Data Merkezi. Tunç Tibet AKBAŞ Arup-İstanbul Hüseyin DARAMA Arup- Los Angeles. Tunç Tibet AKBAŞ

Data Merkezi. Tunç Tibet AKBAŞ Arup-İstanbul Hüseyin DARAMA Arup- Los Angeles. Tunç Tibet AKBAŞ Data Merkezi Tunç Tibet AKBAŞ Arup-İstanbul Hüseyin DARAMA Arup- Los Angeles Tunç Tibet AKBAŞ Projenin Tanımı Tasarım Kavramı Performans Hedefleri Sahanın Sismik Durumu Taban İzolasyonu Analiz Performans

Detaylı

Fotoğraf Albümü. Zeliha Kuyumcu. Mesnetlerinden Farklı Yer Hareketlerine Maruz Kablolu Köprülerin Stokastik Analizi

Fotoğraf Albümü. Zeliha Kuyumcu. Mesnetlerinden Farklı Yer Hareketlerine Maruz Kablolu Köprülerin Stokastik Analizi Mesnetlerinden Farklı Yer Hareketlerine Maruz Kablolu Köprülerin Stokastik Analizi Fotoğraf Albümü Araş. Gör. Zeliha TONYALI* Doç. Dr. Şevket ATEŞ Doç. Dr. Süleyman ADANUR Zeliha Kuyumcu Çalışmanın Amacı:

Detaylı

Orta Doğu Teknik Üniversitesi İnşaat Mühendisliği Bölümü

Orta Doğu Teknik Üniversitesi İnşaat Mühendisliği Bölümü Orta Doğu Teknik Üniversitesi İnşaat Mühendisliği Bölümü Gazbeton, Tuğla ve Bims Blok Kullanımının Bina Statik Tasarımına ve Maliyetine olan Etkilerinin İncelenmesi 4 Mart 2008 Bu rapor Orta Doğu Teknik

Detaylı

Ders Notları 2. Kompaksiyon Zeminlerin Sıkıştırılması

Ders Notları 2. Kompaksiyon Zeminlerin Sıkıştırılması Ders Notları 2 Kompaksiyon Zeminlerin Sıkıştırılması KONULAR 0 Zemin yapısı ve zemindeki boşluklar 0 Dolgu zeminler 0 Zeminin sıkıştırılması (Kompaksiyon) 0 Kompaksiyon parametreleri 0 Laboratuvar kompaksiyon

Detaylı

INM 308 Zemin Mekaniği

INM 308 Zemin Mekaniği Hafta_7 INM 308 Zemin Mekaniği Yanal Zemin Basınçları Yrd.Doç.Dr. İnan KESKİN inankeskin@karabuk.edu.tr, inankeskin@gmail.com www.inankeskin.com ZEMİN MEKANİĞİ Haftalık Konular Hafta 1: Hafta 2: Hafta

Detaylı

NUMERICAL ANALYSIS USING FINITE ELEMENT METHOD; example OF

NUMERICAL ANALYSIS USING FINITE ELEMENT METHOD; example OF ANKARA - TURKIYE sonlu elemanlara dayalı SAYISAL ANALİZ; TEMEL altı zemin İyİleştİrme örneği NUMERICAL ANALYSIS USING FINITE ELEMENT METHOD; example OF SOIL IMPROVED under foundatıon *Yrd. Doç. Dr. Ayşe

Detaylı

BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ

BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ BÖLÜM II D ÖRNEK 1 BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ ÖRNEK 1 İKİ KATLI YIĞMA OKUL BİNASININ DEĞERLENDİRMESİ VE GÜÇLENDİRİLMESİ 1.1. BİNANIN GENEL ÖZELLİKLERİ...II.1/

Detaylı

İSTİNAT DUVARLARI DOÇ.DR. MEHMET BERİLGEN

İSTİNAT DUVARLARI DOÇ.DR. MEHMET BERİLGEN İSTİNAT DUVARLARI DOÇ.DR. MEHMET BERİLGEN İstinat Duvarı Zemin kütlelerini desteklemek için kullanılır. Şevlerin stabilitesini artırmak için Köprü kenar ayağı olarak Deniz yapılarında Rıhtım duvarı Doklar

Detaylı

Kırıkkale İli Bahçelievler ve Fabrikalar Mahallelerinin Sıvılaşma Potansiyelinin Coğrafi Bilgi Sistemlerinde Analizi

Kırıkkale İli Bahçelievler ve Fabrikalar Mahallelerinin Sıvılaşma Potansiyelinin Coğrafi Bilgi Sistemlerinde Analizi International Journal of Engineering Research and Development, Vol.4, No.1, January 2012 33 Kırıkkale İli Bahçelievler ve Fabrikalar Mahallelerinin Sıvılaşma Potansiyelinin Coğrafi Bilgi Sistemlerinde

Detaylı

DBYYHY 2007 ve DEPREME KARŞI DAYANIKLI YAPI TASARIMI. Onur ONAT Tunceli Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

DBYYHY 2007 ve DEPREME KARŞI DAYANIKLI YAPI TASARIMI. Onur ONAT Tunceli Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli DBYYHY 2007 ve DEPREME KARŞI DAYANIKLI YAPI TASARIMI Onur ONAT Tunceli Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli 1 Genel İlkeler Nedir? Yapısal hasarın kabul edilebilir sınırı

Detaylı

Ders. 5 Yer Tepki Analizleri

Ders. 5 Yer Tepki Analizleri İNM 424112 Ders. 5 Yer Tepki Analizleri Yrd. Doç. Dr. Pelin ÖZENER İnşaat Mühendisliği Bölümü Geoteknik Anabilim Dalı YER TEPKİ ANALİZLERİ Yer tepki analizleri yerel zemin koşullarının yer sarsıntıları

Detaylı

Geometriden kaynaklanan etkileri en aza indirmek için yük ve uzama, sırasıyla mühendislik gerilmesi ve mühendislik birim şekil değişimi parametreleri elde etmek üzere normalize edilir. Mühendislik gerilmesi

Detaylı

Orta Doğu Teknik Üniversitesi İnşaat Mühendisliği Bölümü

Orta Doğu Teknik Üniversitesi İnşaat Mühendisliği Bölümü Orta Doğu Teknik Üniversitesi İnşaat Mühendisliği Bölümü Gazbeton, Tuğla ve Bims Blok Kullanımının Bina Statik Tasarımına ve Maliyetine olan Etkilerinin İncelenmesi 4 Mart 2008 Bu rapor Orta Doğu Teknik

Detaylı

BETONARME YAPILARDA BETON SINIFININ TAŞIYICI SİSTEM DAVRANIŞINA ETKİSİ

BETONARME YAPILARDA BETON SINIFININ TAŞIYICI SİSTEM DAVRANIŞINA ETKİSİ BETONARME YAPILARDA BETON SINIFININ TAŞIYICI SİSTEM DAVRANIŞINA ETKİSİ Duygu ÖZTÜRK 1,Kanat Burak BOZDOĞAN 1, Ayhan NUHOĞLU 1 duygu@eng.ege.edu.tr, kanat@eng.ege.edu.tr, anuhoglu@eng.ege.edu.tr Öz: Son

Detaylı

DALGA YAYILMASI Sonsuz Uzun Bir Çubuktaki Boyuna Dalgalar SıkıĢma modülü M={(1- )/[(1+ )(1-2

DALGA YAYILMASI Sonsuz Uzun Bir Çubuktaki Boyuna Dalgalar SıkıĢma modülü M={(1- )/[(1+ )(1-2 DALGA YAYILMASI Sonsuz Uzun Bir Çubuktaki Boyuna Dalgalar SıkıĢma modülü = M={(1- )/[(1+ )(1-2 )]}E E= Elastisite modülü = poisson oranı = yoğunluk V p Dalga yayılma hızının sadece çubuk malzemesinin özelliklerine

Detaylı

BAÜ Müh-Mim Fak. Geoteknik Deprem Mühendisliği Dersi, B. Yağcı Bölüm-5

BAÜ Müh-Mim Fak. Geoteknik Deprem Mühendisliği Dersi, B. Yağcı Bölüm-5 ZEMİN DAVRANIŞ ANALİZLERİ Geoteknik deprem mühendisliğindeki en önemli problemlerden biri, zemin davranışının değerlendirilmesidir. Zemin davranış analizleri; -Tasarım davranış spektrumlarının geliştirilmesi,

Detaylı

1.2. Aktif Özellikli (Her An Deprem Üretebilir) Tektonik Bölge İçinde Yer Alıyor (Şekil 2).

1.2. Aktif Özellikli (Her An Deprem Üretebilir) Tektonik Bölge İçinde Yer Alıyor (Şekil 2). İzmir Metropol Alanı İçin de Yapılan Tübitak Destekli KAMAG 106G159 Nolu Proje Ve Diğer Çalışmalar Sonucunda Depreme Dayanıklı Yapı Tasarımı İçin Statik ve Dinamik Yükler Dikkate Alınarak Saptanan Zemin

Detaylı

TEMEL İNŞAATI ZEMİN İNCELEMESİ

TEMEL İNŞAATI ZEMİN İNCELEMESİ TEMEL İNŞAATI ZEMİN İNCELEMESİ Kaynak; Temel Mühendisliğine Giriş, Prof. Dr. Bayram Ali Uzuner 1 Zemin incelemesi neden gereklidir? Zemin incelemeleri proje maliyetinin ne kadarıdır? 2 Zemin incelemesi

Detaylı

GENEL KESİTLİ KOLON ELEMANLARIN TAŞIMA GÜCÜ (Ara donatılı dikdörtgen kesitler)

GENEL KESİTLİ KOLON ELEMANLARIN TAŞIMA GÜCÜ (Ara donatılı dikdörtgen kesitler) GENEL KESİTLİ KOLON ELEMANLARIN TAŞIMA GÜCÜ (Ara donatılı dikdörtgen kesitler) BOYUTLANDIRMA VE DONATI HESABI Örnek Kolon boyutları ne olmalıdır. Çözüm Kolon taşıma gücü abaklarının kullanımı Soruda verilenler

Detaylı

MİKROTREMOR VERİSİNİ DEĞERLENDİRMEDE ÖZEL DURUMLAR

MİKROTREMOR VERİSİNİ DEĞERLENDİRMEDE ÖZEL DURUMLAR MİKROTREMOR VERİSİNİ DEĞERLENDİRMEDE ÖZEL DURUMLAR Mehmet UTKU 1,2, Mustafa AKGÜN 1,2, Gürkan ÖZDEN 1,3, Mesut GÜRLER 1, Ö. Cevdet ÖZDAĞ 1 1 Dokuz Eylül Üniversitesi, Deprem Araştırma ve Uygulama Merkezi,

Detaylı

Zemin Gerilmeleri. Zemindeki gerilmelerin: 1- Zeminin kendi ağırlığından (geostatik gerilme),

Zemin Gerilmeleri. Zemindeki gerilmelerin: 1- Zeminin kendi ağırlığından (geostatik gerilme), Zemin Gerilmeleri Zemindeki gerilmelerin: 1- Zeminin kendi ağırlığından (geostatik gerilme), 2- Zemin üzerine eklenmiş yüklerden (Binalar, Barağlar vb.) kaynaklanmaktadır. 1 YERYÜZÜ Y.S.S Bina yükünden

Detaylı

MalzemelerinMekanik Özellikleri II

MalzemelerinMekanik Özellikleri II MalzemelerinMekanik Özellikleri II Doç.Dr. Derya Dışpınar deryad@istanbul.edu.tr 2014 Sünek davranış Griffith, camlarileyaptığıbuçalışmada, tamamengevrekmalzemelerielealmıştır Sünekdavranışgösterenmalzemelerde,

Detaylı

Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir.

Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir. BASINÇ ÇUBUKLARI Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir. Basınç çubukları, sadece eksenel basınç kuvvetine maruz kalırlar. Bu çubuklar üzerinde Eğilme ve

Detaylı

İSTİNAT DUVARLARI YRD.DOÇ.DR. SAADET BERİLGEN

İSTİNAT DUVARLARI YRD.DOÇ.DR. SAADET BERİLGEN İSTİNAT DUVARLARI YRD.DOÇ.DR. SAADET BERİLGEN İstinat Duvarı Zemin kütlelerini desteklemek için kullanılır. Şevlerin stabilitesini artırmak için Köprü kenar ayağı olarak Deniz yapılarında Rıhtım duvarı

Detaylı

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 5- Risk Tespit Uygulaması: Betonarme Bina

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 5- Risk Tespit Uygulaması: Betonarme Bina RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR 5- Risk Tespit Uygulaması: Betonarme Bina İncelenen Bina Binanın Yeri Bina Taşıyıcı Sistemi Bina 5 katlı Betonarme çerçeve ve perde sistemden oluşmaktadır.

Detaylı

T.C. Adalet Bakanlığı Balıkesir/Kepsut Cezaevi inşaat sahasındaki presiyometre deney sonuçlarının incelenmesi

T.C. Adalet Bakanlığı Balıkesir/Kepsut Cezaevi inşaat sahasındaki presiyometre deney sonuçlarının incelenmesi BAÜ FBE Dergisi Cilt:9, Sayı:2, 34-47 Aralık 2007 T.C. Adalet Bakanlığı Balıkesir/Kepsut Cezaevi inşaat sahasındaki presiyometre deney sonuçlarının incelenmesi Ahmet ÇONA 1, 1 Balıkesir Üniversitesi Müh.

Detaylı

GEBZE TEKNİK ÜNİVERİSİTESİ MİMARLIK FAKÜLTESİ MİMARLIK BÖLÜMÜ

GEBZE TEKNİK ÜNİVERİSİTESİ MİMARLIK FAKÜLTESİ MİMARLIK BÖLÜMÜ GEBZE TEKNİK ÜNİVERİSİTESİ MİMARLIK FAKÜLTESİ MİMARLIK BÖLÜMÜ MİM 142 YAPI BİLGİSİ I Prof.Dr.Nilay COŞGUN Arş.Gör. Seher GÜZELÇOBAN MAYUK Arş.Gör. Fazilet TUĞRUL Arş.Gör.Ayşegül ENGİN Arş.Gör. Selin ÖZTÜRK

Detaylı

Proje Adı: İstinat Duvarı Sayfa 1. Analiz Yapı Tel:

Proje Adı: İstinat Duvarı Sayfa 1.  Analiz Yapı Tel: Proje Adı: İstinat Duvarı Sayfa 1 BETONARME KONSOL İSTİNAT DUVARI HESAP RAPORU GEOMETRİ BİLGİLERİ Duvarın zeminden itibaren yüksekliği H1 6 [m] Ön ampatman uç yüksekliği Ht2 0,4 [m] Ön ampatman dip yüksekliği

Detaylı

DEPREMLER - 2 İNM 102: İNŞAAT MÜHENDİSLERİ İÇİN JEOLOJİ. Deprem Nedir?

DEPREMLER - 2 İNM 102: İNŞAAT MÜHENDİSLERİ İÇİN JEOLOJİ. Deprem Nedir? İNM 102: İNŞAAT MÜHENDİSLERİ İÇİN JEOLOJİ 10.03.2015 DEPREMLER - 2 Dr. Dilek OKUYUCU Deprem Nedir? Yerkabuğu içindeki fay düzlemi adı verilen kırıklar üzerinde biriken enerjinin aniden boşalması ve kırılmalar

Detaylı

YAPI ZEMİN ETKİLEŞİMİ. Yrd. Doç. Dr Mehmet Alpaslan KÖROĞLU

YAPI ZEMİN ETKİLEŞİMİ. Yrd. Doç. Dr Mehmet Alpaslan KÖROĞLU YAPI ZEMİN ETKİLEŞİMİ Yrd. Doç. Dr Mehmet Alpaslan KÖROĞLU Serbest Titreşim Dinamik yüklemenin pek çok çeşidi, zeminlerde ve yapılarda titreşimli hareket oluşturabilir. Zeminlerin ve yapıların dinamik

Detaylı

Ders 7. İstinat Yapılarında Sismik Yüklerin Hesabı

Ders 7. İstinat Yapılarında Sismik Yüklerin Hesabı İNM 4411 Ders 7. İstinat Yapılarında Sismik Yüklerin Hesabı Yrd. Doç. Dr. Pelin ÖZENER İnşaat Mühendisliği Bölümü Geoteknik Anabilim Dalı İstinat Yapıları Eğimli arazilerde araziden yararlanmak üzere zemini

Detaylı

TEMELLER YÜZEYSEL TEMELLER

TEMELLER YÜZEYSEL TEMELLER TEMELLER YÜZEYSEL TEMELLER Temel Nedir? Üst yapı yüklerini zemine aktaran yapı elemanlarına Temel denir. Temel tasarımı şu iki kriteri sağlamalıdır : Temeli taşıyan zeminde göçmeye karşı yeterli bir güvenlik

Detaylı

KÖPRÜLERİN EKONOMİK TASARIMINDA TEMEL ZEMİNİ GEOTEKNİK ÖZELLİKLERİNİN ÖNEMİ ve BİR VAKA ÖRNEĞİ

KÖPRÜLERİN EKONOMİK TASARIMINDA TEMEL ZEMİNİ GEOTEKNİK ÖZELLİKLERİNİN ÖNEMİ ve BİR VAKA ÖRNEĞİ 57 KÖPRÜLERİN EKONOMİK TASARIMINDA TEMEL ZEMİNİ GEOTEKNİK ÖZELLİKLERİNİN ÖNEMİ ve BİR VAKA ÖRNEĞİ Uğur Şafak ÇAVUŞ SDÜ Teknoloji Fak. İnşaat Müh. Böl. E-12 Blk. Batı Kampüsü Isparta/Türkiye Tel: 246 211

Detaylı

ZM-I FİNAL SORU ve CEVAPLARI SORU-1 [10]: Sıvılık indisi (I L ) ne demektir? Sıvılık indisinin 2.1, 0 ve -0.6 olması ne ifade eder?

ZM-I FİNAL SORU ve CEVAPLARI SORU-1 [10]: Sıvılık indisi (I L ) ne demektir? Sıvılık indisinin 2.1, 0 ve -0.6 olması ne ifade eder? 28-29 ZM-I FİNAL SORU ve CEVAPLARI SORU-1 [1]: Sıvılık indisi (I L ) ne demektir? Sıvılık indisinin 2.1, ve -.6 olması ne ifade eder? SORU 2 [2]: Aşağıdaki kesit için a) Siltin doygun birim hacim ağırlığını

Detaylı

INM 305 Zemin Mekaniği

INM 305 Zemin Mekaniği Hafta_9 INM 305 Zemin Mekaniği Gerilme Altında Zemin Davranışı Yrd.Doç.Dr. İnan KESKİN inankeskin@karabuk.edu.tr, inankeskin@gmail.com Haftalık Konular Hafta 1: Zeminlerin Oluşumu Hafta 2: Hafta 3: Hafta

Detaylı

YIĞMA YAPI TASARIMI ÖRNEK BİR YIĞMA SİSTEMİN İNCELENMESİ

YIĞMA YAPI TASARIMI ÖRNEK BİR YIĞMA SİSTEMİN İNCELENMESİ 13.04.2012 1 ÖRNEK BİR YIĞMA SİSTEMİN İNCELENMESİ 2 ÇENGEL KÖY DE BİR YIĞMA YAPI KADIKÖY DEKİ YIĞMA YAPI 3 Genel Bilgiler Yapı Genel Tanımı Kat Sayısı: Bodrum+3 kat+teras kat Kat Oturumu: 9.80 X 15.40

Detaylı

TDY 2007 YE GÖRE DEPREM ELASTİK TASARIM İVME SPEKTRUMU

TDY 2007 YE GÖRE DEPREM ELASTİK TASARIM İVME SPEKTRUMU KONU: Yeni deprem yönetmeliği taslağında ve TDY2007 de verilen kriterler doğrultusunda, birkaç lokasyonda, deprem tasarım ivme spektrumlarının oluşturulması ve tek serbestlik dereceli bir sistem üzerinde

Detaylı

BLOK TİPİ KIYI YAPILARININ SİSMİK TASARIMI

BLOK TİPİ KIYI YAPILARININ SİSMİK TASARIMI BLOK TİPİ KIYI YAPILARININ SİSMİK TASARIMI Hülya Karakuş (1), Çağlar Birinci (2), Işıkhan Güler (3) (1) : Araştırma Görevlisi, İnşaat Müh. Bölümü, ODTÜ, Ankara (2) : Proje Mühendisi, Yüksel Proje Uluslararası

Detaylı

INM 308 Zemin Mekaniği

INM 308 Zemin Mekaniği Hafta_10 INM 308 Zemin Mekaniği Yamaç ve Şevlerin Stabilitesi Örnek Problemler Yrd.Doç.Dr. İnan KESKİN inankeskin@karabuk.edu.tr, inankeskin@gmail.com www.inankeskin.com ZEMİN MEKANİĞİ Haftalık Konular

Detaylı

ÇEVRE GEOTEKNİĞİ DERSİ

ÇEVRE GEOTEKNİĞİ DERSİ ÇEVRE GEOTEKNİĞİ DERSİ ATIK VE ZEMİNLERİN OTURMASI DERSİN SORUMLUSU YRD. DOÇ DR. AHMET ŞENOL HAZIRLAYANLAR 2013138017 ALİHAN UTKU YILMAZ 2013138020 MUSTAFA ÖZBAY OTURMA Yapının(dolayısıyla temelin ) düşey

Detaylı

Geoteknik Mühendisliği

Geoteknik Mühendisliği Geoteknik Mühendisliği 1 Mühendislik malzemesi nedir? İnşaat mühendisi inşa eder Paslı çelik Hala çelik Çelik Çelik 2 1 Mühendislik malzemesi nedir? İnşaat mühendisi inşa eder Beton Beton Hala beton 3

Detaylı

TEMELLER. Celal Bayar Üniversitesi Turgutlu Meslek Yüksekokulu İnşaat Bölümü. Öğretim Görevlisi Tekin TEZCAN İnşaat Yüksek Mühendisi

TEMELLER. Celal Bayar Üniversitesi Turgutlu Meslek Yüksekokulu İnşaat Bölümü. Öğretim Görevlisi Tekin TEZCAN İnşaat Yüksek Mühendisi TEMELLER Celal Bayar Üniversitesi Turgutlu Meslek Yüksekokulu İnşaat Bölümü Öğretim Görevlisi Tekin TEZCAN İnşaat Yüksek Mühendisi TEMELLER Yapının kendi yükü ile üzerine binen hareketli yükleri emniyetli

Detaylı

DETAYLI İNCELEMELER. (Zeminde-Numune Alma) Ertan BOL-Sedat SERT-Aşkın ÖZOCAK 1 İNCE CİDARLI SHELBY TÜPÜ KUYU AĞZI HELEZON SPT KAŞIĞI

DETAYLI İNCELEMELER. (Zeminde-Numune Alma) Ertan BOL-Sedat SERT-Aşkın ÖZOCAK 1 İNCE CİDARLI SHELBY TÜPÜ KUYU AĞZI HELEZON SPT KAŞIĞI İNCE CİDARLI SHELBY TÜPÜ DETAYLI İNCELEMELER (Zeminde-Numune Alma) KUYU AĞZI SPT KAŞIĞI HELEZON Ertan BOL-Sedat SERT-Aşkın ÖZOCAK 1 NUMUNELERİN KORUNMASI UD TÜPTE PARAFİNLEME Ertan BOL-Sedat SERT-Aşkın

Detaylı