OREN3002 STATİK VE MUKAVEMET ders notları

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "OREN3002 STATİK VE MUKAVEMET ders notları"

Transkript

1 OREN3002 STATİK VE MUKAVEMET ders notları 1

2 2. Bölüm MUKAVEMET ders notları 2

3 10. GERİLME KAVRAMI 3

4 10.1. Giriş Mukavemeti dersinin temel hedefi, mühendislikte çeşitli makina ve yük taşıyan yapıların analizi ve tasarımında gerekli bilgi ve beceriyi sağlamaktır. Bir yapının analiz ve tasarımı, gerilmeler ve deformasyonların belirlenmesini içerir. 4

5 10.1. Yapı Elemanlarında Oluşan Gerilmeler Belirlenen iç kuvvetler, verilen bir yükün güvenli olarak taşınıp taşınmayacağı hakkında bilgi vermez. Örneğin BC çubuğunun bu yüklemeyle kırılıp kırılmayacağı aynı zamanda çubuğun kesit alanına ve çubuğun yapıldığı malzemeye bağlıdır. Şekil 10.1 FBC iç kuvveti, kesitin A alanına etkiyen yayılı elemanter yüklerin bileşkesini temsil eder. Bu yayılı yüklerin ortalama yoğunluğu, kesitin birim alanına etkiyen kuvvete, yani FBC/A ya eşittir. 5

6 O halde, kırılma F BC kuvvetine, A kesit alanına ve çubuk malzemesine bağlıdır. Birim alana etkiyen kuvvete veya verilen kesit üzerine etkiyen yayılı kuvvetlerin yoğunluğuna o kesitteki gerilme adı verilir. P eksenel kuvvetine maruz A kesit alanlı bir elemandaki gerilme, yükün P büyüklüğü A kesit alanına bölünerek elde edilir: Şekil

7 Metrik birim sistemine göre, P Newton (N) ile, A metre kare (m 2 ) ile σ gerilmesi de N/m 2 ile ifade edilmektedir. 1 N/m 2 = 1 Pa 7

8 10.2. Analiz ve Tasarım BC çubuğunun σ em = 165 MPa emniyet gerilmeli bir çelikten yapıldığını varsayalım. F BC = 50 kn olarak bulunmuştu. Çubuğun çapının 20 mm olduğunu dikkate alarak uygulanan yükle oluşan gerilmeyi belirleyelim: σ için bulunan değer, kullanılan çelikteki σ em emniyet gerilmesinden daha küçük olduğundan, BC çubuğunun uygulanan yükü emniyetli bir şekilde taşıyabileceği sonucuna varılır. 8

9 Mühendisin işi, analiz ile sınırlı değildir. Yeni yapı ve makinelerin tasarımı, yani istenen görevi yapacak uygun elemanların seçimi de önemlidir. Tasarıma örnek olarak önceki yapıya dönelim ve σ em = 100 MPa emniyet gerilmeli alüminyum kullanıldığını varsayalım. Kuvvet yine 50 kn olduğundan, Buradan 26 mm veya daha büyük çaplı bir alüminyum çubuğun yeterli olduğu anlaşılır. 9

10 10.3. Eksenel Yük Normal Gerilme Önceki bölümde ele alınan BC çubuğunun B ve C uçlarına etkiyen kuvvetler çubuk ekseni doğrultusundadır. Buna göre, çubuk «eksenel yüke» maruzdur diyoruz (Şekil 10.2). Örneği, bir köprü kafesinin elemanlarındaki gerilme eksenel yüke maruz oluşundan kaynaklanır. Gerilmeyi belirlemek için aldığımız kesit çubuğun eksenine diktir. Elde edilen gerilme «normal gerilme» olarak tanımlanır: σ, kesitte yayılı iç kuvvetlerin bileşkesi olan P büyüklüğünün kesitin A alanına bölünmesiyle elde edilmiştir. Bu nedenle, kesitin belirli bir noktasındaki gerilmeyi değil, kesit üzerindeki gerilmenin «ortalama değerini» temsil etmektedir. 10

11 Kesitin herhangi bir Q noktasındaki gerilmeyi tanımlamak için, küçük bir ΔA alanını ele almalıyız. ΔF büyüklüğünü ΔA ya bölerek ΔA üzerindeki gerilmenin ortalama değerini elde ederiz. ΔA yı sıfıra yaklaştırarak Q noktasındaki gerilmeyi elde ederiz: Şekil

12 Genelde, σ gerilmesi için kesitin verilen bir Q noktasında elde edilen değer, ortalama gerilme değerinden farklıdır. Eşit ve zıt yönlü kuvvetlere maruz ince bir çubukta bu değişim, tekil yüklerin uygulama noktasından uzaktaki bir kesitte küçüktür. Ancak uygulama noktası yakınındaki kesitlerde bu değişim büyük değerlere ulaşır. Şekil

13 denkleminden, yayılı iç kuvvetlerin bileşkesinin büyüklüğünün olduğu görülür. Şekildeki çubuğun her parçasındaki denge koşulları, bu büyüklüğün tekil yüklerin P büyüklüğüne eşit olmasını gerektirir. Böylece buradan, elde edilir. Yani, her bir gerilme yüzeyinin altındaki hacim, yüklerin P büyüklüğüne eşit olmaldır. 13

14 Uygulamada, eksenel yüklü elemanlarda normal gerilme dağılımının, yüklerin uygulama noktalarının hemen civarı hariç olmak üzere, düzgün olduğu varsayılır. Gerilme değerleri böylece σ ort ya eşit olur. Ancak, kesitte düzgün bir gerilme dağılımı olduğunu varsaydığımızda, elemanter statiğe göre, iç kuvvetlerin P bileşkesinin kesitin C ağırlık merkezine uygulanması gerekir. Bu tip yüklemeye, «merkezi yükleme» denir. Bunun kafes ve pim mafsallı yapılarda bulunan tüm düzgün ikikuvvetli elemanlarda oluştuğu varsayılacaktır. Şekil

15 Ancak, iki kuvvetli bir eleman, eksenel fakat «dışmerkezli» yüklemeye maruz ise, elemanın Şekil b de gösterilen parçasının denge koşullarından, verilen bir kesitteki iç kuvvetlerin, kesitin merkezinde uygulanan bir P kuvveti ile M = Pd momenti M kuvvet çiftine denk olması gerektiğini buluruz. Kuvvetlerin dağılımı ve buna bağlı olarak da gerilmelerin dağılımı simetrik olmaz. Şekil

16 10.4. Kayma Gerilmesi Önceki kesimde ele alınan iç kuvvetler ve gerilmeler incelenen kesite dikti. Bir AB elemanına P ve P enine kuvvetleri uygulandığında çok farklı bir gerilme tipi elde edilir. AC parçasının C kesitindeki iç kuvvetlerin bileşkesi P ye eşittir. Bu elemanter iç kuvvetlere «kesme kuvvetleri» denir. P kesme kuvvetini A alanına bölerek, kesitteki «ortalama kayma gerilmesi»ni elde ederiz: Şekil

17 Kayma gerilmesine, çeşitli yapısal elemanları ve makine parçalarını birleştirmede kullanılan cıvatalar, pimler ve perçinlerde sıklıkla rastlanır. Şekil

18 Plakalara F büyüklüğündeki çekme kuvveti uygulanırsa, EE düzlemine karşılık gelen cıvata kesitinde gerilmeler oluşur. Bu cıvatanın «tek kesme» etkisinde olduğu söylenir. Kesitteki P kesme kuvveti F ye eşittir. Dolayısıyla ortalama kayma gerilmesi: Şekil

19 A ve B plakalarını birleştirmek için C ve D bağlantı plakaları kullanılmıştır. Buradaki cıvataların «çift kesme» etkisinde olduğu söylenir. Serbest cisim diyagramlarından P = F/2 olduğu görülür. Ortalama kayma gerilmesi de şu şekilde hesaplanır: Şekil

20 10.5. Yataklarda Gerilme Cıvatalar, pimler ve perçinler birleştirdikleri elemanlarda «yatak yüzeyi» veya temas yüzeyi boyunca gerilmeler yaratır. P kuvveti, d çaplı ve t kalınlıklı bir yarım silindirin iç yüzeyine yayılı elemanter kuvvetlerin bileşkesini temsil eder. Bu kuvvetlerin ve karşılık gelen gerilmelerin dağılımı karmaşık olduğundan, aşağıdaki basitleştirilmiş ifade ile «yatak gerilmesi» hesaplanır: Şekil

21 10.6. Analiz ve Tasarım Uygulamaları 20 mm çaplı BC çubuğunun yassı uçlarının 20x40 mm lik dikdörtgen kesitleri vardır. AB kolunun kesiti 30x50 mm lik bir dikdörtgendir. B ucundan U-şekilli bir çatal ile 30kN luk bir yük asılmıştır. AB kolu çift konsol içinde geçen pimle A da bağlanmışken, BC çubuğu C de tek konsolla bağlanmıştır. Tüm pimlerin çapı 25 mm dir. Şekil

22 AB Kolu ve BC Çubuğundaki Normal Gerilmelerin Belirlenmesi BC çubuğundaki kuvvet FBC = 50kN (çekme), dairesel kesit alanı A=314x10-6 m 2 ve karşı gelen normal gerilme σ BC = +159 MPa idi. Ancak, çubuğun yassı kısımları da çekme altındadır ve deliğin yer aldığı en dar kesitte, Şekil

23 Artan yük altında, çubuğun silindirik kısmından değil, deliklerden birinin yakınından kırılacağı açıktır. Çubuğun tasarımı, yassı uçların enini veya kalınlığını arttırarak iyileştirilebilir. AB kolundaki kuvvet F AB = 40kN (basınç), kolun dikdörtgen kesit alanı A=1.5x10-3 m 2 olduğundan, A ve B pimleri arasında, normal gerilmenin ortalama değeri: A ve B deki en küçük kesitler gerilme etkisinde değildir. Çünkü kol basınç altındadır ve pimleri iter. Şekil

24 Çeşitli Bağlantılardaki Kayma Gerilmelerinin Belirlenmesi Bir cıvata, pim veya perçinde kayma gerilmelerini belirlemek için öncelikle elemanlar üzerindeki kuvvetler açıkça gösterilir. Çizimden DD düzlemindeki kesme kuvvetinin P=50 kn olduğu görülür. Şekil

25 Pimin kesit alanı: olduğundan, C deki pimde kayma gerilmesinin ortalama değeri: olarak bulunur. 25

26 A piminin çift kesmeye maruz kalmaktadır. SCD ndan, P=20 kn ve olarak hesaplanır. Şekil

27 B deki pim, kol, çubuk ve çatalın uyguladığı kuvvetlerin etkisinde beş parçaya bölünebilir. PE = 15 kn ve PG = 25 kn olarak bulunur. Böylece en büyük kesme kuvvetinin 25 kn olduğu ve en büyük kayma gerilmesinin G ve H kesitlerinde oluşacağı görülür. Ortalama kayma gerilmesi: Şekil

28 Yatak Gerilmelerinin Belirlenmesi AB elemanında A daki nominal yatak gerilmesi; t = 30 mm, d = 25 mm ve P = FAB = 40 kn için: Konsolda A daki nominal yatak gerilmesi; t = 2(25 mm) = 50 mm, d = 25 mm ve P = FAB = 40 kn için: AB elemanında B de, BC elemanında B ile C de ve konsolda C deki yatak gerilmeleri benzer yolla bulunur. Şekil

29 10.7. Eksenel Yüklemede Eğik Kesitte Gerilme Eksenel kuvvetler elemanın eksenine dik olmayan kesitlerde hem normal gerilme hem de kayma gerilmesi ortaya çıkarır. P kesite normal ve dik bileşenlerine ayrılabilir: Karşı gelen normal ve kayma gerilmelerinin ortalama değerleri: Şekil

30 A 0 elemanın eksenine dik kesit alanı olmak üzere: Şekil

31 10.8. Tasarımda Dikkate Alınması Gereken Konular Kopma Mukavemetinin Belirlenmesi Bir malzemenin yük altında nasıl davranacağının belirlenmesi gerekir. Örneğin çelik bir çubuk, çekme cihazına bağlanarak eksenel yük uygulanır. En büyük kuvvete ulaşıldığında numune kırılır ya da daha az yük taşımaya başlar. Bu en büyük kuvvete, deney numunesinin «kopma yükü» adı verilir. PU ile gösterilir. Uygulanan yük merkezi olduğundan, PU çubuğun başlangıç kesitine bölünerek «kopma normal gerilmesi» elde edilir. Bu gerilme malzemenin «çekmedeki kopma mukavemeti» olarak da bilinir: 31

32 «Kopma kayma gerilmesi» veya «kesmede kopma mukavemeti» genellikle dairesel tüpün burulması ile belirlenir. Daha kolay ama daha az hassas bir yöntem, şekilde görüldüğü gibi tek veya çift kesmeye maruz kalacak şekilde sabitlenen çubuğa uygulanan P yükünün PU kopma yüküne ulaşıncaya kadar arttırılarak uygulanmasını içerir. τu kopma kayma gerilmesi her iki durumda da kopma yükünün kesmenin oluştuğu toplam alana bölünmesiyle elde edilir. Şekil

33 Emniyet Yükü ve Emniyet Gerilmesi; Emniyet Katsayısı Bir yapı elemanı veya bir makine parçasının normal kullanım koşullarında taşımasına izin verilen yük, kopma yükünden oldukça küçüktür. Bu yük «emniyet yükü», «çalışma yükü» veya «tasarım yükü» olarak adlandırılır. 33

34 Uygun Emniyet Katsayısının Seçimi Verilen bir tasarıma uygun E.K. seçimi, birçok konuyla ilgili mühendislik muhakemesi gerektirir: 1. Ele alınan malzemenin özelliklerinde meydana gelebilecek değişimler. 2. Yapı veya makinenin çalışma ömrü süresince beklenen yükleme sayısı. 3. Tasarımda planlanmış veya ileride ortaya çıkabilecek yükleme çeşidi. 4. Meydana gelebilecek kırılma çeşidi. 5. Analiz yöntemlerinden ileri gelen belirsizlik. 6. Yetersiz bakım veya engellenemeyen doğal olaylar nedeniyle ortaya çıkabilecek bozulma. 7. Elemanın yapının bütünlüğü açısından önemi. 34

35 11. GERİLME VE ŞEKİL DEĞİŞTİRME 35

36 11. GERİLME VE ŞEKİL DEĞİŞTİRME Eksenel Yüklemede Normal Şekil Değiştirme Analiz ve tasarımın iki önemli özelliği çeşitli elemanlarda uygulanan yükler sonucu oluşan gerilmeler ve bunların neden olduğu deformasyonlardır. Yapının hedeflenen amacı yerine getirmesini engelleyecek kadar büyük deformasyonlara maruz kalmasını önlemek gerekir. Bu bölümde, eksenel yükleme halindeki çubuk, plaka gibi yapı elemanlarının deformasyonlarını ele alınacaktır. 36

37 Eksenel yüklemeye maruz bir çubuktaki normal şekil değiştirme (ε), çubuğun «birim uzunluğundaki deformasyon» olarak tanımlanır. Şekil 11.1 Şekil

38 Kesiti düzgün olmayan bir eleman halinde, gerilme eleman boyunca değişir. Bir Q noktasındaki şekil değiştirme, deforme olmamış küçük bir Δx elemanını göz önüne alınarak tanımlanır: Şekil

39 11.2. Gerilme Şekil Değiştirme Diyagramı Malzemenin gerilme-şekil değiştirme diyagramı çekme deneyi ile belirlenir. L 0 : ölçüm uzunluğu Şekil 11.4 Şekil

40 Şekil 11.5 Şekil 11.6 Malzemenin gerilme-şekil değiştirme diyagramından malzemenin sünek mi gevrek mi olduğu anlaşılır. 40

41 Şekil 11.7 Şekil 11.8 Sünek malzemeler «akma» yetenekleri ile bilinirler. σ Y : malzemenin «akma mukavemeti» σ U : malzemenin «maksimum! (kopma) mukavemeti» σ B : malzemenin «kırılma mukavemeti» 41

42 Şekil 11.9 İnşaat çeliğinde akma noktası barizdir, diyagramdan gözlenebilir. Alüminyum alaşımında ise akma noktası «kaydırma» yöntemi ile belirlenir. 42

43 Şekil Şekil Şekil Gevrek malzemelerde maksimum mukavemet değeri ile kırılma mukavemeti arasında fark yoktur. Gevrek malzemelerde kırılma anındaki şekil değiştirme, sünek malzemelerden çok daha küçüktür. 43

44 Bir malzemenin sünekliğinin standart bir ölçüsü uzama yüzdesidir. Sık kullanılan bir çelikte %21 dir (Akma mukavemeti 350 MPa ve 50 mm ölçüm uzunluğu). Diğer bir süneklik ölçüsü alan büzülmesidir. İnşaat çeliklerinde genellikle %60-%70 arasında değişir. 44

45 Şekil Betonun gerilme-şekil değiştirme diyagramı. Çelikte akma mukavemeti hem çekmede hem de basınçta aynıdır. Akma noktasını aşan yüklemeler sonucunda eğriler farklılık gösterir. Basınçta boyun verme görülmez. Çoğu gevrek malzemede, basınç kopma mukavemeti çekmedeki kopma mukavemetinden büyüktür. Bu durum, çekmede malzemeyi zayıflatan malzeme yapısındaki mikroçatlaklar ile açıklanır. 45

46 Şekil Tipik bir sünek malzeme için gerçek gerilme gerçek şekil değiştirme diyagramı Önceki diyagramlardaki gerilmeler P yükünün A 0 kesit alanına bölünmesiyle elde edilmiştir. Ancak, kesit alanı P artarken azalır. σ = P/A 0 : mühendislik gerilmesi. σt = P/A: gerçek gerilme. ε = δ/l 0 : mühendislik şekil değiştirmesi. εt: gerçek şekil değiştirme. 46

47 11.3. Hook Kanunu Elastisite Modülü Hooke kanununun kullanılabildiği en büyük gerilme değerine, malzemenin «orantı limiti» adı verilir. Bariz akma noktasına sahip malzemelerde hemen hemen akma noktası ile çakışır. Diğer malzemeler için orantı limitini tanımlamak kolay değildir. Şekil

48 Yapı metallerinin özellikleri, ısı uygulamasından ve üretim sürecinden etkilenir. Şekilde görüldüğü gibi akma mukavemeti, kopma mukavemeti ve son şekil değiştirme arasında oldukça büyük farklar vardır. Ama hepsi aynı elastisite modülüne sahiptir. Şekil

49 Mekanik özellikler malzeme doğrultusundan bağımsız ise malzeme izotropiktir. Özellikleri ele alınan doğrultuya bağlı olan malzemelere ise anizotropik malzeme denir. Fiber takviyeli kompozit malzemeler anizotropik malzemeye örnektir. Ex Ey Ez Şekil

50 11.4. Malzemenin Elastik ve Plastik Davranışı Bir numunedeki şekil değiştirme yük kaldırıldığında ortadan kalkıyorsa, malzemenin elastik davrandığı söylenir. Elastik davranışın görüldüğü en büyük gerilme değeri, malzemenin elastik limitidir. Bariz akma noktasına sahip malzemelerde elastik limit, orantı limiti ve akma noktası temelde eşittir. Şekil

51 Akma noktasından sonra yük kaldırılırsa, şekil değiştirme sıfıra dönmez. Bu durum kalıcı veya plastik deformasyon oluştuğunu gösterir. Plastik deformasyonun gerilmeye bağlı kısmına kayma, zamana bağlı kısmına sünme denir. Yeni yükleme eğrisinin doğru şeklindeki parçası, başlangıçtakinden daha büyüktür. Bu durum, ilk yükleme sonucu oluşan deformasyon sertleşmesinin sonucudur. Bununla birlikte, kopma noktası değişmediğinden, D noktasından ölçülen süneklik azalmıştır. Şekil

52 11.5. Tekrarlı Yüklemeler ve Yorulma Gerilmeler elastik aralıkta ise, verilen yük bir çok kez tekrarlanabilir. Fakat yükleme sayısı belirli bir değeri aştığında, kırılma statik mukavemetten daha düşük bir gerilme değerinde gerçekleşir. Bu olay yorulma olarak bilinir. Sünek malzemelerde bile gevrek tabiata sahiptir. Şekil

53 Maksimum gerilmenin büyüklüğü azaldıkça, sürekli mukavemet sınırı gerilmesine ulaşana kadar, kırılma için gerekli döngülerin sayısı artar. Bir sanayi vincini taşıyan kiriş 25 yılda 2 milyon defa (bir iş gününde 300 yükleme), km yol kat eden bir aracın krank mili ½ milyar defa, Bir türbin kanadı ömrü süresince birkaç milyar defa yüklenebilir. Şekil

54 Alüminyum ve bakır gibi metallerde kırılma gerilmesi sürekli bir düşüş göstermektedir. Böyle metaller için 500 milyon gibi belli bir döngü sayısı, yorulma sınırı olarak tanımlanır. Şekil Kırılma, mikroskobik bir çatlakta veya benzer bir kusurlu kısımda başlar. Tekrar eden yüklemeler sonucunda, hasarsız kısım, yükü taşıyamayacak kadar azaldığında ani, gevrek kırılma meydana gelir. Bu nedenle, yüzey durumu çok önemlidir. Deniz suyu etkisiyle sürekli mukavemet sınırına %50 ye varan azalma beklenebilir. 54

55 11.6. Eksenel Yüklemede Deformasyon σ = P/A eksenel gerilmesi malzemenin orantı limitini aşmıyorsa, Hooke kanunu uygulanabilir: Çubuk farklı kesit alanlarına ve/veya farklı malzemeler içeriyorsa: Şekil

56 Değişken kesitli bir elemanda ε şekil değiştirmesi Q noktasının konumuna bağlıdır. ε = dδ/dx olarak ifade edilir. Buradan, dx uzunluğundaki elemanın deformasyonu: Şekil L toplam uzunluğu üzerinden integral alınarak toplam deformasyon elde edilir: 56

57 Önceki durumlarda bir uç ankastre bağlanmıştı. Her iki uç da hareket ederse, çubuğun deformasyonu, bir ucunun diğer ucuna göre bağıl yer değiştirmesiyle ölçülür. B nin A ya göre bağıl yer değiştirmesi: Şekil

58 11.7. Sıcaklık Değişiminin Etkisi Düzgün kesitli, homojen bir AB çubuğu, pürüzsüz bir yüzeyde serbestçe durmaktadır. Çubuğun sıcaklığı ΔT kadar arttırılırsa, çubuk L uzunluğu ve ΔT ile orantılı olacak şekilde δt kadar uzar. α: termal genleşme katsayısı, 1/ C Şekil

59 Sıcaklık değişiminden kaynaklandığı için, ε T şekil değiştirmesine termal şekil değiştirme adı verilir. Ele aldığımız durumda bir gerilme meydana gelmez. Şekil Başlangıçta gerilme veya şekil değiştirme yok. Sıcaklık ΔT kadar arttırılırsa, çubuk uzayamaz ve δt sıfır olur. Dolayısıyla, εt = δt/l = 0. Fakat, sıcaklık artınca uzamaya engel olmak için, mesnetler P ve P kuvvetleri uygular. Böylece, çubukta gerilme oluşur. 59

60 Problem statikçe belirsizdir. Uzama sıfır olduğundan, mesnet tepkileri hesaplanır. Süperpozisyon metodu için çubuk B mesnedinden ayrılır. Şekil

61 11.8. Poisson Oranı Bütün mühendislik malzemelerinde, P eksenel çekme kuvvetiyle, kuvvet doğrultusunda oluşan uzamanın yanında, dik doğrultularda bir daralma da olur. Aksi belirtilmedikçe, ele alınan malzemeler hem homojen hem de izotropik varsayılacak. Bu nedenle ε y = ε z olmalıdır. Bu ortak değere enine şekil değiştirme adı verilir. Şekil

62 62

63 11.9. Plastik Deformasyonlar Gerilmeler akma mukavemetinden küçük olduğu sürece, malzeme elastik davranır. Akma mukavemetine ulaşılınca, akma başlar ve malzeme sabit bir yük altında plastik deformasyonunu sürdürür. Yük kaldırılırsa, yükleme eğrisinin AY başlangıç kısmına paralel bir CD doğru parçası boyunca boşaltma gerçekleşir. Yatay eksenin AD parçası, plastik deformasyona karşı gelen şekil değiştirmeyi gösterir. Şekil

64 12. MALZEMELERİN MEKANİK ÖZELLİKLERİ 64

65 12. MALZEMELERİN MEKANİK ÖZELLİKLERİ Malzemelerin mekanik yükler altındaki davranışlarına Mekanik özellikler adı verilir. Mekanik özellikler esas olarak atomlararası bağ kuvvetlerinden kaynaklanır. Ancak bunun yanında malzemenin iç yapısının (mikroyapı) da etkisi vardır. Bu sayede iç yapıyı değiştirerek aynı malzemede farklı mekanik özellikler elde etmek mümkün hale gelir. Metallerin mekanik özellikleri çeşitli yükleme şartlarında, çeşitli deney parçaları ile incelenir. 65

66 Mekanik tasarım ve imalat sırasında malzemelerin mekanik davranışlarının bilinmesi çok önemlidir. Malzemelerin başlıca mekanik özellikleri: a) Çekme / basma (tensile /compression) b) Sertlik (hardness) c) Darbe (impact) d) Kırılma (fracture) e) Yorulma (fatigue) f) Sürünme (creep) 66

67 12.1. Çekme Deneyi Malzemenin statik kuvvetler altında dayanımı ve mekanik özelliklerinin test edilmesinde kullanılır. Şekil Çekme deneyi 67

68 : Gerilme : Birim şekil değiştirme F A o l l o l l l o o Şekil Çekme deneyinden elde edilen F- L (Kuvvet - Uzama) eğrisi Şekil F- L deki verilerinde elde edilen - (Gerilme-Birim uzama) eğrisi 68

69 Malzemenin plastik şekil değiştirmeye (pşd) başladığı gerilme değerine akma dayanımı adı verilir. 1. Belirgin akma göstermeyen malzemeler 2. Belirgin akma gösteren malzemeler 0.2 Belirgin olmaması durumunda, akma dayanımı % 0.2 kalıcı pşd oluşturan gerilme değerine eşittir. p =0.002 = % 0.2 Şekil Belirgin olmayan akma noktası a. e Belirgin akma noktası Şekil Belirgin olan akma noktası 69

70 Şekil Gerilme birim uzama diyagramı 70

71 Elastik şekil değişimi Elastik bölgede Hook kanunu geçerlidir. Gerilme ile birim uzama lineer olarak değişir. Kuvvet kalkınca, elastik uzama ortadan kalkar. E, Elastiklik Modülü, lineer kısmın eğimine eşittir Malzemenin karakteristik özelliğidir (malzemeden malzemeye değişir) E büyüdükçe malzeme daha rijit hale gelir yani gerilme ile daha az şekil değişimi gösterir. Küçüldükçe daha elastik davranır. 71

72 Hook Kanunu Normal gerilme Kayma gerilmesi E = Normal gerilme = Birim şekil değişimi E = Elastiklik modülü Şekil 12.8 G = = G = Kayma gerilmesi Kayma birim şekil değişimi kayma modülü 72

73 Elastisite modülüne (E) etki eden parametreler: Kimyasal bileşim: E, bir malzeme özelliğidir. E, kimyasal kompozisyondan etkilenir. Çelik, Alüminyuma göre daha rijittir. Ortam sıcaklığından etkilenir: Sıcaklık arttıkça E, azalır Isıl işlemden etkilenmez: Aynı çeliğin yumuşak hali ile sertleştirilmiş hali aynı E ye sahiptir. 73

74 Poisson Oranı x z y z (izotropik malzemelerde) Şekil Çekme yönünde malzeme uzarken buna dik yönde kısalma gerçekleşir. Aradaki oran poisson oranı ile belirlenir. Elastik şekil değiştirmede metaller için arasında değişir. Genelde 0.3 tür. Plastik şekil değişiminde hacim sabit kalır ve poisson oranı 0.5 değeri alır. 74

75 Tablo Bazı malzemelerin sıcaklık elastik özellikleri 75

76 Plastik Şekil Değişimi Malzemelerin dayanımını ifade eden akma dayanımının üzerinde gerilmeler uygulanması durumunda plastik şekil değişimleri (kalıcıgeri dönüşsüz) (PŞD) başlar. Bu noktada PŞD, dislokasyonlar kaymaya başlamasıyla meydana gelir. PŞD de sıcaklık seviyelerine bağlı olarak farklı şekil değiştirme mekanizmaları mevcuttur. Bunlar; a 1. Soğuk plastik şekil değiştirme, 2. Sıcak Plastik şekil değiştirme 3. Ilık Plastik şekil değiştirme Bu sıcaklık seviyeleri benzeş sıcaklık ile belirlenir. 76

77 Benzeş sıcaklık (homologous temperature): T B T T Ç E o o K K T E = Malzemenin erime sıcaklığı T Ç = Çalışma sıcaklığı 0 < T B < 0.25 Soğuk Şekil Değişimi 0.25 < T B < 0.5 Ilık Şekil değişimi 0.5 < T B < 1 Sıcak Şekil değişimi Oda sıcaklığı; Fe, Cu, Al gibi bir çok metal için soğuk şekil değişim bölgesi iken Pb, Sn gibi düşük erime sıcaklığına sahip malzemeler için sıcak şekil değişim bölgesidir. 77

78 Tablo Çekme dayanım değerleri 78

79 Çekme diyagramından elde edilen veriler E, Elastiklik modülü a, Akma dayanımı ç, Çekme dayanımı k, Kopma gerilmesi, Kopma uzaması, Kesit daralması ün, Üniform uzama Statik tokluk Rezilyans Ayrıca her hangi bir noktada Elastik şekil değişim miktarı Plastik şekil değişim miktarı, vs bulunabilir 79

80 Süneklik / Gevreklik / Tokluk / Rezilyans Süneklik: plastik şekil değiştirme kabiliyetini ifade eder. Bu değerin büyümesi, malzeme kopana kadar daha büyük plastik şekil değiştirme göstermesi anlamına gelir. Kopma uzaması ve alan daralması parametreleri ile ifade edilebilir. Gevreklik: Plastik şekil değiştirme kabiliyetinin olmaması durumunu ifade eder. Eğri bazen elastik sınırda bazen de elastik sınıra çok yakın bir noktada son bulur. Tokluk: Malzemenin kopana dek absorbe ettiği toplam enerjiyi ifade eder. - eğrisinin altında kalan alana eşittir. Sünek malzemelerin tokluğu gevrek malzemelere göre daha yüksektir. Rezilyans: Malzemenin elastik şekil değişimi sırasında depoladığı enerjidir. - eğrisinde elastik bölgenin altında kalan alana eşittir. 80

81 Gerçek Gerilme - Birim Şekil Değiştirme Şu ana kadar hesaplamalarda başlangıç geometrik veriler kullanıldı. Bu şekilde hesaplanan veriler Mühendislik değerlerdir. Gerçekte plastik şekil değiştirme ile birlikte kesit alanı (hacmin sabit kalması ile) sürekli azalır. Bu şekilde elde edilen verilere Gerçek değerdir. Özellikle metal şekillendirme uygulamalarında gerçek değerler kullanılır. 81

82 Mühendislik birim uzama. l l o l l o l l l o o 1 l l o 1 Gerçek birim uzama. g g d g l l o dl l dl l ln l l ln( 1) o PŞD de Hacim sabit kalır. A o l o A l A A o l l o Mühendislik Gerilme. F A o Gerçek gerilme. g F A F A o l l o ( 1 ) 82

83 Gerçek değerlere göre çizilen gerçek gerilme-birim uzama eğrisine Akama eğrisi (Flow curve) de denir. Elastik bölgede fark yoktur. Boyun vermeden sonra homojen olmayan şekil değişiminden dolayı uzama hesaplanamaz. Şekil Gerçek ve mühendislik - (Gerilme-Gerinme) eğrileri 83

84 Çekme diyagramı 1. Belirgin akma gösteren malzemelerin - diyagramları 2. Belirgin akma göstermeyen malzemeler - diyagramları Şekil

85 Belirgin akma gösteren malzemeler Çekme dayanımı Boyun verme Pekleşme Büzülme Luders bantlarının oluşumu Kırılma-kopma Şekil Düşük karbonlu çelik belirgin akma noktası gösterir. Ayrıca 2 adet akma noktası tanımlanmıştır: (a)üst akma noktası, (b) Alt akma noktası. 85

86 Belirgin akma ve Cottrel atmosferi Bu olaya C, N gibi arayer atom kümelerinin dislokasyonların alt kısmına yerleşip hareketlerini kilitlemesinin sebep olduğu düşünülür. Bu arayer atom bulutuna Cottrell atmosferi adı verilir. C ve N den arındırılmış malzemeler belirgin akma göstermiyor. 86

87 Üst akma noktası mekanik olarak bu kilitlerin kırılmasını ifade eder. İlk akmanın meydana geldiği kayma bandının pekleşme ile kilitlenmesinden sonra diğer düzlemlerde akma meydana gelir. Bu olayın kesit boyunca devamı ile luders bantları oluşur. Bu olay tamamlanınca homojen şekil değişimi başlar. Üst akma noktası Akma uzaması Alt akma noktası Lüders bantlar Şekil Akmamış bölge 87

88 Akma noktasından sonra homojen PŞD. (pekleşme / kesit daralması dengesi) Boyun verme başlangıcı Max noktadan sonra heterojen PŞD.(dengenin bozulması) Ç 0.2 a Kırılma (kopma) Şekil

89 Tablo Çekme dayanım değerleri 89

90 Sertlik Sertlik: Bir malzemenin yüzeyine batırılan sert bir cisme karşı gösterdiği dirençtir. Sertlik değerleri direk olarak malzemelerin dayanımları ile alakalı olduğu için büyük önem taşır. Sertlik deneyi; malzemelerin dayanımları ile ilgili bağıl değerler veren tahribatsız bir test yöntemidir. Sertlik ölçme yöntemleri: Batıcı ucun geometrisine ve uygulanan kuvvet büyüklüğüne göre: Brinell sertlik ölçme metodu Vickers sertlik ölçme metodu Rockwell sertlik ölçme metodu Şekil

91 Sertlik ölçme yöntemleri Şekil

92 Brinell Yöntemi Şekil F BSD D[ D D BSD = Brinell sertlik değeri D = Bilye çapı F = Uygulanan kuvvet d = izin çapı. 2 d 2 ] Standart test: 10mm çaplı sert bilye ve 3000kgf yük ile yüzeye bastırılır. Yüzeyde bıraktığı iz dikkate alınır: izin çapı ölçülür. 2 Metallerde BSD ile çek 2 BSD( kgf / mm ) ç( kgf / mm ) arasında 400 BSD ye 3 kadar doğrusal ilişki 2 BSD( kgf / mm ) vardır. ç( MPa)

93 93

94 Vickers Yöntemi Batıcı uç tepe açısı 136 o olan elmas piramit yüzeye bastırılır. Yüzeyde bıraktığı iz dikkate alınır: Kare şeklindeki izin köşegenleri mikroskopla ölçülür. Sert veya yumuşak tüm malzemelere uygulanabilir. Kuvvet seçiminde malzeme kriteri yoktur. 1.72F BSD değeri gibi çekme dayanımının VSD tespitinde kullanılabilir. 2 d ort d 1 d 2 2 d ort VSD = Birinell sertlik değeri F = Uygulanan kuvvet d ort = izin köşegen ortalaması. 94

95 Rockwell Yöntemi Batıcı uç olarak sertleştirilmiş çelik bilye veya elmas koni kullanılır. Ucun yüzeye battığı derinlik dikkate alınır. Malzemeye göre uç/yük kombinasyonu seçilmelidir. Plastik malzemelerin ölçümü de yapılabilir: bir çok skalası mevcuttur. C skalası; sert metaller için kullanılır: 150kgf yük ve tepe açısı 120 o olan elmas koni uç kullanılır. B; 100kgf yük ve 1/16 çapında sert bilye kullanılır. Şekil

96 Ölçüm yüzeyleri temiz olmalıdır. Deney parçası yeterli kalınlıkta olmalı, kenara yakın ölçümler yapılmamalı, birbirine yakın ölçümler yapılmamalı, en az 3 ölçüm yapılmalıdır. 96

97 Çentik Darbe Deneyi Çentik darbe deneyi, malzemeyi gevrek davranmaya iten şartlar altında malzemenin dinamik tokluğunu ölçmek için yapılır. Normal şartlarda sünek malzeme Üç eksenli yükleme hali Düşük sıcaklıkta zorlama Kuvvetin ani uygulanması (darbe) durumlarında plastik şekil değişimine imkan bulamaz ve gevrek davranış gösterirler. Bu şartlardan biri veya bir kaçı gerçekleşmişse malzeme gevrek davranabilir. Bu amaç için Charpy (üç noktadan eğme) veya Izod (ankastre eğme) deneyleri mevcuttur. Darbe enerjisine etki eden faktörler: dayanım, kristal yapı, sıcaklık ve kimyasal bileşim. 97

98 Belli bir potansiyel enerjiye sahip kütle V-çentik açılmış numuneye çarptırılır. Numunenin kırılması için gereken enerji Darbe Enerjisi - E k saptanır. Ek mg ( h h') Şekil

99 99

100 Sünek-gevrek geçiş sıcaklığı Tg E max 2 E min Şekil

101 101

102 13. DAYANIM BİLGİSİ 102

103 13.1. Basma Dayanımı 13. DAYANIM BİLGİSİ Bir cismin ekseni doğrultusunda etki eden kuvvetler birbirine yaklaşırsa cismin bünyesinde (iç yapısında) bir basılma (basınç) meydana gelir. Basılma anında cismin bünyesindeki iç kuvvetlerin birim alanına gelen miktarına da basma gerilimi/dayanımı denir. 103

104 Beton, taş, dökme demir, çelik, odun gibi malzemelere basma deneyleri yapılarak bu malzemelerin basma dayanımları ölçülür. Örneğin bir binanın kolonundan alınan küçük bir beton kesite basılma kuvveti uygulanarak malzemenin dağılmadan dayanabileceği basılma gerilim miktarı ölçülebilir. Gevrek ve yumuşak malzemelerde deney sonuna kadar basınç temini zordur. Gevrek malzeme deney sırasında kırılıp dağılabilir. Yumuşak malzeme ise ortadan şişerek fıçı şeklini alır. Şekil Basma deneyi 104

105 Bir cisme bir kuvvet etki yaptığı zaman cisim kısalmaya çalışır. Burada dik gerilmeler meydana geldiğinden aşağıdaki eşitlik kullanılır. Bu şekilde çalışan elemanlar, pres milleri, kalıp zımbaları, piston kolları olabilir. Bir cisim diğer cisim üzerine etki yaptığında basınç meydana gelir. Bu basınç ile cisimde ezilme oluşur. Basınç ve ezilmede, değme yüzeyinin konumu ve büyüklüğü önemlidir. Şekil Basma kuvveti 105

106 Makine tasarımında üretilen hareket ve kuvvetler; mil, kol, dişli, vida vb. elemanlarla kullanma yerine taşınır. Bu taşıma sırasında üretilen kuvvet sisteme aynen yansımaz. Makine elemanları montaj durumuna göre bileşenleri kadar etkilenir. Buna dolaylı yük denir. 106

107 Şekil Dolaylı (a ve b), açılı (c) yük Şekildeki dikdörtgen kesitli bir elemana etkiyen kuvvet gösterilmektedir. Bu durumda etkiyen doğrudan yük Fy aşağıdaki gibi hesaplanır. Şekil Açılı yük ve dönüşümü 107

108 13.2. Çekme Dayanımı Aşağıda görülen şekilde test çubuğuna etki eden kuvvetler, eksen boyunca birbirinden uzaklaşırlarsa çekme ya da çekilme meydana gelir. Bununla ilgili dayanıma da çekme dayanımı denir. Cismin çekme dayanımı, molekül yapısı ve kesit alanı (A 0 ) ile ilgilidir. E.K.S = S = Emniyet katsayısı Şekil Test çubuğu ve kesit alanı 108

109 Makine elemanları boyutlandırılırken şekil değişikliklerinin, bu elemanların özelliklerinin bir kısmını ya da hepsini kaybettirmemesine dikkat edilir. Yapılan hesaplarla zarar verip vermeyeceği kontrol edilir. Malzemelerin şekil değiştirme ve mekanik özelliklerinin tespitinde en sağlıklı sonuç alınan deney, çekme deneyidir. Bu deneylerde, standart çubuklar kullanılır. Bu çubuklar; TS 138 ve DIN te verilen biçim ve ölçülerde makinelerde işlenerek elde edilir. Hooke kanuna göre; elastiklik sınırları içinde kalmak şartı ile bir malzemede meydana gelen şekil değiştirmeler, gerilmeler orantılıdır. Kuvvet ne kadarsa uzama da o kadardır. 109

110 Hooke kanununa göre, elastiklik sınırları içinde olmak koşulu ile malzemede meydana gelen şekil değiştirmeler, bunlara karşılık gelen gerilmeler ile orantılıdır. tgα eğimine, malzemenin elastiklik modülü (E) denir. Şekil Malzemede uzama 110

111 Çekme deneyi sırasında malzemenin boyu uzarken, kesit alanı daralır. Boyca birim uzamanın ence birim daralmaya oranı, Poisson oranını verir. 111

112 13.3. Kesme Dayanımı F kuvvetleri parçanın eksenine dik durumda birbirine doğru yaklaşırsa makaslama dolayısı ile kesilme olayı meydana gelir. Burada oluşan dayanıma kesilme dayanımı denir. Şekil Kesilme gerilmesi 112

113 13.4. Eğilme Dayanımı Prizmatik çubuk ya da miller eksenlerine dik kuvvetlerle yüklenirlerse çubuk ya da mil kesitinde kesme kuvveti ve eğilme momenti meydana gelir. Eğilme momenti sonucunda çubuk eğilir. Bununla ilgili dayanıma da eğilme dayanımı denir. Şekil Kesme deneyi 113

114 Eğilme Momenti (Mb) Eksenleri dik olarak yüklenen kirişin, eğilerek bir kavis şeklini almasına neden olan momente, eğilme momenti denir. Bir sistemde momentin bulunabilmesi için uygulanan kuvvetin kuvvet kolu ile çarpılması gerekir. Mb = F L Ancak değişik aralıklarla ve birden fazla kuvvetlerle yüklenmiş kirişlerde basit eğilme hali olmadığından bu kirişlerde diyagramlar çizilir. Kritik nokta ve karşısında bulunan maksimum moment eğilme momenti (Mb) olarak alınır. 114

115 Şekil Eğilme momenti 115

116 Eğilen bir kirişin dış yüzeyi incelendiğinde iç kısmındaki liflerin kısaldığı ve burada basma gerilmesi, dış kısımdaki liflerin uzadığı, burada ise çekme gerilmesi meydana geldiği görülür. Bu normal gerilmelerin kesite yayılı hali, eğilme gerilmesini meydana getirir. Eğilme halinde dayanım momenti (W) kesitin şekline (kare, dikdörtgen, daire, üçgen, vb.) ve kuvvetin geliş yönüne bağlı olarak hesaplanır. 116

117 Tablo Temel şekillerin dayanım ve atalet momentleri 117

118 Dayanım Momentinin Belirlenmesi Bir ankastre (konsol) kiriş, F kuvveti ile yüklendiğinde eğilme meydana gelir. Kirişin ağırlık merkezinden geçen eksene, nötr eksen (tarafsız) adı verilir. Bu durumda, tarafsız eksen eğri hâline gelir. Daha önce de bahsedildiği gibi kirişin üst kısmındaki lifler uzar, alt kısmındaki lifler kısalır. Buradaki gerilmeler en büyük maksimum değerini alır. Hooke Kanunu na göre; en büyük uzama, en büyük gerilme sınırında meydana gelir. 118

119 Kesitin dayanabileceği en büyük moment, eğilme momentidir (max Mb). Ancak bu, makine elemanlarının boyutlandırılmasında yeterli olmaz. Boyutlandırma işleminde, dayanım momenti (W) kullanılır. 119

120 13.5. Burulma Dayanımı Bir ucundan sabitlenmiş prizmatik ya da silindirik bir çubuk, ekseni doğrultusunda dik bir düzlemde etki yapan kuvvet çifti ile diğer ucundan döndürmeye zorlanırsa döndürme momenti (Md) meydana gelir. Pratikte buna, tork denir. Çubuk kesitinin, ekseni etrafında dönmesine burulma, meydana gelen dayanıma da burulma dayanımı denir. Şekil Burulma 120

121 121

122 122

123 13.6. Burkulma Dayanımı Basılma dayanımında incelenen çubukların boyları kısa ve kesit alanları büyüktü. Burkulma dayanımında ise ele alınan çubukların boyları, kesit alanlarına göre çok büyük olur. Kesit alanları küçük, boyları uzun çubuklara, narin çubuk denir. Narin çubuklar eksenleri doğrultusunda yüklendiklerinde (F), bir eksenel sapma (a) yapar. Bu olaya burkulma, burkulmaya başlama sınırında meydana gelen maksimum dayanıma da burkulma dayanımı denir. Şekil Narin çubuk 123

124 Kritik Yük (F k ) Şekildeki narin çubuğun ağırlığı ihmal edilsin. Başlangıçta küçük bir F kuvveti uygulanmaya başlanırsa eksenel sapma görülemeyecek kadar az olur. Kuvvetin artırılması sonunda bir yaylanma hareketi, devamında eğilme ve bir süre sonra da kırılma meydana gelir. Bu olaya burkulma = flambaj, burada tam kırılma sınırında etki kuvvetine de kritik yük (F k ) adı verilir. Burkulma (Flambaj) Boyu (L k ) Burkulma uzunluğu; çubuğun etkilendiği kritik yük belliyken kesit alanı da göz önüne alınarak tespit edilen çubuk uzunluğudur. Şekilde görülen çubuk, bir ucu mafsallı, diğer ucu dayatılmış olduğundan, L k = L alınır. Bu durumda çubuğun konumuna göre, L k değerlerinin değiştiği anlaşılır. Şekilde dört konuma göre burkulmaya çalışan çubuklar verilmiştir. 124

125 Şekil Burkulma şekilleri 125

126 Elastiklik Modülü (E) Malzemelerin elastiklik modülü olan (E), Hooke Kanunu nda açıklanmıştı. Örnek olarak en çok karşılaştığımız malzeme olan çeliğin elastiklik modülü, E = 2.1x10 6 dan/cm 2 dir. Narinlik Derecesi ( ) Narinlik derecesi l = lamda; burkulma dayanımında, çubukların kesit boyları ve uzunluğu ile ilgili bir büyüklüktür. Önce jirasyon çapını bilmek gerekir (r j ). 126

127 127

128 Euler (Oyler) Metodu Euler metodu dolayısı ile formülü, Hooke Kanunu nun geçerli olduğu elastik bölgenin altındaki durumlarda geçerlidir. Buna göre Euler formülü; 128

129 129

130 13.7. Birleşik Dayanım Makine elemanlarının çalışmaları sırasında dayanımlı olmaları esastır. Bir dayanım şekline göre hesaplanmış makine elemanının, çalışma süresince hep aynı yüklemede kalması gerekir. Ancak makine elemanları çalışırken genellikle iki ya da daha fazla dayanım şekilleri ile karşılaşırlar. Bu durumda, yalnız bir dayanım şekline göre hesaplanmış makine elemanı, yeteri kadar dayanımlı olmaz. Makine elemanları üzerinde, aynı anda birkaç dayanım şeklinin bir arada olmasından meydana gelen dayanıma birleşik dayanım denir. 130

131 Çekme-Basma ve Eğilmeye Zorlanan Makine Elemanlarının Toplam Geriliminin Hesaplanması Bir çubuk, Şekilde görüldüğü gibi eksenine paralel ve a kadar uzaklıkta bir F kuvveti ile zorlanmaktadır. Eksantrik adı verilen bu kuvvet çubuğa, bir kuvvet çifti şeklinde etki yapar. Bu durumda çubuk, dış kuvvetin etki yönüne göre çekme ya da basma ile birlikte eğilmeye çalışır. Bu birleşik dayanım durumu, basit dayanım şekillerine indirgenir. Çubuk, yalnız çekme ya da basmaya çalışıyormuş gibi düşünülür. Her iki durumda da çubuk kesit alanında normal gerilmeler oluşur. Normal gerilmeler, kesit alanına eşit dağılmış ve aynı yönlüdür. Ancak çekme ya da basma şekline göre çözümlerde genellikle tepki yönleri esas alındığından buna göre değişebilmektedir. 131

132 Şekil Birleşik dayanım 132

133 Çubuk eksenine paralel ve a kadar uzaklıktaki kuwet (F), eğilme momentini (Mb) meydana getirir. Mb= F.a (dan. cm) Eğilme yönüne göre çubuğun bir tarafında uzama, bir tarafında kısalma meydana gelir. Eğilmeden oluşan ve uzamaya neden olan çekme gerilmeleri + pozitif, basılma gerilmeleri de - negatif işaretlidirler. Şekildeki diyagramda da tarafsız eksenden itibaren farklı yönlerde gösterilir. Ayrıca burada kesilme gerilmeleri de meydana gelir. Ancak bunlar küçük değerde olduklarından dikkate alınmazlar. Çubuğa normal kuvvet ile eğilmenin birlikte etki etmesinden meydana gelen toplam gerilme; 133

134 Şekildeki kesitin M noktasındaki normal gerilme: 134

135 Eğilme ve Burulmaya Zorlanan Makine Elemanlarının Toplam Geriliminin Hesaplanması Miller, muylular ve krank milleri gibi makine elemanları güç ve hareket ilettiklerinden burulma ile birlikte eğilmeye de zorlanır. Eğilme momenti ile burulma momentinin birlikte bulunması durumuna burulmalı eğilme denir. Teknik alanda; talaş kaldırma, cıvata sıkma vb. işlemlerde de aynı durum yaşanır. Şekilde bir mil, serbest ucundan eksantrik bir kuvvetle döndürülmeye zorlanıyor. Burada, burulma momenti ve eğilme momenti birlikte meydana gelmiştir. Kesme kuvveti ise ihmal edilmiştir. Şekil Eğilmeli burulma 135

136 Eğilme sonucu oluşan Gmax ve burulmadan dolayı meydana gelen kayma gerilmesi Tmax milin dış yüzeyinde meydana çıkar (Şekil b). Bu iki gerilmenin toplamı, maksimum gerilme bileşkesini verir. Şekil a ya göre en tehlikeli kesit, ankastre dayanağının en üst ve en altında meydana gelir. Bu tehlikeli kesitin dış kısmından alınan A yüzey elamanının Mohr dairesi üzerinde incelenmesi, formül çıkışlarında ve anlaşılmasında kolaylık sağlar (Şekil 13.15). 136

137 Şekil Mohr dairesi 137

138 Dayanım esaslarına göre en büyük gerilmeler dikkate alınır. Şekil incelenirse; BF gerilmesinin BA gerilmesinden, EH gerilmesinin de AC gerilmesinden büyük olduğu anlaşılır. Bunlara göre, milin boyutlandırılmasında büyük gerilmeler işleme konulur. 138

139 139

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı 1. Basma Deneyinin Amacı Mühendislik malzemelerinin çoğu, uygulanan gerilmeler altında biçimlerini kalıcı olarak değiştirirler, yani plastik şekil değişimine uğrarlar. Bu malzemelerin hangi koşullar altında

Detaylı

Malzemelerin Mekanik Özellikleri

Malzemelerin Mekanik Özellikleri Malzemelerin Mekanik Özellikleri Mekanik tasarım ve imalat sırasında malzemelerin mekanik davranışlarının bilinmesi çok önemlidir. Başlıca mekanik özellikler: Çekme / basma (tensile /compression) Sertlik

Detaylı

FZM 220. Malzeme Bilimine Giriş

FZM 220. Malzeme Bilimine Giriş FZM 220 Yapı Karakterizasyon Özellikler İşleme Performans Prof. Dr. İlker DİNÇER Fakültesi, Fizik Mühendisliği Bölümü 1 Ders Hakkında FZM 220 Dersinin Amacı Bu dersin amacı, fizik mühendisliği öğrencilerine,

Detaylı

Geometriden kaynaklanan etkileri en aza indirmek için yük ve uzama, sırasıyla mühendislik gerilmesi ve mühendislik birim şekil değişimi parametreleri elde etmek üzere normalize edilir. Mühendislik gerilmesi

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 1 Giriş-Gerilme Kavramı Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok. 1.1 Giriş Cisimlerin

Detaylı

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü ÇEKME DENEYİ 1. DENEYİN AMACI Mühendislik malzemeleri rijit olmadığından kuvvet altında deforme olup, şekil ve boyut değişiklikleri gösterirler. Malzeme özelliklerini anlamak üzere mekanik testler yapılır.

Detaylı

BÖLÜM 5 MALZEMELERİN MEKANİK ÖZELLİKLERİ

BÖLÜM 5 MALZEMELERİN MEKANİK ÖZELLİKLERİ BÖLÜM 5 MALZEMELERİN MEKANİK ÖZELLİKLERİ 1 Malzemelerin belirli bir yük altında davranışlarına malzemenin mekanik özellikleri belirlenebilir. Genelde malzeme üzerine dinamik ve statik olmak üzere iki tür

Detaylı

MUKAVEMET DERSİ. (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ

MUKAVEMET DERSİ. (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ MUKAVEMET DERSİ (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ Ders Planı HAFTA KONU 1 Giriş, Mukavemetin tanımı ve genel ilkeleri 2 Mukavemetin temel kavramları 3-4 Normal kuvvet 5-6 Gerilme analizi 7 Şekil

Detaylı

MALZEME BİLGİSİ DERS 8 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net

MALZEME BİLGİSİ DERS 8 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net MALZEME BİLGİSİ DERS 8 DR. FATİH AY www.fatihay.net fatihay@fatihay.net BÖLÜM IV METALLERİN MEKANİK ÖZELLİKLERİ GERİLME VE BİRİM ŞEKİL DEĞİŞİMİ ANELASTİKLİK MALZEMELERİN ELASTİK ÖZELLİKLERİ ÇEKME ÖZELLİKLERİ

Detaylı

Malzemelerin Mekanik Özellikleri

Malzemelerin Mekanik Özellikleri Malzemelerin Mekanik Özellikleri Bölüm Hedefleri Deneysel olarak gerilme ve birim şekil değiştirmenin belirlenmesi Malzeme davranışı ile gerilme-birim şekil değiştirme diyagramının ilişkilendirilmesi ÇEKME

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 3 Malzemelerin esnekliği Gerilme Bir cisme uygulanan kuvvetin, kesit alanına bölümüdür. Kuvvetin yüzeye dik olması halindeki gerilme "normal gerilme" adını alır ve şeklinde

Detaylı

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK DENGE KOŞULLARI Yapı elemanlarının tasarımında bu elemanlarda oluşan iç kuvvetlerin dağılımının bilinmesi gerekir. Dış ve iç kuvvetlerin belirlenmesinde

Detaylı

MALZEMELERİN MEKANİK ÖZELLİKLERİ

MALZEMELERİN MEKANİK ÖZELLİKLERİ MALZEMELERİN MEKANİK ÖZELLİKLERİ Farklı üretim yöntemleriyle üretilen ürünler uygulama koşullarında üzerlerine uygulanan kuvvetlere farklı yanıt verirler ve uygulanan yükün büyüklüğüne bağlı olarak koparlar,

Detaylı

İNŞAAT MALZEME BİLGİSİ

İNŞAAT MALZEME BİLGİSİ İNŞAAT MALZEME BİLGİSİ Prof. Dr. Metin OLGUN Ankara Üniversitesi Ziraat Fakültesi Tarımsal Yapılar ve Sulama Bölümü HAFTA KONU 1 Giriş, yapı malzemelerinin önemi 2 Yapı malzemelerinin genel özellikleri,

Detaylı

MALZEME BİLİMİ. Mekanik Özellikler ve Davranışlar. Doç. Dr. Özkan ÖZDEMİR. (DERS NOTLARı) Bölüm 5.

MALZEME BİLİMİ. Mekanik Özellikler ve Davranışlar. Doç. Dr. Özkan ÖZDEMİR. (DERS NOTLARı) Bölüm 5. MALZEME BİLİMİ (DERS NOTLARı) Bölüm 5. Mekanik Özellikler ve Davranışlar Doç. Dr. Özkan ÖZDEMİR ÇEKME TESTİ: Gerilim-Gerinim/Deformasyon Diyagramı Çekme deneyi malzemelerin mukavemeti hakkında esas dizayn

Detaylı

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması.

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması. 1 Deneyin Adı Çekme Deneyi Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması. Teorik Bilgi Malzemelerin statik (darbesiz) yük altındaki mukavemet özelliklerini

Detaylı

MALZEMELERİN MEKANİK ÖZELLİKLERİ

MALZEMELERİN MEKANİK ÖZELLİKLERİ MALZEMELERİN MEKANİK ÖZELLİKLERİ Bir cismin uygulanan kuvvetlere karşı göstermiş olduğu tepki, mekanik davranış olarak tanımlanır. Bu davranış biçimini mekanik özellikleri belirler. Mekanik özellikler,

Detaylı

KAYMA GERİLMESİ (ENİNE KESME)

KAYMA GERİLMESİ (ENİNE KESME) KAYMA GERİLMESİ (ENİNE KESME) Demir yolu traversleri çok büyük kesme yüklerini taşıyan kiriş olarak davranır. Bu durumda, eğer traversler ahşap malzemedense kesme kuvvetinin en büyük olduğu uçlarından

Detaylı

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS T E CHAPTER 2 Eksenel MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Yükleme Fatih Alibeyoğlu Eksenel Yükleme Bir önceki bölümde, uygulanan yükler neticesinde ortaya çıkan

Detaylı

ÇEKME DENEYİ 1. DENEYİN AMACI

ÇEKME DENEYİ 1. DENEYİN AMACI ÇEKME DENEYİ 1. DENEYİN AMACI Mühendislik malzemeleri rijit olmadığından kuvvet altında deforme olup, şekil ve boyut değişiklikleri gösterirler. Malzeme özelliklerini anlamak üzere mekanik testler yapılır.

Detaylı

METALİK MALZEMELERİN ÇEKME DENEYİ

METALİK MALZEMELERİN ÇEKME DENEYİ METALİK MALZEMELERİN ÇEKME DENEYİ Çekme deneyi, malzemelerin statik yük altında elastik ve plastik davranışını belirlemek amacıyla uygulanır. Çekme deneyi, asıl malzemeyi temsil etmesi için hazırlanan

Detaylı

MUKAVEMET SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-I DERS NOTU

MUKAVEMET SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-I DERS NOTU MUKAVEMET MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-I DERS NOTU Mukavemet Hesabı / 80 1) Elemana etkiyen dış kuvvet ve momentlerin, bunların oluşturduğu zorlanmaların cinsinin (çekme-basma, kesme, eğilme,

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Bölüm-4 MALZEMELERDE ÇEKME-BASMA - KESME GERİLMELERİ VE YOUNG MODÜLÜ. 4.1. Malzemelerde Zorlanma ve Gerilme Şekilleri

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Bölüm-4 MALZEMELERDE ÇEKME-BASMA - KESME GERİLMELERİ VE YOUNG MODÜLÜ. 4.1. Malzemelerde Zorlanma ve Gerilme Şekilleri Bölüm-4 MALZEMELERDE ÇEKME-BASMA - KESME GERİLMELERİ VE YOUNG MODÜLÜ 4.1. Malzemelerde Zorlanma ve Gerilme Şekilleri Malzemeler genel olarak 3 çeşit zorlanmaya maruzdurlar. Bunlar çekme, basma ve kesme

Detaylı

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir.

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir. A-36 malzemeden çelik çubuk, şekil a gösterildiği iki kademeli olarak üretilmiştir. AB ve BC kesitleri sırasıyla A = 600 mm ve A = 1200 mm dir. A serbest ucunun ve B nin C ye göre yer değiştirmesini belirleyiniz.

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ GİRİŞ Mekanik tasarım yaparken öncelikli olarak tasarımda kullanılması düşünülen malzemelerin

Detaylı

BÖLÜM 8 MEKANİK TESTLER

BÖLÜM 8 MEKANİK TESTLER BÖLÜM 8 MEKANİK TESTLER METALLERİN MEKANİK ÖZELLİKLERİ Metaller ve metal alaşımları mekanik tasarımda en çok tercih edilen malzeme grubundandır. Metaller özellikle kuvvet taşıyan elemanlarda yaygın

Detaylı

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net MALZEME BİLGİSİ DERS 7 DR. FATİH AY www.fatihay.net fatihay@fatihay.net GEÇEN HAFTA KRİSTAL KAFES NOKTALARI KRİSTAL KAFES DOĞRULTULARI KRİSTAL KAFES DÜZLEMLERİ DOĞRUSAL VE DÜZLEMSEL YOĞUNLUK KRİSTAL VE

Detaylı

MAK 305 MAKİNE ELEMANLARI-1

MAK 305 MAKİNE ELEMANLARI-1 MAK 305 MAKİNE ELEMANLARI-1 BÖLÜM 1- MAKİNE ELEMANLARINDA MUKAVEMET HESABI Doç. Dr. Ali Rıza YILDIZ 1 BU DERS SUNUMDAN EDİNİLMESİ BEKLENEN BİLGİLER Makine Elemanlarında mukavemet hesabına neden ihtiyaç

Detaylı

ÇEKME DENEYİ. Şekil. a) Çekme Deneyi makinesi, b) Deney esnasında deney numunesinin aldığı şekiler

ÇEKME DENEYİ. Şekil. a) Çekme Deneyi makinesi, b) Deney esnasında deney numunesinin aldığı şekiler ÇEKME DENEYİ Çekme Deneyi Malzemenin mekanik özelliklerini ortaya çıkarmak için en yaygın kullanılan deney Çekme Deneyidir. Bu deneyden elde edilen sonuçlar mühendislik hesaplarında doğrudan kullanılabilir.

Detaylı

FZM 220. Malzeme Bilimine Giriş

FZM 220. Malzeme Bilimine Giriş FZM 220 Yapı Karakterizasyon Özellikler İşleme Performans Prof. Dr. İlker DİNÇER Fakültesi, Fizik Mühendisliği Bölümü 1 Ders Hakkında FZM 220 Dersinin Amacı Bu dersin amacı, fizik mühendisliği öğrencilerine,

Detaylı

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu BASİT MESNETLİ KİRİŞTE SEHİM DENEYİ Deneyin Amacı Farklı malzeme ve kalınlığa sahip kirişlerin uygulanan yükün kirişin eğilme miktarına oranı olan rijitlik değerin değişik olduğunun gösterilmesi. Kiriş

Detaylı

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ 3 NOKTA EĞME DENEY FÖYÜ ÖĞRETİM ÜYESİ YRD.DOÇ.DR.ÖMER KADİR

Detaylı

T.C. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ M-220 ÇEKME DENEYİ

T.C. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ M-220 ÇEKME DENEYİ T.C. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ M-220 ÇEKME DENEYİ 2017 ÇEKME DENEYİ Çekme Deneyi Malzemenin mekanik özelliklerini ortaya çıkarmak için en yaygın kullanılan deney

Detaylı

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele alınmıştı. Bu bölümde ise, eksenel yüklü elemanların şekil

Detaylı

ÇEKME DENEYİ (1) MALZEME MÜHENDİSLİĞİ BÖLÜMÜ 1. DENEYİN AMACI:

ÇEKME DENEYİ (1) MALZEME MÜHENDİSLİĞİ BÖLÜMÜ 1. DENEYİN AMACI: 1. DENEYİN AMACI: Malzemede belirli bir şekil değiştirme meydana getirmek için uygulanması gereken kuvvetin hesaplanması ya da cisme belirli bir kuvvet uygulandığında meydana gelecek şekil değişiminin

Detaylı

BİLGİSAYAR DESTEKLİ TASARIM VE ANALİZ (ANSYS)

BİLGİSAYAR DESTEKLİ TASARIM VE ANALİZ (ANSYS) BİLGİSAYAR DESTEKLİ TASARIM VE ANALİZ (ANSYS) MALZEME ÖZELLİKLERİNİN BELİRLENMESİ Bir tasarım yaparken öncelikle uygun bir malzemenin seçilmesi ve bu malzemenin tasarım yüklerini karşılayacak sağlamlıkta

Detaylı

MUKAVEMET(8. Hafta) MALZEMENİN MEKANİK ÖZELLİKLERİ ÇEKME DENEYİ

MUKAVEMET(8. Hafta) MALZEMENİN MEKANİK ÖZELLİKLERİ ÇEKME DENEYİ MALZEMENİN MEKANİK ÖZELLİKLERİ ÇEKME DENEYİ MUKAVEMET(8. Hafta) Malzemenin mekanik özelliklerini ortaya çıkarmak için en yaygın kullanılan deney Çekme Deneyidir. Bu deneyden elde edilen sonuçlar mühendislik

Detaylı

BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ

BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ BURSA - 2016 1. GİRİŞ Eğilme deneyi malzemenin mukavemeti hakkında tasarım

Detaylı

Malzemenin Mekanik Özellikleri

Malzemenin Mekanik Özellikleri Bölüm Amaçları: Gerilme ve şekil değiştirme kavramlarını gördükten sonra, şimdi bu iki büyüklüğün nasıl ilişkilendirildiğini inceleyeceğiz, Bir malzeme için gerilme-şekil değiştirme diyagramlarının deneysel

Detaylı

TAHRİBATLI MALZEME MUAYENESİ DENEYİ

TAHRİBATLI MALZEME MUAYENESİ DENEYİ TAHRİBATLI MALZEME MUAYENESİ DENEYİ MAK-LAB15 1. Giriş ve Deneyin Amacı Bilindiği gibi malzeme seçiminde mekanik özellikler esas alınır. Malzemelerin mekanik özellikleri de iç yapılarına bağlıdır. Malzemelerin

Detaylı

YAPI MALZEMELERİ DERS NOTLARI

YAPI MALZEMELERİ DERS NOTLARI YAPI MALZEMELERİ DERS NOTLARI YAPI MALZEMELERİ Herhangi bir yapının projelendirmesi ve inşaatı aşamasında amaç aşağıda belirtilen üç koşulu bir arada gerçekleştirmektir: a) Yapı istenilen işlevi yapabilmelidir,

Detaylı

BÖLÜM 7 MEKANİK TESTLER

BÖLÜM 7 MEKANİK TESTLER BÖLÜM 7 MEKANİK TESTLER METALLERİN MEKANİK ÖZELLİKLERİ Metaller ve metal alaşımları mekanik tasarımda en çok tercih edilen malzeme grubundandır. Metaller özellikle kuvvet taşıyan elemanlarda yaygın olarak

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ GİRİŞ Yapılan herhangi bir mekanik tasarımda kullanılacak malzemelerin belirlenmesi

Detaylı

YTÜ Makine Mühendisliği Bölümü Mekanik Anabilim Dalı Özel Laboratuvar Dersi Strain Gauge Deneyi Çalışma Notu

YTÜ Makine Mühendisliği Bölümü Mekanik Anabilim Dalı Özel Laboratuvar Dersi Strain Gauge Deneyi Çalışma Notu YTÜ Makine Mühendisliği Bölümü Mekanik Anabilim Dalı Özel Laboratuvar Dersi Strain Gauge Deneyi Çalışma Notu Laboratuar Yeri: B Blok en alt kat Mekanik Laboratuarı Laboratuar Adı: Strain Gauge Deneyi Konu:

Detaylı

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır.

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Mühendislikte en önemli yapı ve makine elemanları mil ve kirişlerdir. Bu bölümde, mil ve kirişlerde

Detaylı

Prof.Dr.İrfan AY. Arş.Gör.T.Kerem DEMİRCİOĞLU. Öğr. Murat BOZKURT. Balıkesir - 2008

Prof.Dr.İrfan AY. Arş.Gör.T.Kerem DEMİRCİOĞLU. Öğr. Murat BOZKURT. Balıkesir - 2008 MAKİNA * ENDÜSTRİ Prof.Dr.İrfan AY Arş.Gör.T.Kerem DEMİRCİOĞLU Öğr. Murat BOZKURT * Balıkesir - 2008 1 PLASTİK ŞEKİL VERME YÖNTEMLERİ METALE PLASTİK ŞEKİL VERME İki şekilde incelenir. * HACİMSEL DEFORMASYONLA

Detaylı

BURULMA DENEYİ 2. TANIMLAMALAR:

BURULMA DENEYİ 2. TANIMLAMALAR: BURULMA DENEYİ 1. DENEYİN AMACI: Burulma deneyi, malzemelerin kayma modülü (G) ve kayma akma gerilmesi ( A ) gibi özelliklerinin belirlenmesi amacıyla uygulanır. 2. TANIMLAMALAR: Kayma modülü: Kayma gerilmesi-kayma

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 5 Eğilmede Kirişlerin Analizi ve Tasarımı Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

= σ ε = Elastiklik sınırı: Elastik şekil değişiminin görüldüğü en yüksek gerilme değerine denir.

= σ ε = Elastiklik sınırı: Elastik şekil değişiminin görüldüğü en yüksek gerilme değerine denir. ÇEKME DENEYİ Genel Bilgi Çekme deneyi, malzemelerin statik yük altındaki mekanik özelliklerini belirlemek ve malzemelerin özelliklerine göre sınıflandırılmasını sağlamak amacıyla uygulanan, mühendislik

Detaylı

BETONARME-I 3. Hafta. Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

BETONARME-I 3. Hafta. Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli BETONARME-I 3. Hafta Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli 1 Betonun Nitelik Denetimi ile İlgili Soru Bir şantiyede imal edilen betonlardan alınan numunelerin

Detaylı

MAKİNE ELEMANLARI DERS SLAYTLARI

MAKİNE ELEMANLARI DERS SLAYTLARI MAKİNE ELEMANLARI DERS SLAYTLARI YORULMA P r o f. D r. İ r f a n K A Y M A Z P r o f. D r. A k g ü n A L S A R A N A r ş. G ör. İ l y a s H A C I S A L İ HOĞ LU Aloha Havayolları Uçuş 243: Hilo dan Honolulu

Detaylı

Kirişlerde Kesme (Transverse Shear)

Kirişlerde Kesme (Transverse Shear) Kirişlerde Kesme (Transverse Shear) Bu bölümde, doğrusal, prizmatik, homojen ve lineer elastik davranan bir elemanın eksenine dik doğrultuda yüklerin etkimesi durumunda en kesitinde oluşan kesme gerilmeleri

Detaylı

Saf Eğilme(Pure Bending)

Saf Eğilme(Pure Bending) Saf Eğilme(Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki şekil değiştirmesini/ deformasyonları incelenecek. Burada çıkarılacak formüller

Detaylı

Mukavemet 1. Fatih ALİBEYOĞLU. -Çalışma Soruları-

Mukavemet 1. Fatih ALİBEYOĞLU. -Çalışma Soruları- 1 Mukavemet 1 Fatih ALİBEYOĞLU -Çalışma Soruları- Soru 1 AB ve BC silindirik çubukları şekilde gösterildiği gibi, B de kaynak edilmiş ve yüklenmiştir. P kuvvetinin büyüklüğünü, AB çubuğundaki çekme gerilmesiyle

Detaylı

Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir.

Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir. BASINÇ ÇUBUKLARI Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir. Basınç çubukları, sadece eksenel basınç kuvvetine maruz kalırlar. Bu çubuklar üzerinde Eğilme ve

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 7 İç Kuvvetler Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 7. İç Kuvvetler Bu bölümde, bir

Detaylı

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır.

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır. PROF.DR. MURAT DEMİR AYDIN ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır. Ders Notları (pdf), Sınav soruları cevapları, diğer kaynaklar için Öğretim

Detaylı

Malzeme Bilgisi ve Gemi Yapı Malzemeleri

Malzeme Bilgisi ve Gemi Yapı Malzemeleri Malzeme Bilgisi ve Gemi Yapı Malzemeleri Grup 1 Pazartesi 9.00-12.50 Dersin Öğretim Üyesi: Y.Doç.Dr. Ergün Keleşoğlu Metalurji ve Malzeme Mühendisliği Bölümü Davutpaşa Kampüsü Kimya Metalurji Fakültesi

Detaylı

METALURJİ VE MALZEME MÜH. LAB VE UYG. DERSİ FÖYÜ

METALURJİ VE MALZEME MÜH. LAB VE UYG. DERSİ FÖYÜ METALURJİ VE MALZEME MÜH. LAB VE UYG. DERSİ FÖYÜ ALIN KAYNAKLI LEVHASAL BAĞLANTILARIN ÇEKME TESTLERİ A- DENEYİN ÖNEMİ ve AMACI Malzemelerin mekanik davranışlarını incelemek ve yapılarıyla özellikleri arasındaki

Detaylı

MAKİNE ELEMANLARI 1 GENEL ÇALIŞMA SORULARI 1) Verilen kuvvet değerlerini yükleme türlerini yazınız.

MAKİNE ELEMANLARI 1 GENEL ÇALIŞMA SORULARI 1) Verilen kuvvet değerlerini yükleme türlerini yazınız. MAKİNE ELEMANLARI 1 GENEL ÇALIŞMA SORULARI 1) Verilen kuvvet değerlerini yükleme türlerini yazınız. F = 2000 ± 1900 N F = ± 160 N F = 150 ± 150 N F = 100 ± 90 N F = ± 50 N F = 16,16 N F = 333,33 N F =

Detaylı

Uygulanan dış yüklemelere karşı katı cisimlerin birim alanlarında sergiledikleri tepkiye «Gerilme» denir.

Uygulanan dış yüklemelere karşı katı cisimlerin birim alanlarında sergiledikleri tepkiye «Gerilme» denir. Gerilme ve şekil değiştirme kavramları: Uygulanan dış yüklemelere karşı katı cisimlerin birim alanlarında sergiledikleri tepkiye «Gerilme» denir. Bir mühendislik sistemine çok farklı karakterlerde dış

Detaylı

GERİLME Cismin kesilmiş alanı üzerinde O

GERİLME Cismin kesilmiş alanı üzerinde O GERİLME Cismin kesilmiş alanı üzerinde O ile tanımlı noktasına etki eden kuvvet ve momentin kesit alana etki eden gerçek yayılı yüklerin bileşke etkisini temsil ettiği ifade edilmişti. Cisimlerin mukavemeti

Detaylı

Malzeme yavaşça artan yükler altında denendiği zaman, belirli bir sınır gerilmede dayanımı sona erip kopmaktadır.

Malzeme yavaşça artan yükler altında denendiği zaman, belirli bir sınır gerilmede dayanımı sona erip kopmaktadır. YORULMA 1 Malzeme yavaşça artan yükler altında denendiği zaman, belirli bir sınır gerilmede dayanımı sona erip kopmaktadır. Bulunan bu gerilme değerine malzemenin statik dayanımı adı verilir. 2 Ancak aynı

Detaylı

1 MAKİNE ELEMANLARINDA TEMEL KAVRAMLAR VE BİRİM SİSTEMLERİ

1 MAKİNE ELEMANLARINDA TEMEL KAVRAMLAR VE BİRİM SİSTEMLERİ İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MAKİNE ELEMANLARINDA TEMEL KAVRAMLAR VE BİRİM SİSTEMLERİ 11 1.1. SI Birim Sistemi 12 1.2. Boyut Analizi 16 1.3. Temel Bilgiler 17 1.4.Makine Elemanlarına Giriş 17 1.4.1 Makine

Detaylı

ÇEKME DENEYĠ. ġekil 1. Düşük karbonlu yumuşak bir çeliğin çekme diyagramı.

ÇEKME DENEYĠ. ġekil 1. Düşük karbonlu yumuşak bir çeliğin çekme diyagramı. 1. DENEYĠN AMACI ÇEKME DENEYĠ Çekme deneyi, malzemelerin mekanik özeliklerinin belirlenmesi, mekanik davranışlarına göre sınıflandırılması ve malzeme seçimi amacıyla yapılır. Bu deneyde standard çekme

Detaylı

2. Amaç: Çekme testi yapılarak malzemenin elastiklik modülünün bulunması

2. Amaç: Çekme testi yapılarak malzemenin elastiklik modülünün bulunması 1. Deney Adı: ÇEKME TESTİ 2. Amaç: Çekme testi yapılarak malzemenin elastiklik modülünün bulunması Mühendislik tasarımlarının en önemli özelliklerinin başında öngörülebilir olmaları gelmektedir. Öngörülebilirliğin

Detaylı

DAYANIM İLE İLİŞKİLİ MALZEME ÖZELİKLERİ

DAYANIM İLE İLİŞKİLİ MALZEME ÖZELİKLERİ DAYANIM İLE İLİŞKİLİ MALZEME ÖZELİKLERİ Dayanım, malzemenin maruz kaldığı yükleri, akmadan ve kabiliyetidir. Dayanım, de yükleme değişebilmektedir. kırılmadan şekline ve taşıyabilme yönüne göre Gerilme

Detaylı

MALZEMELERİN MEKANİK ÖZELLİKLERİ ve MALZEME MUAYENESİ

MALZEMELERİN MEKANİK ÖZELLİKLERİ ve MALZEME MUAYENESİ MALZEMELERİN MEKANİK ÖZELLİKLERİ ve MALZEME MUAYENESİ MALZEMELERİN MEKANİK ÖZELLİKLERİ Bir malzemenin uygulanan kuvvetlere karşı gösterdiği tepki mekanik davranış olarak tanımlanır. Bu davranış değişik

Detaylı

Mekanik Davranışın Temel Kavramları. Cisimlerin uygulanan dış kuvvetlere karşı gösterdiği tepkiye mekanik davranış denir.

Mekanik Davranışın Temel Kavramları. Cisimlerin uygulanan dış kuvvetlere karşı gösterdiği tepkiye mekanik davranış denir. ŞEKİL DEĞİŞTİRME 1 Mekanik Davranışın Temel Kavramları Cisimlerin uygulanan dış kuvvetlere karşı gösterdiği tepkiye mekanik davranış denir. Sürekli artan kuvvet altında önce şekil değiştirme oluşur. Düşük

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 2 Gerilme ve Şekil Değiştirme-Eksenel Yükleme Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

29- Eylül KOÜ. Mühendislik Fakültesi Makine Mühendisliği Bölümü ( 1. ve 2. Öğretim 2. Sınıf / B Şubesi) Mukavemet Dersi - 1.

29- Eylül KOÜ. Mühendislik Fakültesi Makine Mühendisliği Bölümü ( 1. ve 2. Öğretim 2. Sınıf / B Şubesi) Mukavemet Dersi - 1. SORU-1) Şekildeki dikdörtgen kesitli kolonun genişliği b=200 mm. ve kalınlığı t=100 mm. dir. Kolon, kolon kesitinin geometrik merkezinden geçen ve tarafsız ekseni üzerinden etki eden P=400 kn değerindeki

Detaylı

MUKAVEMET Öğr. Gör. Fatih KURTULUŞ

MUKAVEMET Öğr. Gör. Fatih KURTULUŞ www.sakarya.edu.tr MUKAVEMET Öğr. Gör. Fatih KURTULUŞ www.sakarya.edu.tr 1. DÜŞEY YÜKLÜ KİRİŞLER Cisimlerin mukavemeti konusunun esas problemi, herhangi bir yapıya uygulanan bir kuvvetin oluşturacağı gerilme

Detaylı

BURULMA (TORSİON) Dairesel Kesitli Çubukların (Millerin) Burulması MUKAVEMET - Ders Notları - Prof.Dr. Mehmet Zor

BURULMA (TORSİON) Dairesel Kesitli Çubukların (Millerin) Burulması MUKAVEMET - Ders Notları - Prof.Dr. Mehmet Zor 3 BURULMA (TORSİON) Dairesel Kesitli Çubukların (Millerin) Burulması 1.1.018 MUKAVEMET - Ders Notları - Prof.Dr. Mehmet Zor 1 3. Burulma Genel Bilgiler Burulma (Torsion): Dairesel Kesitli Millerde Gerilme

Detaylı

Malzeme Bilimi Ve Labaratuvarı MEKANİK ÖZELLİKLER

Malzeme Bilimi Ve Labaratuvarı MEKANİK ÖZELLİKLER Malzeme Bilimi Ve Labaratuvarı MEKANİK ÖZELLİKLER Sakarya Üniversitesi Teknoloji Fakültesi Mekanik Özellikler Mekanik Özellikler Basınç Dayanımı Çekme dayanımı Kesme Dayanımı Mekanik Özellikler - Genel

Detaylı

MALZEME ANA BİLİM DALI Malzeme Laboratuvarı Deney Föyü. Deneyin Adı: Malzemelerde Sertlik Deneyi. Deneyin Tarihi:

MALZEME ANA BİLİM DALI Malzeme Laboratuvarı Deney Föyü. Deneyin Adı: Malzemelerde Sertlik Deneyi. Deneyin Tarihi: Deneyin Adı: Malzemelerde Sertlik Deneyi Deneyin Tarihi:13.03.2014 Deneyin Amacı: Malzemelerin sertliğinin ölçülmesi ve mukavemetleri hakkında bilgi edinilmesi. Teorik Bilgi Sertlik, malzemelerin plastik

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 5 Rijit Cisim Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 5. Rijit Cisim Dengesi Denge,

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ):

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ): Tanışma ve İletişim... Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta (e-mail): mcerit@sakarya.edu.tr Öğrenci Başarısı Değerlendirme... Öğrencinin

Detaylı

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler ifthmechanics OF MAERIALS 009 he MGraw-Hill Companies, In. All rights reserved. - Burulma (orsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler ifthmechanics OF MAERIALS ( τ ) df da Uygulanan

Detaylı

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ ve MALZEME MÜHENDİSLİĞİ BÖLÜMÜ METALİK MALZEMELERİN ÇEKME VE BASMA DENEY FÖYÜ

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ ve MALZEME MÜHENDİSLİĞİ BÖLÜMÜ METALİK MALZEMELERİN ÇEKME VE BASMA DENEY FÖYÜ BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ ve MALZEME MÜHENDİSLİĞİ BÖLÜMÜ METALİK MALZEMELERİN ÇEKME VE BASMA DENEY FÖYÜ Deney Adı: Metalik Malzemelerin Çekme ve Basma Deneyi 1- Metalik Malzemelerin

Detaylı

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering Uygulama Sorusu-1 Şekildeki 40 mm çaplı şaft 0 kn eksenel çekme kuvveti ve 450 Nm burulma momentine maruzdur. Ayrıca milin her iki ucunda 360 Nm lik eğilme momenti etki etmektedir. Mil malzemesi için σ

Detaylı

KOÜ. Mühendislik Fakültesi Makine Mühendisliği Bölümü (1. ve 2.Öğretim / B Şubesi) MMK208 Mukavemet II Dersi - 1. Çalışma Soruları 23 Şubat 2019

KOÜ. Mühendislik Fakültesi Makine Mühendisliği Bölümü (1. ve 2.Öğretim / B Şubesi) MMK208 Mukavemet II Dersi - 1. Çalışma Soruları 23 Şubat 2019 SORU-1) Aynı anda hem basit eğilme hem de burulma etkisi altında bulunan yarıçapı R veya çapı D = 2R olan dairesel kesitli millerde, oluşan (meydana gelen) en büyük normal gerilmenin ( ), eğilme momenti

Detaylı

BETONARME KESİTLERİN EĞİLME MUKAVEMETLERİNİN BELİRLENMESİNDE TEMEL İLKE VE VARSAYIMLAR

BETONARME KESİTLERİN EĞİLME MUKAVEMETLERİNİN BELİRLENMESİNDE TEMEL İLKE VE VARSAYIMLAR BETONARME KESİTLERİN EĞİLME MUKAVEMETLERİNİN BELİRLENMESİNDE TEMEL İLKE VE VARSAYIMLAR BASİT EĞİLME Bir kesitte yalnız M eğilme momenti etkisi varsa basit eğilme söz konusudur. Betonarme yapılarda basit

Detaylı

Burma deneyinin çekme deneyi kadar geniş bir kullanım alanı yoktur ve çekme deneyi kadar standartlaştırılmamış bir deneydir. Uygulamada malzemelerin

Burma deneyinin çekme deneyi kadar geniş bir kullanım alanı yoktur ve çekme deneyi kadar standartlaştırılmamış bir deneydir. Uygulamada malzemelerin BURMA DENEYİ Burma deneyinin çekme deneyi kadar geniş bir kullanım alanı yoktur ve çekme deneyi kadar standartlaştırılmamış bir deneydir. Uygulamada malzemelerin genel mekanik özelliklerinin saptanmasında

Detaylı

Kesit Tesirleri Tekil Kuvvetler

Kesit Tesirleri Tekil Kuvvetler Statik ve Mukavemet Kesit Tesirleri Tekil Kuvvetler B ÖĞR.GÖR.GÜLTEKİN BÜYÜKŞENGÜR Çevre Mühendisliği Mukavemet Şekil Değiştirebilen Cisimler Mekaniği Kesit Tesiri ve İşaret Kabulleri Kesit Tesiri Diyagramları

Detaylı

BA KENT ÜNİVERSİTESİ. Malzemeler genel olarak 4 ana sınıfa ayrılabilirler: 1. Metaller, 2. Seramikler, 3. Polimerler 4. Kompozitler.

BA KENT ÜNİVERSİTESİ. Malzemeler genel olarak 4 ana sınıfa ayrılabilirler: 1. Metaller, 2. Seramikler, 3. Polimerler 4. Kompozitler. MALZEMELER VE GERĐLMELER Malzeme Bilimi mühendisliğin temel ve en önemli konularından birisidir. Malzeme teknolojisindeki gelişim tüm mühendislik dallarını doğrudan veya dolaylı olarak etkilemektedir.

Detaylı

MUKAVEMET FATİH ALİBEYOĞLU

MUKAVEMET FATİH ALİBEYOĞLU MUKAVEMET FATİH ALİBEYOĞLU Rijit Cisimler Mekaniği Statik Dinamik Şekil Değiştiren Cisimler Mekaniği (MUKAVEMET) Akışkanlar Mekaniği STATİK: Dış kuvvetlere maruz kalmasına rağmen durağan halde, yani dengede

Detaylı

Makine Elemanları I. Yorulma Analizi. Prof. Dr. İrfan KAYMAZ. Erzurum Teknik Üniversitesi. Mühendislik Fakültesi Makine Mühendisliği Bölümü

Makine Elemanları I. Yorulma Analizi. Prof. Dr. İrfan KAYMAZ. Erzurum Teknik Üniversitesi. Mühendislik Fakültesi Makine Mühendisliği Bölümü Makine Elemanları I Prof. Dr. İrfan KAYMAZ Mühendislik Fakültesi Makine Mühendisliği Bölümü Yorulma hasarı Aloha Havayolları Uçuş 243: Hilo dan Honolulu (Havai) Uçuşu Tarih: 28 Nisan 1988 Makine elemanlarının

Detaylı

PLASTİK ŞEKİLLENDİRME YÖNTEMLERİ

PLASTİK ŞEKİLLENDİRME YÖNTEMLERİ PLASTİK ŞEKİLLENDİRME YÖNTEMLERİ Metalik malzemelerin geriye dönüşü olmayacak şekilde kontrollü fiziksel/kütlesel deformasyona (plastik deformasyon) uğratılarak şekillendirilmesi işlemlerine genel olarak

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 2 Laminanın Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 2 Laminanın Makromekanik

Detaylı

FZM 220. Malzeme Bilimine Giriş

FZM 220. Malzeme Bilimine Giriş FZM 220 Yapı Karakterizasyon Özellikler İşleme Performans Prof. Dr. İlker DİNÇER Fakültesi, Fizik Mühendisliği Bölümü 1 Ders Hakkında FZM 220 Dersinin Amacı Bu dersin amacı, fizik mühendisliği öğrencilerine,

Detaylı

Kırılma Hipotezleri. Makine Elemanları. Eşdeğer Gerilme ve Hasar (Kırılma ve Akma) Hipotezleri

Kırılma Hipotezleri. Makine Elemanları. Eşdeğer Gerilme ve Hasar (Kırılma ve Akma) Hipotezleri Makine Elemanları Eşdeğer Gerilme ve Hasar (Kırılma ve Akma) Hipotezleri BİLEŞİK GERİLMELER Kırılma Hipotezleri İki veya üç eksenli değişik gerilme hallerinde meydana gelen zorlanmalardır. En fazla rastlanılan

Detaylı

PLASTİK ŞEKİL VERME (PŞV) Plastik Şekil Vermenin Temelleri: Başlangıç iş parçasının şekline bağlı olarak PŞV iki gruba ayrılır.

PLASTİK ŞEKİL VERME (PŞV) Plastik Şekil Vermenin Temelleri: Başlangıç iş parçasının şekline bağlı olarak PŞV iki gruba ayrılır. PLASTİK ŞEKİL VERME (PŞV) Metallerin katı halde kalıp olarak adlandırılan takımlar yardımıyla akma dayanımlarını aşan gerilmelere maruz bırakılarak plastik deformasyonla şeklinin kalıcı olarak değiştirilmesidir

Detaylı

FZM 220. Malzeme Bilimine Giriş

FZM 220. Malzeme Bilimine Giriş FZM 220 Yapı Karakterizasyon Özellikler İşleme Performans Prof. Dr. İlker DİNÇER Fakültesi, Fizik Mühendisliği Bölümü 1 Ders Hakkında FZM 220 Dersinin Amacı Bu dersin amacı, fizik mühendisliği öğrencilerine,

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

TOKLUK VE KIRILMA. Doç.Dr.Salim ŞAHĠN

TOKLUK VE KIRILMA. Doç.Dr.Salim ŞAHĠN TOKLUK VE KIRILMA Doç.Dr.Salim ŞAHĠN TOKLUK Tokluk bir malzemenin kırılmadan önce sönümlediği enerjinin bir ölçüsüdür. Bir malzemenin kırılmadan bir darbeye dayanması yeteneği söz konusu olduğunda önem

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

Sakarya Üniversitesi Teknoloji Fakültesi Makine Mühendisliği Bölümü. İmalat Müh. Deneysel Metotlar Dersi MAK 320. Çalışma 3: SERTLİK ÖLÇÜMÜ

Sakarya Üniversitesi Teknoloji Fakültesi Makine Mühendisliği Bölümü. İmalat Müh. Deneysel Metotlar Dersi MAK 320. Çalışma 3: SERTLİK ÖLÇÜMÜ Sakarya Üniversitesi Teknoloji Fakültesi Makine Mühendisliği Bölümü İmalat Müh. Deneysel Metotlar Dersi MAK 320 Çalışma 3: SERTLİK ÖLÇÜMÜ Konuyla ilgili aşağıdaki soruları cevaplandırarak rapor halinde

Detaylı

Makine Elemanları I Prof. Dr. Akgün ALSARAN. Temel bilgiler-flipped Classroom Mukavemet Esasları

Makine Elemanları I Prof. Dr. Akgün ALSARAN. Temel bilgiler-flipped Classroom Mukavemet Esasları Makine Elemanları I Prof. Dr. Akgün ALSARAN Temel bilgiler-flipped Classroom Mukavemet Esasları İçerik Gerilmenin tanımı Makine elemanlarında gerilmeler Normal, Kayma ve burkulma gerilmeleri Bileşik gerilme

Detaylı

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş Mukavemet-II Yrd.Doç.Dr. Akın Ataş Bölüm 11 Enerji Yöntemleri Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok. 11.1 Giriş Önceki bölümlerde

Detaylı