MALZEME BILGISI (DERS NOTU)

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "MALZEME BILGISI (DERS NOTU)"

Transkript

1 MALZEME BILGISI (DERS NOTU) Dielektrik Özellikler Hazırlayan Doç. Dr. Özkan ÖZDEMİR 2014

2 DİELEKTRİK MALZEME: Elektriksel yalıtkanlarda, diğer bir deyimle dielektrik malzemelerde serbest elektron yoktur, enerji aralığı 2 ev tan büyüktür ve özgül dirençleri 10 4 (ohm-m) nin üzerindedir. Yalıtkanların özgül direnci metallerinkinin yaklaşık katı kadardır. Elektriği iletmediklerinden çoğunlukla elektriksel yalıtkan olarak kullanılırlar. Ancak elektriği iletmemelerine rağmen uygulanan elektriksel alandan etkilenirler. Elektriksel alan etkisinde elektriksel yüklü elektronlar, iyonlar ve sürekli kutuplu moleküller yön değiştirir, dolayısıyla elektriksel yük merkezleri kayar, bunun sonucu elektriksel kutuplaşma oluşur. Oluşan elektriksel kutuplar malzeme yüzeyinde elektriksel yük birikimi sağlar, bu nedenle kondansatör üretiminde kullanılırlar. Diğer taraftan bazı dielektrik malzemelerde boyutlar elektriksel alan etkisinde değişir, ayrıca kuvvet etkisinde uçları arasında gerilim farkı doğar. Piezoelektrik denen bu özelliğe sahip kristaller ses iletim araçlarında ve benzeri yerlerde kullanılırlar. Ayrıca değişken elektriksel alanda kutuplar sürekli yön değiştirir, bu esnada iç sürtünme nedeni ile ısıl enerji doğar. Bundan yararlanılarak mikro-dalga ısıtıcıları geliştirilmiştir

3 ELEKTRİKSEL KUTUPLAŞMA Bir kütle içinde artı elektriksel yük merkezi ile eksi elektriksel yük merkezi çakışmazsa elektriksel kutuplaşma (polarizasyon) oluşur. Asimetrik veya polar moleküllerde asimetrik dağılan elektronların ortak eksi yük merkezi, kütlenin ağırlık merkezindeki protonların sahip olduğu ortak artı yük merkezi ile çakışmaz. Bu şekilde oluşan kutuplaşma süreklidir. Diğer taraftan bireysel atomlarla simetrik moleküllerde zıt işaretli yük merkezleri çakışıktır ve net kutuplaşma yoktur. Ancak bunlara elektrik alanı uygulanırsa elektronların ortalama konumu artı elektroda, artı iyon da eksi elektroda doğru bir miktar yer değiştirir. Böylece dış etki ile geçici kutuplaşma oluşur, alan kalkınca kutuplaşma kaybolur. Alternatif elektriksel alan uygulanırsa iç elektriksel yük merkezleri ve kutuplar tekrarlı yer değiştirir.

4 Kutuplaşma Türleri: Yer değiştiren bireylere bağlı olarak; Elektronik kutuplaşma, İyonsal kutuplaşma, Moleküler (Yönsel) kutuplaşma, Yerel kutuplaşma olmak üzere dört tür kutuplaşma oluşur. Elektronik Kutuplaşma: Alan etkisi yokken elektronlar çekirdek çevresinde homojen dağılmıştır ve yük merkezleri çakışıktır. Bir elektriksel alan uygulanınca eksi yüklü elektronlar alanın artı elektroda, artı yüklü çekirdek eksi elektroda doğru çok az yer değiştirir. Elektronların duran dalga hareketlerinin frekansı Hz düzeyindedir. Frekansları Hz civarında olan ışık dalgaları elektronları kolaylıkla etkileyerek elektronik kutuplaşma oluşturur. Bütün malzemelerde oluşmasına rağmen elektronik kutuplaşmanın dielektrik sabite katkısı çok azdır.

5 İyonsal Kutuplaşma İyonsal malzemelerde net elektriksel yük sıfırdır ve kutuplaşma yoktur. Ancak bir elektriksel alan uygulanırsa, artı iyonlar eksi elektroda, eksi iyonlar artı elektroda doğru yer değiştirir. Bu tür kutuplaşma, elektronik kutuplaşmada olduğu gibi, dış etki ile oluşan geçici kutuplaşma türüdür, iyonların kütlesi elektronlara göre çok büyük olduğundan yer değiştirmeleri daha güçtür; bu nedenle ancak frekansları Hz altındaki radyasyon dalgalarında oluşurlar. Bu frekansın üstünde olan ışık dalgaları iyonsal kutuplaşma oluşturamaz.

6 Moleküler (Yönsel) Kutuplaşma: Asimetrik moleküllerde kütlenin ağırlık merkezinde olan artı yük merkezi ile elektronların ortak eksi yük merkezi çakışmaz ve dolayısıyla sürekli kutuplaşma görülür. Buna moleküler kutuplaşma veya yönsel kutuplaşma denir. Elektriksel alan uygulanınca mevcut kutuplar alan yönünde paralel olmaya zorlanırlar. Bu hareket oldukça büyük bir kütle ile ilgili olduğundan ancak 10 8 Hz'in altındaki frekanslara tepki gösterirler. Alanın etkisi kaybolunca kutuplar geri dönmeye çalışır, malzemenin türüne ve sıcaklığa bağlı olarak dönmeler tam olmayabilir, bazıları dönük durumda kalabilir. Sürekli kutuplar molekül bireylerinde veya birim hücrelerde oluşabilir. Genelde bireysel kutup yönleri rastgeledir. Bazı malzemelerde bireysel kutuplar, gruplar halinde yönlenmiş durumda olup bir ortak yerel kutba sahiptirler. Üretim sürecinde bu yerel kutuplar yönlendirilerek malzemenin net bir kutuplaşmaya sahip olması sağlanabilir.

7 Yerel Kutuplaşma: Bazı çok fazlı yapılarda fazlar arasına çökelen iletken fazların varlığı kuvvetli kutuplaşma sağlayabilir. Özellikle yalıtkan bir ana faz (seramik) içinde dağılmış çok küçük iletken parçacıklarda (metal), alan etkisinde büyük ölçüde elektron hareketi kuvvetli kutuplaşma oluşturur. Örneğin Al 2 O 3 içinde dağılmış küçük Al parçacıklarında böyle bir davranış görülür. Bu tür malzemelerde yüksek frekanslarda dielektrik kaybı büyük olur. Yerel kutuplaşmalar ancak enerji bölgesindeki frekanslar etkisinde oluşabilir, 10 4 Hz'in üstündeki frekanslar etkili olamaz. TiO 2 gibi metal oksit parçacıkları içeren seramiklerde de yerel kutuplaşma görülür.

8 Dielektrik özellikler 1. Dielektrik sabit 2. Dielektrik mukavemet 3. Ferroelektrik özellik 4. Piezoelektrik özellik 1) DİELEKTRİK SABİT: Elektriksel alan etkisinde oluşan elektriksel kutuplaşma malzeme yüzeyine konan elektrodlar da elektriksel yük birikimine neden olur. Dielektrik malzemede kalıcı kutuplaşma varsa yük birikimi kendiliğinden oluşur. Kalıcı kutuplaşması olmayan bir malzemeye elektriksel alan uygulanınca kutuplaşma meydana gelir, dolayısıyla dış etki ile elektrodlar da yük birikimi olur. Kapasitörün üzerine bir voltaj uygulandığında pozitif kutupdan negatif kutupa oluşan elektrik alanın etkisiyle levhanın (plakanın) birisi pozitif, diğeri negatif olarak şarj olur. Bu kapasitans (C), her bir levha üzerinde depolanan Q yükü ile ilişkilidir. C = Q V C= Kapasitans (C/V) veya Farat (F) Q= Yük (C) V= Voltaj (V)

9 Levhalar arasında vakum bulunan paralel bir kapasitör ele aldım. Bu durumda C 0 = 0 A l A= levha alanı (m 2 ) l= levhalar arası mesafe (m) 0 = Vakuma ait geçirgenlik sabiti (8, F/m) Levhalar arasına bir dielektrik malzeme konulması durumunda C = A l = Dielektrik ortamın geçirgenliği olup 0 değerinden büyüktür.

10 Bağıl geçirgenlik r, genellikle dielektrik sabit olarak adlandırılmaktadır. r = ε ε 0 1 r 1 dir ve levhalar arasına dielektrik malzemenin yerleştirilmesiyle yük depolama kapasitesindeki artışı gösterir. Dielektrik, sabit bir malzeme özelliği olup kapasitör tasarımında birinci önceliğe sahiptir. Kapasitörde depolanan yük plakalar arasındaki malzemenin dielektrik sabitine bağlıdır. Dipol: Belirli bir mesafe ile ayrılmış zıt yükler çiftidir. Aralarında d mesafesi olan iki elektrik yük (q büyüklüğünde) tarafından üretilen bir elektrik dipolünün momenti (P): q d dir. Elektriksel alan (E) etkimesi sonucunda oluşan kuvvet, elektrik dipolünü uygulanan alan doğrultusunda yönlendirir. Bu şekilde dipollerin düzenlenmesi olayına polarizasyon denir. Polarizasyon; P=Polarizasyon C/m 2 P= z q d q= elektronik yük, 1, C d= Dipolün pozitif ve negatif uçları arasındaki mesafe, m z= Birim hacimde (m 3 ) yerini değiştiren yük sayısı

11 Kapasitörün yüzeyindeki yük yoğunluğu D (C/m 2 ) elektrik alan (E) ile orantılıdır. Vakum bulunması durumunda, D 0 = 0 E Dielektrik bulunması durumunda ise; D = E Bazen D, dielektrik ötelenme olarak da tanımlanmaktadır. D = 0 E + P P = D - 0 E (veya P = D-D 0 ) r = ε ε 0 = r. 0, D = r 0 E P = r 0 E - 0 E P = 0 E ( r -1)

12 Vakumun bulunması durumunda kapasitör levhalarında depolanan yük Polarize olmamış bir dielektrik malzemede dipollerin düzenlenmesi Bir dielektrik malzemenin polarizasyonu sonucu depolanan yük artışının şematik gösterimi

13

14 2) DİELEKTRİK DAYANIM (MUKAVEMET) Elektriksel yalıtkanın temel özelliği özgül dirençtir. Gerçekte bir yalıtkanın dayanabileceği bir kritik elektriksel alan şiddeti vardır. Bu değer aşılınca aşırı akım sonucu dielektrik malzeme yanma, kavrulma veya ergime şeklinde tahrip olur ve yalıtkanlık işlevi sona erer. Alanın bu kritik değerine dielektrik mukavemet denir ve birimi kilovolt/mm (kv/mm) dir. Dielektrik mukavemetle özgül direnç aynı yönde değişmekle beraber aralarında arasında kesin bir ilişki kurmak zordur. Gerçekte yalıtkanlığın sona erdiği elektriksel göçmede dielektrik malzemenin enerji aralığına ek yük taşıyıcı sağlayan yabancı elemanlar, çökeltiler, çatlaklar ve benzeri kusurlar önemli rol oynarlar. Elektriksel alan aşırı yükselince valans bandındaki veya enerji aralığındaki yük taşıyıcılar iletim bandına geçer, serbest hale geçen bu yüksek enerjili elektronlar diğerlerine de çarparak bir elektron seli oluştururlar. Elektriksel göçme denen bu olay sonucu yalıtkan tahrip olur. Ayrıca sıcaklık elektronların enerjisini arttırdığından bu olayı kolaylaştırır.

15 3) FERROELEKTRİK ÖZELLİK Malzemelere elektrik alan uygulandığında dipoller alan doğrultusunda yönlenir ve alan kaldırıldığında malzeme kalıcı dipol içeriyor olsa dahi polarizasyon genellikle kalkar. Ancak ferroelektrik malzemede elektrik alan kaldırıldığında malzemede bir miktar polarizasyon kalır. Ayrıca elektriksel alan ile polarizasyon yönü değiştirilebilmektedir. Net bir kutuplaşması olmayan kutup çiftleri rastgele yönlenmiş bir kristalle başlayalım. Bir alan uygulandığında kutup çiftleri aşağıdaki Şekil'de l'den 3. noktaya alanla hizaya gelir. Sonunda alan kutup çiftlerinin hepsini hizaya getirir veya doyuma ulaşır. Kutuplaşma, 3. nokta elde edilir. Ardından alan kaldırıldığında kalıcı kutup P, kutuplar arasındaki bağlanmadan dolayı nokta 4'de kalır. Malzeme kalıcı olarak kutuplaşır. Kutuplaşmanın kalma yeteneği bilgisayar devresinde ferroelektrik malzemenin bilgiyi saklaması için malzemeyi kullanışlı hale getirir.[askeland] Şekil. Ferroelektrik histerezis döngü, elektrik alanının kutuplaşması üzerine etkisini ve kutup çiftlerinin hizaya gelmesini göstermektedir.

16 Zıt yönde bir alan uygulandığında kutup çiftleri ters dönmek zorundadır. Zorlayıcı bir alan, kutuplaşmayı uzaklaştırmak ve kutup çiftleri nokta 5'de rastgele yapmak için uygulanmak zorundadır. Ters alan daha da artırılırsa zıt kutuplaşma ile nokta 6'da doyum olur. Alan değişmeye devam ettiğinde, histerezis döngüsü ferroelektrik kutuplaşmanın alanla nasıl değiştiğini göstererek tarif eder. Histerezis döngüsünde kaplanan alan, bir yönden diğerine kutuplaşmanın kaymasını sağlamak için gerekli enerji ile ilgilidir [Askeland]. Elektriksel yükün değişken alanla böyle bir kapalı eğri şeklinde değişimi kutuplaşmanın tersinir olduğunu gösterir. Bu özelliğe ferroelektrik özellik ve buna sahip malzemelere de ferroelektrik malzemeler denir. Kapalı eğri içinde kalan alan bir çevrim boyunca kutupları döndürmek için sarf edilen enerjiyi verir. Dielektrik kayıp denen bu enerji ısıl enerji halinde çevreye yayılır. Bu tür alanla kutuplaşma aynı anda maksimuma erişemeyebilir ve aralarında bir faz farkı doğabilir [Onaran].

17 Ferroelektrik davranış sıcaklık bağımlıdır. Kritik Curie sıcaklığı üzerinde dielektrik ve bu nedenle de ferroelektrik davranış kaybolur (Şekil). Baryum titanat gibi bazı malzemelerde Curie sıcaklığı kristal yapıdaki değişime karşılık gelir. Curie sıcaklığına kadar tetragonal, üzerinde ise kübik yapıdadır. Bu nedenle her birim hücrede artık kalıcı kutuplaşma yoktur.[askeland] 4) PİEZOELEKTRİK ÖZELLİK Piezoseramik malzemeler elektriksel etkiyi mekanik büyüklüğe, mekanik etkiyi elektriksel büyüklüğe dönüştüren simetri merkezi olmayan kristallerdir. Yaygın olarak kullanılan piezoseramik malzemeler; Kuartz (SiO 2 ), BaTiO 3, PbZrO 3 -PbTiO 3 alaşımı (PZT), (Pb,La)(Ti,Zr)O 3 alaşımı (PLZT) ŞEKİL Sıcaklığın baryum titanatın dielektrik sabiti üzerine etkisi Curie sıcaklığının üzerinde molekül kutuplaşması, kristal yapıdaki bir yükten dolayı kaybedilir ve baryum titanat artık ferroelektrik değildir.

18 Sürekli kutuplaşmaya sahip bir asimetrik iyonsal kristale basınç uygulanırsa kutuplar arası uzaklık azalır, yüzeyinde yük birikimi artar, dolayısıyla iki uç arasında bir gerilim farkı doğar ve bir iletkenle birleştirilirse akım akar. Böylece mekanik etki elektriksel büyüklüğe dönüşür. Diğer taraftan aynı kristalin iki ucu arasına bir gerilim uygulanırsa eksi yükler artı elektroda artı yükler eksi elektroda doğru çekilir, eksi ve artı yük merkezleri arasında uzaklık artar ve bunun sonucu kristalin boyu büyür. Alanın yönü değişirse aynı işaretli yükler birbirlerini iter ve kristalin boyu kısalır. Böylece elektriksel etki mekanik büyüklüğe dönüşür. Bu davranışa piezoelektrik özellik denir. Baryum Titanat (BaTiO 3 ), kurşun zirkonat (PbZr0 3 ) ve kuvartz kristali çok kullanılan önemli piezoelektrik malzemelerdir. Piezoelektrik özelliğe sahip malzemelerde yerel kutuplar rastgele yönlenmiş halde iken parça net bir kutba sahip olamaz. Bu durumda belirli bir sıcaklıkta (Curie sıcaklığı) kuvvetli elektriksel alan uygulayarak yerel kutuplar yönlendirilir, böylece parça net bir kutup a sahibi olur.

19 Şekil -7. Piezoelektrik etki ve BaTiO 3 birim hücresi Piezoelektrik özelliğin iç yapıda nasıl oluştuğunu açıklamak için Şekil-7de görülen baryum titanat birim hücresini ele alalım. Kübik birim hücrenin köşelerinde birer adet Ba 2+ iyonu, yüzeylerinde O 2 iyonları ve içeride bir Ti 4+ iyonu vardır. Titanyum iyonunun çapı yüzey merkezlerinde bulunan iki oksijen iyonu arasında kalan boşluktan biraz büyüktür, bu nedenle titanyum iyonu tam kübün merkezinde olmaz. Kübün merkezinden geçen bir yatay düzlem gözönüne alınırsa Şekil 7 de görüldüğü gibi, Ti 4+ iyonu düzlemin biraz üstünde, O 2 iyonları ise biraz altındadır. Bu nedenle artı yük merkezi ile eksi yük merkezi arasında 0,012nm kadar bir mesafe vardır. Baryum titanat birim hücresinde iyonların bu şekilde asimetrik dizilişi sonucu sürekli bir elektriksel kutuplaşma oluşur. Şekil 7 de görüldüğü gibi Ti 4+ iyonu merkezin biraz üstünde olduğundan birim hücrenin üst ucu artı kutup, dolayısıyla alt ucu eksi kutuptur. Birim hücrenin üstüne artı elektrod, alt yüzeyine eksi elektrod bağlayarak bir alan uygulanırsa Ti 4+ iyonu artı alan etkisi ile merkezin aşağısına doğru,o 2 iyonları ise üste doğru itilir. Bu durumda birim hücrenin kutuplaşması ters yöne döner. Aynı değişiklik basınç uygulayarak da yapılabilir. Buradan kutuplaşmanın ne şekilde tersinir yapıldığı açıkça anlaşılmaktadır.

20 Değişken alanda kutuplaşmanın tersinir olması bir ferroelektrik davranıştır. Buna göre baryum titanatın hem piezoelektrik, hem de ferroelektrik malzeme olduğu açıkça görülür. Kuvartz kristalin (SiO 2 ) piezoelektrik özelliğe sahiptir. Alan etkisinde kutuplaşmanın etkisi artıp eksilebilir, ancak kutuplar yön değiştiremez ve tersinir olamaz. Bu sonuca göre kuvartz bir piezoelektrik malzeme olduğu halde ferroelektrik malzeme değildir. Ferroelektrik malzemeler daima piezoeletrik malzemedir ancak piezoelektrik malzemeler ferroelektrik olmayabilir. Bazı kristaller, turmalin gibi, ısıtılacak olursa yüzeylerinde elektriksel yük birikimi oluşur. Buna piroelektrik etki denir. Gerçekte piroelektrik oluşum piezoelektrik oluşum ile yakından ilgilidir. Burada etken, alan ve basınç yerine ısıl enerjidir, sıcaklık artınca iyonlar asimetrik dizilir ve kutuplaşma oluşur [Onaran].

21 Bazı lineer polar moleküller elektriksel alan etkisi ile paralel hale getirilerek kristal yapıya benzer düzenli bir yapı oluşturulabilir. Alan etkisi kalkınca tekrar ilk düzensiz hale dönerler. Bu özelliğe sahip malzemelere sıvı kristaller denir. Bunlar hem sıvı, hem de kristal karakteri gösterirler, iki cam arasına konan ince film haline getirilen siyanobifenil gibi sıvı kristallerde belirli büyüklükte dış etki ile yerel kutuplaşma sağlanabilir. Değişik yöndeki kutuplar ışığı seçimli yansıtma ve kırma ile varlıklarını gösterirler. Bu özellikten yararlanarak elektrik aygıtlarında sayısal gösterim elde edilir. DİELEKTRİK MALZEMELER Dielektrik malzemeler kullanıma alanlarına göre üç grupta toplanabilirler: a) Yalıtkan malzemeler, b) Kondansatör malzemeleri, c) Piezoelektrik malzemeler.

22 A) YALITKAN MALZEMELER: Elektrik devrelerinde yalıtkan olarak kullanılacak malzemelerin özgül direnci ile dielektrik mukavemeti yüksek, dielektrik sabiti küçük dolayısiyle dielektrik kayıp düşük olmalıdır. İletkenlerin yalıtımı için en elverişli ve en yaygın olarak kullanılan malzeme polimerlerdir. Üretilmeleri kolay ve ucuzdur, ancak yüksek sıcaklık uygulamalarına elverişli değildirler. Özellikle termoplastikler sıcaklıkla kolay yumuşarlar. Priz, fiş, sigorta gövdeleri gibi yüksek sıcaklığa maruz kalmaları olası yerlerde termoset plastikler (fenol formaldehit gibi) kullanılmalıdır. Seramikler yüksek sıcaklığa ve yüksek gerilime maruz devrelerde yalıtkan olarak kullanılmaya elverişlidirler, örneğin aşırı sıcaklık ve yüksek gerilim etkisinde kalan motor bujileri için en uygun malzeme alüminadır (Al 2 O 3 ). Yüksek gerilim hatlarında kullanılan porselen yalıtkanlar %50 kil, %25 Si0 2 ve %25 feldispat içerirler. Plastik halde şekil verildikten sonra fırında sinterlenerek sertleştirilirler. Porselen yalıtkanlarda iki tür elektriksel göçme oluşabilir. Birincisi iç göçme olup bunda daha önce belirtildiği gibi bileşimindeki yabancı elemanlar, çatlaklar ve benzeri kusurlar önemli rol oynar. İç göçmede malzeme tahrip olur. Bu tür göçmeleri önlemek için saf malzeme ile dikkatli üretim gerekir, ikinci tür olan yüzeysel göçme elektrik arkı şeklinde oluşur. Bunlarda gözenekli dış yüzeylerdeki birikintiler ve rutubet önemli etkenlerdir. Porselen yalıtkanın yüzeyi gözeneksiz ve düzgün hale getirilirse bu tür göçme olasılığı azaltılır. Diğer taraftan dielektrik sabit yüksek olursa, yüzeyde yük birikimi artar, bu da yüzeysel göçmeyi kolaylaştırır. Bu sakıncayı önlemek için dielektrik sabiti düşük yalıtkan kullanılır.yüksek frekanslı uygulamalarda alkali iyonları içermeyen dolayısıyla dielektrik kaybı düşük seramikler (alümina gibi) daha uygundur.

23 B) KONDANSATÖR MALZEMELERİ Kondansatörler üzerlerinde elektriksel yük biriktirerek ani akım değişmelerinde aşırı yük artmasını önlerler, böylece diğer devre elamanlarını korurlar ve ayrıca biriktirdikleri yükü tekrar geri verirler. Bu amaçla üretilen kondansatör iki iletken levha arasında konan uygun bir dielektrik malzemeden oluşur. Dielektrik malzeme olarak genellikle polimerler veya seramikler kullanılandır. Polimerlerin dielektrik sabitleri seramiklere göre oldukça küçüktür. Bununla beraber üretilmesi kolay ve ucuzdur, özellikle düşük sıcaklıklarda ve düşük frekanslarda kullanılmaya elverişlidirler. Seramik türü malzemelerin dielektrik sabitleri polimerlerininkinin yaklaşık 10 3 katı kadardır. Özellike baryum titanat ve kurşun titanat gibi asimetrik kristal yapılı seramiklerde kutuplaşmalar çok etkindir, dolayısıyle küçük bir hacimde çok büyük elektriksel yük depolanabilir. Cam, mika ve kauçuk gibi dielektrik malzemelerde dielektrik sabiti 7 civarında olmasına karşın seramik kristallerde arasındadır.

24 C) PİEZOELEKTRİK MALZEMELER Piezoelektrik malzemeler yukarıda açıklandığı gibi elektriksel etkiyi mekanik büyüklüğe ve mekanik etkiyi elektriksel büyüklüğe çeviren genellikle simetri merkezi olmayan kristallerdir. Bir piezoelektrik malzemenin karakteristik değeri, birim alan etkisinde oluşan birim boy değişmesidir. Bir E elektriksel alan (V/m) uygulandığında oluşan şekil değiştirme oranı e (mm/mm) aşağıda görüldüğü gibi alan şiddeti ile orantılıdır. Şekil değiştirme oranı (e) = g E Burada g: piezolektrik sabit olup birimi (m/v) tur. Tablo 2 Bazı kristallerin piezoelektrik katsayıları Kuvartz kristalinin piezoelektrik katsayısının küçük olmasına karşın çok ilginç bir özelliği vardır. Belirli boyutlarda hassas olarak işlenmiş bir prizmatik kuvartz kristalinin alternatif alanda rezonans frekansı (sistemin genliğinin sonsuza dek artma eğilimi) sabittir, ancak 1/10 8 kadar bir sapma olabilir. Bu nedenle saatlerde ve radyo yayınlarında frekans kontrolü sağlamada kuvartz kristalinden yararlanılır. BaTiO 3 'un piezoelektrik katsayısı oldukça yüksektir ve çok yaygın kullanılma alanına sahiptir. Örneğin iletişim araçlarında, ultrasonik temizleme aygıtlarında ve benzeri yerlerde bu kristalden yararlanılır. Piezoelektrik kristallerde, uygulanan elektriksel alanla oluşan gerilme ile şekil değiştirme arasında lineer bağıntı vardır. Kristallerin gerilme etkisinde lineer elastik cisim olduğu varsayılır. Kristale etkiyen gerilmesi () (N/mm 2 ) şekil değiştirme oranı e (mm/mm) ile orantılıdır. Gerilme (σ) = Elastisite modülü (E) x şekil değiştirme oranı (e) σ = Elastisite modülü x g x E ise Elastisite modülü = σ E 1 g

25 Kaynaklar: W. D. Callister, D. G. Rethwisch, Malzeme bilimi ve Mühendisliği, Baskıdan Çeviri, Edt: K. Genel, 2013 D. R. Askeland, Malzeme Bilimi ve mühendislik Malzemeleri, 3. Baskıdan çeviri, M. Erdoğan, W. F. Smith, Malzeme Bilimi ve Mühendisliği, 3. Baskıdan Çeviri, N.G. Kınıkoğlu, 2001 Prof. Dr. Kaşif ONARAN, Malzeme Bilimi, 1997

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma Dielektrik malzeme DİELEKTRİK ÖZELLİKLER Dielektrik malzemeler; serbest elektron yoktur, yalıtkan malzemelerdir, uygulanan elektriksel alandan etkilenebilirler. 1 2 Dielektrik malzemeler Elektriksel alan

Detaylı

Danışman: Yard. Doç. Dr. Metin Özgül

Danışman: Yard. Doç. Dr. Metin Özgül Hazırlayan:Nida EMANET Danışman: Yard. Doç. Dr. Metin Özgül 1 ELEKTROSERAMİK NEDİR? Elektroseramik terimi genel olarak elektronik, manyetik ve optik özellikleri olan seramik malzemeleri ifade etmektedir.

Detaylı

Rezistif Gerilimölçerler (Strain Gauge - Şekil Değişikliği Sensörleri)

Rezistif Gerilimölçerler (Strain Gauge - Şekil Değişikliği Sensörleri) GERİLME VE BASINÇ ALGILAYICILARI Dış yük etkisindeki cisimler molekül yapılarındaki zorlanmalar neticesinde şekil değiştirmeye zorlanırlar. Cismin bünyesinde, etki eden dış kuvvetleri dengelemeye çalışan

Detaylı

BÖLÜM 7 YALITKANLAR & DİELEKTRİK ÖZELLİKLERİ

BÖLÜM 7 YALITKANLAR & DİELEKTRİK ÖZELLİKLERİ YALITKANLAR & DİELEKTRİK ÖZELLİKLERİ Dielektrikler elektriksel olarak yalıtkan malzemelerdir. Malzemenin elektriksel özelliğinin enerji band yapısına bağlı olduğunu söylemiştik. Yalıtkan malzemelerde enerji

Detaylı

Bir iletken katı malzemenin en önemli elektriksel özelliklerinden birisi, elektrik akımını kolaylıkla iletmesidir. Ohm kanunu, akım I- veya yükün

Bir iletken katı malzemenin en önemli elektriksel özelliklerinden birisi, elektrik akımını kolaylıkla iletmesidir. Ohm kanunu, akım I- veya yükün Bir iletken katı malzemenin en önemli elektriksel özelliklerinden birisi, elektrik akımını kolaylıkla iletmesidir. Ohm kanunu, akım I- veya yükün geçiş hızının, uygulanan voltaj V ile aşağıdaki şekilde

Detaylı

BÖLÜM 7. Piezoelektrik, Pyroelektrik ve Ferroelektrik Malzemeler

BÖLÜM 7. Piezoelektrik, Pyroelektrik ve Ferroelektrik Malzemeler Piezoelektrik, Pyroelektrik ve Ferroelektrik Malzemeler Malzemenin elektriksel davranışları anlatılırken bazı malzemelerde ortaya çıkan ve bu özellikleri nedeni ile farklı uygulamalarda kullanılabilen

Detaylı

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1 BÖLÜM 2 ATOMİK YAPI İÇERİK Atom yapısı Bağ tipleri 1 Atomların Yapıları Atomlar başlıca üç temel atom altı parçacıktan oluşur; Protonlar (+ yüklü) Nötronlar (yüksüz) Elektronlar (-yüklü) Basit bir atom

Detaylı

FZM 220. Malzeme Bilimine Giriş

FZM 220. Malzeme Bilimine Giriş FZM 220 Yapı Karakterizasyon Özellikler İşleme Performans Prof. Dr. İlker DİNÇER Fakültesi, Fizik Mühendisliği Bölümü 1 Atomsal Yapı ve Atomlararası Bağ1 Ders Hakkında FZM 220 Dersinin Amacı Bu dersin

Detaylı

MALZEME BİLGİSİ. Katı Eriyikler

MALZEME BİLGİSİ. Katı Eriyikler MALZEME BİLGİSİ Dr.- Ing. Rahmi ÜNAL Konu: Katı Eriyikler 1 Giriş Endüstriyel metaller çoğunlukla birden fazla tür eleman içerirler, çok azı arı halde kullanılır. Arı metallerin yüksek iletkenlik, korozyona

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 Elektron Kütlesi 9,11x10-31 kg Proton Kütlesi Nötron Kütlesi 1,67x10-27 kg Bir kimyasal elementin atom numarası (Z) çekirdeğindeki

Detaylı

Elektrostatik Elektrik Alan Elektrik Akı Kondansatör. Kaynak : Serway-Beichner Bölüm 23, 24, 26

Elektrostatik Elektrik Alan Elektrik Akı Kondansatör. Kaynak : Serway-Beichner Bölüm 23, 24, 26 Elektrostatik Elektrik Alan Elektrik Akı Kondansatör Kaynak : Serway-Beichner Bölüm 23, 24, 26 İndüksiyon Nötr Maddenin indüksiyon yoluyla yüklenmesi (Bir yük türünün diğer yük türüne göre daha fazla olması)

Detaylı

MALZEME BİLİMİ (DERS NOTLARI)

MALZEME BİLİMİ (DERS NOTLARI) MALZEME BİLİMİ (DERS NOTLARI) Bölüm 4. Malzemelerde Atom ve İyon Hareketleri Doç.Dr. Özkan ÖZDEMİR Doç. Dr. Özkan ÖZDEMİR Hedefler Malzemelerde difüzyon uygulamalarını ve prensipleri incelemek. Difüzyonun

Detaylı

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu Akım ve Direnç Elektriksel olaylarla ilgili buraya kadar yaptığımız tartışmalar durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik yüklerinin hareket halinde olduğu durumları inceleyeceğiz.

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Atom, birkaç türü birleştiğinde çeşitli molekülleri, bir tek türü ise bir kimyasal öğeyi oluşturan parçacıktır. Atom, elementlerin özelliklerini taşıyan en küçük yapı birimi olup çekirdekteki

Detaylı

YAŞAMIMIZDAKİ ELEKTRİK

YAŞAMIMIZDAKİ ELEKTRİK YAŞAMIMIZDAKİ ELEKTRİK DURGUN ELEKTRİK Atomda proton ve nötrondan oluşan bir çekirdek ve çekirdeğin çevresinde yörüngelerde hareket eden elektronlar bulunur. Elektrik yüklerinin kaynağı atomun yapısında

Detaylı

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1 BÖLÜM 2 ATOMİK YAPI İÇERİK Atom yapısı Bağ tipleri 1 Atomların Yapıları Atomlar başlıca üç temel atom altı parçacıktan oluşur; Protonlar (+ yüklü) Nötronlar (yüksüz) Elektronlar (-yüklü) Basit bir atom

Detaylı

MALZEMENİN İÇ YAPISI: Katılarda Atomsal Bağ

MALZEMENİN İÇ YAPISI: Katılarda Atomsal Bağ MALZEMENİN İÇ YAPISI: Katılarda Atomsal Bağ Bölüm İçeriği Bağ Enerjisi ve Kuvveti Atomlar arası mesafe, Kuvvet ve Enerji İlişkisi Atomlar arası Mesafeyi Etkileyen Faktörler. Sıcaklık, Iyonsallik derecesi,

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 2 3 4 5 Paralel plakalı bir kondansatörün plakaları arasındaki elektrik alan, merkeze yakın yerlerde düzgün, fakat plakaların kenarlarına yakın

Detaylı

Malzemeler elektrik yükünü iletebilme yeteneklerine göre 3 e ayrılırlar. İletkenler Yarı-iletkenler Yalıtkanlar

Malzemeler elektrik yükünü iletebilme yeteneklerine göre 3 e ayrılırlar. İletkenler Yarı-iletkenler Yalıtkanlar Malzemeler elektrik yükünü iletebilme yeteneklerine göre 3 e ayrılırlar. İletkenler Yarı-iletkenler Yalıtkanlar : iletkenlik katsayısı (S/m) Malzemelerin iletkenlikleri sıcaklık ve frekansla değişir. >>

Detaylı

Malzemelerin Deformasyonu

Malzemelerin Deformasyonu Malzemelerin Deformasyonu Malzemelerin deformasyonu Kristal, etkiyen kuvvete deformasyon ile cevap verir. Bir malzemeye yük uygulandığında malzeme üzerinde çeşitli yönlerde ve çeşitli şekillerde yükler

Detaylı

MALZEME BİLİMİ. Mekanik Özellikler ve Davranışlar. Doç. Dr. Özkan ÖZDEMİR. (DERS NOTLARı) Bölüm 5.

MALZEME BİLİMİ. Mekanik Özellikler ve Davranışlar. Doç. Dr. Özkan ÖZDEMİR. (DERS NOTLARı) Bölüm 5. MALZEME BİLİMİ (DERS NOTLARı) Bölüm 5. Mekanik Özellikler ve Davranışlar Doç. Dr. Özkan ÖZDEMİR ÇEKME TESTİ: Gerilim-Gerinim/Deformasyon Diyagramı Çekme deneyi malzemelerin mukavemeti hakkında esas dizayn

Detaylı

Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 7. Hafta. Aysuhan OZANSOY

Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 7. Hafta. Aysuhan OZANSOY FİZ102 FİZİK-II Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 7. Hafta Aysuhan OZANSOY Bölüm 6: Akım, Direnç ve Devreler 1. Elektrik Akımı ve Akım Yoğunluğu 2. Direnç ve Ohm Kanunu 3. Özdirenç 4. Elektromotor

Detaylı

ELEKTRİKSEL ÖZELLİKLER

ELEKTRİKSEL ÖZELLİKLER ELEKTRİKSEL ÖZELLİKLER İletkenlik Elektrik iletkenlik, malzeme içerisinde atomik boyutlarda yük taşıyan elemanlar (charge carriers) tarafından gerçekleştirilir. Bunlar elektron veya elektron boşluklarıdır.

Detaylı

Manyetik Alan. Manyetik Akı. Manyetik Akı Yoğunluğu. Ferromanyetik Malzemeler. B-H eğrileri (Hysteresis)

Manyetik Alan. Manyetik Akı. Manyetik Akı Yoğunluğu. Ferromanyetik Malzemeler. B-H eğrileri (Hysteresis) Manyetik Alan Manyetik Akı Manyetik Akı Yoğunluğu Ferromanyetik Malzemeler B-H eğrileri (Hysteresis) Kaynak: SERWAY Bölüm 29 http://mmfdergi.ogu.edu.tr/mmfdrg/2006-1/3.pdf Manyetik Alan Manyetik Alan

Detaylı

KONDANSATÖRLER Farad(F)

KONDANSATÖRLER Farad(F) KONDANSATÖRLER Kondansatörler elektrik enerjisi depo edebilen devre elemanlarıdır. İki iletken levha arasına dielektrik adı verilen bir yalıtkan madde konulmasıyla elde edilir. Birimi Farad(F) C harfi

Detaylı

Alternatif Akım Devreleri

Alternatif Akım Devreleri Alternatif akım sürekli yönü ve şiddeti değişen bir akımdır. Alternatif akımda bazı devre elemanları (bobin, kapasitör, yarı iletken devre elemanları) doğruakım devrelerinde olduğundan farklı davranırlar.

Detaylı

FİZK Ders 5. Elektrik Alanları. Dr. Ali ÖVGÜN. DAÜ Fizik Bölümü.

FİZK Ders 5. Elektrik Alanları. Dr. Ali ÖVGÜN. DAÜ Fizik Bölümü. FİZK 104-0 Ders 5 Elektrik Alanları Dr. Ali ÖVGÜN DAÜ Fizik Bölümü Kaynaklar: -Fizik. Cilt (SERWAY) -Fiziğin Temelleri.Kitap (HALLIDAY & RESNIK) -Üniversite Fiziği (Cilt ) (SEARS ve ZEMANSKY) http://fizk104.aovgun.com

Detaylı

Sensörler. Yrd.Doç.Dr. İlker ÜNAL

Sensörler. Yrd.Doç.Dr. İlker ÜNAL Sensörler Yrd.Doç.Dr. İlker ÜNAL Basınç Sensörleri Üzerlerine düşen basınçla orantılı olarak fiziki yapılarında meydana gelen değişimden dolayı basınç seviyesini ya da basınç değişimi seviyesini elektriksel

Detaylı

Atomların bir arada tutulmalarını sağlayan kuvvetlerdir Atomlar daha düşük enerjili duruma erişmek (daha kararlı olmak) için bir araya gelirler

Atomların bir arada tutulmalarını sağlayan kuvvetlerdir Atomlar daha düşük enerjili duruma erişmek (daha kararlı olmak) için bir araya gelirler Kimyasal Bağlar; Atomların bir arada tutulmalarını sağlayan kuvvetlerdir Atomlar daha düşük enerjili duruma erişmek (daha kararlı olmak) için bir araya gelirler İki ana gruba ayrılır Kuvvetli (birincil,

Detaylı

İNŞAAT MALZEME BİLGİSİ

İNŞAAT MALZEME BİLGİSİ İNŞAAT MALZEME BİLGİSİ Prof. Dr. Metin OLGUN Ankara Üniversitesi Ziraat Fakültesi Tarımsal Yapılar ve Sulama Bölümü HAFTA KONU 1 Giriş, yapı malzemelerinin önemi 2 Yapı malzemelerinin genel özellikleri,

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 Elektriksel olaylarla ilgili buraya kadar yaptığımız, tartışmalarımız, durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik

Detaylı

CALLİSTER - SERAMİKLER

CALLİSTER - SERAMİKLER CALLİSTER - SERAMİKLER Atomik bağı ağırlıklı olarak iyonik olan seramik malzemeler için, kristal yapılarının atomların yerine elektrikle yüklü iyonlardan oluştuğu düşünülebilir. Metal iyonları veya katyonlar

Detaylı

Farklı malzemelerin dielektrik sabiti LEP 4.2.06_00

Farklı malzemelerin dielektrik sabiti LEP 4.2.06_00 PHYWE Farklı malzemelerin dielektrik sabiti LEP 4.2.06_00 İlgili başlıklar Maxwell in eşitlikleri, elektrik sabiti, plaka kapasitörün kapasitesi, gerçek yükler, serbest yükler, dielektrik deplasmanı, dielektrik

Detaylı

KISA DALGA DİATERMİ UZM. FZT. ZÜBEYDE ERCAN

KISA DALGA DİATERMİ UZM. FZT. ZÜBEYDE ERCAN KISA DALGA DİATERMİ UZM. FZT. ZÜBEYDE ERCAN Tarihçe İlk defa 1907 de Nagelschmidt tarafından kullanılmıştır. Kelime anlamı ısı vasıtası Yüksek frekanslı bir akımdır Yüksek frekanslı akımlar 1 mhz üzerinde

Detaylı

Farklı materyallerin elektrik geçirmezlik sabiti

Farklı materyallerin elektrik geçirmezlik sabiti Elektrik sahası Elektrik Öğrenebilecekleriniz... Maxwell denklemleri Elektrik sabiti Levhalı kapasitörün kapasitansı Gerçek yükler Serbest yükler Elektrik geçirmez yer değişim Elektrik geçirmez kutuplaşma

Detaylı

DİELEKTRİKLER 5.1 ELEKTRİK ALANI İÇİNDEKİ YALITKAN ATOMUNUN DAVRANIŞI

DİELEKTRİKLER 5.1 ELEKTRİK ALANI İÇİNDEKİ YALITKAN ATOMUNUN DAVRANIŞI 83 V. BÖLÜM DİELEKTRİKLER 5.1 ELEKTRİK ALANI İÇİNDEKİ YALITKAN ATOMUNUN DAVRANIŞI Yalıtkanlarda en dış yörüngedeki elektronlar çekirdeğe güçlü bağlı olup serbest elektrik yükü içermez. Mükemmel bir Yalıtkan

Detaylı

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison Sensörler Öğr. Gör. Erhan CEMÜNAL Sıkı bir çalışmanın yerini hiç bir şey alamaz. Deha yüzde bir ilham ve yüzde doksandokuz terdir. Thomas Alva Edison İçerik TEMEL ELEKTRONİK KAVRAMLARI Transdüser ve Sensör

Detaylı

Maddenin Mekanik Özellikleri

Maddenin Mekanik Özellikleri Gaz Sıvı Katı Bölüm 1 Maddenin Mekanik Özellikleri Prof. Dr. Bahadır BOYACIOĞLU Maddenin Mekanik Özellikleri Maddenin Halleri Katı Sıvı Gaz Plazma Yoğunluk ve Özgül Ağırlık Hooke Kanunu Zor ve Zorlama

Detaylı

YAPI MALZEMELERİ DERS NOTLARI

YAPI MALZEMELERİ DERS NOTLARI YAPI MALZEMELERİ DERS NOTLARI YAPI MALZEMELERİ Herhangi bir yapının projelendirmesi ve inşaatı aşamasında amaç aşağıda belirtilen üç koşulu bir arada gerçekleştirmektir: a) Yapı istenilen işlevi yapabilmelidir,

Detaylı

FİZİK II - Final UYGULAMA

FİZİK II - Final UYGULAMA FİZİK II - Final UYGULAMA Problem 1 /Ders 1 (Elektrik Alan ve Kuvvet) Şekildeki gibi 1.00 g lık yüklü bir mantar top ince bir iplikle düzgün bir elektrik alanının bulunduğu bölgede asılıyor. İpin yatayla

Detaylı

2 MALZEME ÖZELLİKLERİ

2 MALZEME ÖZELLİKLERİ ÖNSÖZ İÇİNDEKİLER III Bölüm 1 TEMEL KAVRAMLAR 11 1.1. Fizik 12 1.2. Fiziksel Büyüklükler 12 1.3. Ölçme ve Birim Sistemleri 13 1.4. Çevirmeler 15 1.5. Üstel İfadeler ve İşlemler 18 1.6. Boyut Denklemleri

Detaylı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı 1. Basma Deneyinin Amacı Mühendislik malzemelerinin çoğu, uygulanan gerilmeler altında biçimlerini kalıcı olarak değiştirirler, yani plastik şekil değişimine uğrarlar. Bu malzemelerin hangi koşullar altında

Detaylı

METALİK MALZEMELERİN GENEL KARAKTERİSTİKLERİ BAHAR 2010

METALİK MALZEMELERİN GENEL KARAKTERİSTİKLERİ BAHAR 2010 METALİK MALZEMELERİN GENEL KARAKTERİSTİKLERİ BAHAR 2010 WEBSİTE www2.aku.edu.tr/~hitit Dersler İÇERİK Metalik Malzemelerin Genel Karakteristiklerİ Denge diyagramları Ergitme ve döküm Dökme demir ve çelikler

Detaylı

MALZEME BİLGİSİ DERS 4 DR. FATİH AY.

MALZEME BİLGİSİ DERS 4 DR. FATİH AY. MALZEME BİLGİSİ DERS 4 DR. FATİH AY www.fatihay.net fatihay@fatihay.net GEÇEN HAFTA TEMEL KAVRAMLAR ATOMLARDA ELEKTRONLAR PERİYODİK TABLO BÖLÜM II ATOM YAPISI VE ATOMLARARASı BAĞLAR BAĞ KUVVETLERİ VE ENERJİLERİ

Detaylı

ELEKTROSTATİK. Atomda proton ve nötrondan oluşan bir çekirdek ve çekirdeğin çevresinde yörüngelerde hareket eden elektronlar bulunur.

ELEKTROSTATİK. Atomda proton ve nötrondan oluşan bir çekirdek ve çekirdeğin çevresinde yörüngelerde hareket eden elektronlar bulunur. ELEKTROSTATİK Atomda proton ve nötrondan oluşan bir çekirdek ve çekirdeğin çevresinde yörüngelerde hareket eden elektronlar bulunur. Elektrik yüklerinin kaynağı atomun yapısında bulunan elektron ve proton

Detaylı

SIĞA VE DİELEKTRİKLER

SIĞA VE DİELEKTRİKLER SIĞA VE DİELEKTRİKLER Birbirlerinden bir boşluk veya bir yalıtkanla ayrılmış iki eşit büyüklükte fakat zıt işaretli yük taşıyan iletkenlerin oluşturduğu yapıya kondansatör adı verilirken her bir iletken

Detaylı

Ölçme Kontrol ve Otomasyon Sistemleri 1

Ölçme Kontrol ve Otomasyon Sistemleri 1 Ölçme Kontrol ve Otomasyon Sistemleri 1 Dr. Mehmet Ali DAYIOĞLU Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 1. Elektroniğe giriş Akım, voltaj, direnç, elektriksel

Detaylı

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır.

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır. ELEKTRİK AKIMI ve LAMBALAR ELEKTRİK AKIMI Potansiyelleri farklı olan iki iletken cisim birbirlerine dokundurulduğunda potansiyelleri eşit oluncaya kadar birinden diğerine elektrik yükü akışı olur. Potansiyeller

Detaylı

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması.

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması. 1 Deneyin Adı Çekme Deneyi Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması. Teorik Bilgi Malzemelerin statik (darbesiz) yük altındaki mukavemet özelliklerini

Detaylı

Modern Fiziğin Teknolojideki Uygulamaları

Modern Fiziğin Teknolojideki Uygulamaları 40 Modern Fiziğin Teknolojideki Uygulamaları 1 Test 1 in Çözümleri 1. USG ve MR cihazları ile ilgili verilen bilgiler doğrudur. BT cihazı c-ışınları ile değil X-ışınları ile çalışır. Bu nedenle I ve II.

Detaylı

MALZEMELERİN MEKANİK ÖZELLİKLERİ

MALZEMELERİN MEKANİK ÖZELLİKLERİ MALZEMELERİN MEKANİK ÖZELLİKLERİ Farklı üretim yöntemleriyle üretilen ürünler uygulama koşullarında üzerlerine uygulanan kuvvetlere farklı yanıt verirler ve uygulanan yükün büyüklüğüne bağlı olarak koparlar,

Detaylı

Katı ve Sıvıların Isıl Genleşmesi

Katı ve Sıvıların Isıl Genleşmesi Katı ve Sıvıların Isıl Genleşmesi 1 Isınan cisimlerin genleşmesi, onları meydana getiren atom ve moleküller arası uzaklıkların sıcaklık artışı ile artmasındandır. Bu olayı anlayabilmek için, Şekildeki

Detaylı

Şekilde görüldüğü gibi Gerilim/akım yoğunluğu karakteristik eğrisi dört nedenden dolayi meydana gelir.

Şekilde görüldüğü gibi Gerilim/akım yoğunluğu karakteristik eğrisi dört nedenden dolayi meydana gelir. Bir fuel cell in teorik açık devre gerilimi: Formülüne göre 100 oc altinda yaklaşık 1.2 V dur. Fakat gerçekte bu değere hiçbir zaman ulaşılamaz. Şekil 3.1 de normal hava basıncında ve yaklaşık 70 oc da

Detaylı

MMM291 MALZEME BİLİMİ

MMM291 MALZEME BİLİMİ MMM291 MALZEME BİLİMİ Ofis Saatleri: Perşembe 14:00 16:00 ayse.kalemtas@btu.edu.tr, akalemtas@gmail.com Bursa Teknik Üniversitesi, Doğa Bilimleri, Mimarlık ve Mühendislik Fakültesi, Metalurji ve Malzeme

Detaylı

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır.

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır. ELEKTRİK AKIMI Potansiyelleri farklı olan iki iletken cisim birbirlerine dokundurulduğunda potansiyelleri eşit oluncaya kadar birinden diğerine elektrik yükü akışı olur. Potansiyeller eşitlendiğinde yani

Detaylı

Akım ve Direnç. Bölüm 27. Elektrik Akımı Direnç ve Ohm Kanunu Direnç ve Sıcaklık Elektrik Enerjisi ve Güç

Akım ve Direnç. Bölüm 27. Elektrik Akımı Direnç ve Ohm Kanunu Direnç ve Sıcaklık Elektrik Enerjisi ve Güç Bölüm 27 Akım ve Direnç Elektrik Akımı Direnç ve Ohm Kanunu Direnç ve Sıcaklık Elektrik Enerjisi ve Güç Öğr. Gör. Dr. Mehmet Tarakçı http://kisi.deu.edu.tr/mehmet.tarakci/ Elektrik Akımı Elektrik yüklerinin

Detaylı

YÜKSEK GERİLİM TEKNİĞİ BÖLÜM 7 DİELEKTRİK KAYIPLARI VE

YÜKSEK GERİLİM TEKNİĞİ BÖLÜM 7 DİELEKTRİK KAYIPLARI VE EM 420 Yüksek Gerilim Tekniği YÜKSEK GERİLİM TEKNİĞİ BÖLÜM 7 DİELEKTRİK KAYIPLARI VE KAPASİTE ÖLÇME YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRO NIK Y Ü K. M Ü H. Not: Tüm slaytlar, listelenen

Detaylı

ATOMLAR ARASI BAĞLAR

ATOMLAR ARASI BAĞLAR MALZEME 2. HAFTA 1 ATOMSAL BAĞ ATOMLAR ARASI BAĞLAR Atomlar, atomlar arası bağ kuvvetleri ile bir araya gelirler. Malzemenin en küçük yapı taşı olan atomları bağ kuvvetleri bir arada tutar. Atomsal bağların

Detaylı

Uygulanan dış yüklemelere karşı katı cisimlerin birim alanlarında sergiledikleri tepkiye «Gerilme» denir.

Uygulanan dış yüklemelere karşı katı cisimlerin birim alanlarında sergiledikleri tepkiye «Gerilme» denir. Gerilme ve şekil değiştirme kavramları: Uygulanan dış yüklemelere karşı katı cisimlerin birim alanlarında sergiledikleri tepkiye «Gerilme» denir. Bir mühendislik sistemine çok farklı karakterlerde dış

Detaylı

MUKAVEMET DERSİ. (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ

MUKAVEMET DERSİ. (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ MUKAVEMET DERSİ (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ Ders Planı HAFTA KONU 1 Giriş, Mukavemetin tanımı ve genel ilkeleri 2 Mukavemetin temel kavramları 3-4 Normal kuvvet 5-6 Gerilme analizi 7 Şekil

Detaylı

Fizik II Elektrik ve Manyetizma Elektriksel Potansiyel

Fizik II Elektrik ve Manyetizma Elektriksel Potansiyel Ders Hakkında FizikII Elektrik ve Manyetizma Dersinin Amacı Bu dersin amacı, fen ve mühendislik öğrencilerine elektrik ve manyetizmanın temel kanunlarını lisans düzeyinde öğretmektir. Dersin İçeriği Hafta

Detaylı

MALZEMELERİN MEKANİK ÖZELLİKLERİ

MALZEMELERİN MEKANİK ÖZELLİKLERİ MALZEMELERİN MEKANİK ÖZELLİKLERİ Bir cismin uygulanan kuvvetlere karşı göstermiş olduğu tepki, mekanik davranış olarak tanımlanır. Bu davranış biçimini mekanik özellikleri belirler. Mekanik özellikler,

Detaylı

Paylaşılan elektron ya da elektronlar, her iki çekirdek etrafında dolanacaklar, iki çekirdek arasındaki bölgede daha uzun süre bulundukları için bu

Paylaşılan elektron ya da elektronlar, her iki çekirdek etrafında dolanacaklar, iki çekirdek arasındaki bölgede daha uzun süre bulundukları için bu 4.Kimyasal Bağlar Kimyasal Bağlar Aynı ya da farklı cins atomları bir arada tutan kuvvetlere kimyasal bağlar denir. Pek çok madde farklı element atomlarının birleşmesiyle meydana gelmiştir. İyonik bağ

Detaylı

KAYMA GERİLMESİ (ENİNE KESME)

KAYMA GERİLMESİ (ENİNE KESME) KAYMA GERİLMESİ (ENİNE KESME) Demir yolu traversleri çok büyük kesme yüklerini taşıyan kiriş olarak davranır. Bu durumda, eğer traversler ahşap malzemedense kesme kuvvetinin en büyük olduğu uçlarından

Detaylı

ATOM BİLGİSİ Atom Modelleri

ATOM BİLGİSİ Atom Modelleri 1. Atom Modelleri BÖLÜM2 Maddenin atom adı verilen bir takım taneciklerden oluştuğu fikri çok eskiye dayanmaktadır. Ancak, bilimsel bir (deneye dayalı) atom modeli ilk defa Dalton tarafından ileri sürülmüştür.

Detaylı

Elektromanyetik Alan Kaynakları (1)

Elektromanyetik Alan Kaynakları (1) (4) Elektrostatik Giriş Elektrostatik zamana bağlı olarak değişen elektrik alanlar için temel oluşturur. Pek çok elektronik cihazın çalışması elektrostatik üzerine kuruludur. Bunlara örnek olarak osiloskop,

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Atom ve moleküller arası Atomsal bağlar

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Atom ve moleküller arası Atomsal bağlar Malzeme Bilgisi Prof. Dr. Akgün ALSARAN Atom ve moleküller arası Atomsal bağlar İçerik Atomlararası denge mesafesi Elastisite modülü Atomlar niçin bağ yapmak ister? İyonik bağ Kovalent bağ Metalik bağ

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-4 Kondansatörler ve Bobinler

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-4 Kondansatörler ve Bobinler Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-4 Kondansatörler ve Bobinler Kondansatörler Kondansatör, elektronların kutuplanarak elektriksel yükü elektrik alanın içerisinde depolayabilme

Detaylı

PLASTİK ŞEKİLLENDİRME YÖNTEMLERİ

PLASTİK ŞEKİLLENDİRME YÖNTEMLERİ PLASTİK ŞEKİLLENDİRME YÖNTEMLERİ Metalik malzemelerin geriye dönüşü olmayacak şekilde kontrollü fiziksel/kütlesel deformasyona (plastik deformasyon) uğratılarak şekillendirilmesi işlemlerine genel olarak

Detaylı

Aşağıda verilen özet bilginin ayrıntısını, ders kitabı. olarak önerilen, Erdik ve Sarıkaya nın Temel. Üniversitesi Kimyası" Kitabı ndan okuyunuz.

Aşağıda verilen özet bilginin ayrıntısını, ders kitabı. olarak önerilen, Erdik ve Sarıkaya nın Temel. Üniversitesi Kimyası Kitabı ndan okuyunuz. KİMYASAL BAĞLAR Aşağıda verilen özet bilginin ayrıntısını, ders kitabı olarak önerilen, Erdik ve Sarıkaya nın Temel Üniversitesi Kimyası" Kitabı ndan okuyunuz. KİMYASAL BAĞLAR İki atom veya atom grubu

Detaylı

Endüstriyel Sensörler ve Uygulama Alanları Kalite kontrol amaçlı ölçme sistemleri, üretim ve montaj hatlarında imalat sürecinin en önemli aşamalarındandır. Günümüz teknolojisi mükemmelliği ve üretimdeki

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 3 Malzemelerin esnekliği Gerilme Bir cisme uygulanan kuvvetin, kesit alanına bölümüdür. Kuvvetin yüzeye dik olması halindeki gerilme "normal gerilme" adını alır ve şeklinde

Detaylı

TEMEL ELEKTRONİK. Kondansatör, DC akımı geçirmeyip, AC akımı geçiren devre elemanıdır.

TEMEL ELEKTRONİK. Kondansatör, DC akımı geçirmeyip, AC akımı geçiren devre elemanıdır. BÖLÜM 2 KONDANSATÖRLER Önbilgiler: Kondansatör, DC akımı geçirmeyip, AC akımı geçiren devre elemanıdır. Yapısı: Kondansatör şekil 1.6' da görüldüğü gibi, iki iletken plaka arasına yalıtkan bir maddenin

Detaylı

EGE ÜNİVERSİTESİ EGE MYO MEKATRONİK PROGRAMI

EGE ÜNİVERSİTESİ EGE MYO MEKATRONİK PROGRAMI EGE ÜNİVERSİTESİ EGE MYO MEKATRONİK PROGRAMI SENSÖRLER VE DÖNÜŞTÜRÜCÜLER SEVİYENİN ÖLÇÜLMESİ Seviye Algılayıcılar Şamandıra Seviye Anahtarları Şamandıralar sıvı seviyesi ile yukarı ve aşağı doğru hareket

Detaylı

MALZEME BİLİMİ. 2014-2015 Güz Yarıyılı Kocaeli Üniversitesi Ford Otosan Ġhsaniye Otomotiv MYO. Yrd. Doç. Dr. Egemen Avcu

MALZEME BİLİMİ. 2014-2015 Güz Yarıyılı Kocaeli Üniversitesi Ford Otosan Ġhsaniye Otomotiv MYO. Yrd. Doç. Dr. Egemen Avcu MALZEME BİLİMİ 2014-2015 Güz Yarıyılı Kocaeli Üniversitesi Ford Otosan Ġhsaniye Otomotiv MYO Yrd. Doç. Dr. Egemen Avcu Bilgisi DERSĠN ĠÇERĠĞĠ, KONULAR 1- Malzemelerin tanımı 2- Malzemelerinseçimi 3- Malzemelerin

Detaylı

YTÜ Makine Mühendisliği Bölümü Mekanik Anabilim Dalı Özel Laboratuvar Dersi Strain Gauge Deneyi Çalışma Notu

YTÜ Makine Mühendisliği Bölümü Mekanik Anabilim Dalı Özel Laboratuvar Dersi Strain Gauge Deneyi Çalışma Notu YTÜ Makine Mühendisliği Bölümü Mekanik Anabilim Dalı Özel Laboratuvar Dersi Strain Gauge Deneyi Çalışma Notu Laboratuar Yeri: B Blok en alt kat Mekanik Laboratuarı Laboratuar Adı: Strain Gauge Deneyi Konu:

Detaylı

DİELEKTRİK MALZEMELER

DİELEKTRİK MALZEMELER DİELEKTRİK MALZEMELER Dielektrikler elektriksel olarak yalıtkan malzemelerdir. Malzemenin elektriksel özelliğinin enerji band yapısına bağlı olduğunu söylemiştik. Boş iletim Bandı Yasak band aralığı Dolu

Detaylı

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV)

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV) BÖLÜM 2. FOTOOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (P) Fotovoltaik Etki: Fotovoltaik etki birbirinden farklı iki malzemenin ortak temas bölgesinin (common junction) foton radyasyonu ile aydınlatılması durumunda

Detaylı

ELEKTRİK AKIMI Elektrik Akım Şiddeti Bir İletkenin Direnci

ELEKTRİK AKIMI Elektrik Akım Şiddeti Bir İletkenin Direnci ELEKTRİK AKIMI Elektrikle yüklü ve potansiyelleri farklı olan iki iletken küreyi, iletken bir telle birleştirilirse, potansiyel farkından dolayı iletkende yük akışı meydana gelir. Bir iletkenden uzun süreli

Detaylı

Ders 2- Temel Elektriksel Büyüklükler

Ders 2- Temel Elektriksel Büyüklükler Ders 2- Temel Elektriksel Büyüklükler Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net Yük Elektriksel yük maddelerin temel özelliklerinden biridir. Elektriksel yükün iki temel

Detaylı

MADDENİN YAPISI VE ÖZELLİKLERİ ATOM

MADDENİN YAPISI VE ÖZELLİKLERİ ATOM MADDENİN YAPISI VE ÖZELLİKLERİ ATOM ATOMUN YAPISI Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sa-hiptir. Atomda bulunan yükler; negatif

Detaylı

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz?

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? Temel Kavramlar Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? 1 Elektriksel Yük Elektrik yükü bu dış yörüngede dolanan elektron sayısının çekirdekteki proton

Detaylı

DENEY 4. KONDANSATÖRLERİN SERİ VE PARALEL BAĞLANMASI. 1) Seri ve paralel bağlı kondansatör gruplarının eşdeğer sığasının belirlenmesi.

DENEY 4. KONDANSATÖRLERİN SERİ VE PARALEL BAĞLANMASI. 1) Seri ve paralel bağlı kondansatör gruplarının eşdeğer sığasının belirlenmesi. DENEY 4. KONDANSATÖRLERİN SERİ VE PARALEL BAĞLANMASI Amaç: 1) Seri ve paralel bağlı kondansatör gruplarının eşdeğer sığasının belirlenmesi. Kuramsal Bilgi: i. Kondansatörler Kondansatör doğru akım (DC)

Detaylı

Bölüm 1 Elektrik Alanları. Prof. Dr. Bahadır BOYACIOĞLU

Bölüm 1 Elektrik Alanları. Prof. Dr. Bahadır BOYACIOĞLU E Bölüm 1 Elektrik Alanları Prof. Dr. Bahadır BOYACIOĞLU ELEKTRİK ALANLARI Elektrik Yüklerinin Özellikleri Coulomb Kanunu Elektrik Alanı Düzgün Bir EA da Yüklü Parçacıkların Hareketi Elektrik Yüklerinin

Detaylı

BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ

BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ BURSA - 2016 1. GİRİŞ Eğilme deneyi malzemenin mukavemeti hakkında tasarım

Detaylı

Elektrik Yük ve Elektrik Alan

Elektrik Yük ve Elektrik Alan Bölüm 1 Elektrik Yük ve Elektrik Alan Bölüm 1 Hedef Öğretiler Elektrik yükler ve bunların iletken ve yalıtkanlar daki davranışları. Coulomb s Yasası hesaplaması Test yük kavramı ve elektrik alan tanımı.

Detaylı

2-MANYETIK ALANLAR İÇİN GAUSS YASASI

2-MANYETIK ALANLAR İÇİN GAUSS YASASI 2-MANYETIK ALANLAR İÇİN GAUSS YASASI Elektrik yükleri yani pozitif ve negatif yükler birbirlerinden ayrı ve izole halde düşünülebilirler. Bu durum, Kuzey ve güney manyetik kutuplar için de söz konusu olabilir

Detaylı

5.111 Ders Özeti #12. Konular: I. Oktet kuralından sapmalar

5.111 Ders Özeti #12. Konular: I. Oktet kuralından sapmalar 5.111 Ders Özeti #12 Bugün için okuma: Bölüm 2.9 (3. Baskıda 2.10), Bölüm 2.10 (3. Baskıda 2.11), Bölüm 2.11 (3. Baskıda 2.12), Bölüm 2.3 (3. Baskıda 2.1), Bölüm 2.12 (3. Baskıda 2.13). Ders #13 için okuma:

Detaylı

MMT407 Plastik Şekillendirme Yöntemleri

MMT407 Plastik Şekillendirme Yöntemleri K O C A E L İ ÜNİVERSİTESİ Metalurji ve Malzeme Mühendisliği Bölümü MMT407 Plastik Şekillendirme Yöntemleri 3 Şekillendirmenin Metalurjik Esasları Yrd. Doç. Dr. Ersoy Erişir 2012-2013 Güz Yarıyılı 3. Şekillendirmenin

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A S 2 FİZİ TESTİ. Bu testte 0 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Fizik Testi için ayrılan kısmına işaretleyiniz.. Aşağıdakilerden hangisi momentum birimidir? joule joule A) B) newton saniye weber

Detaylı

İletken, Yalıtkan ve Yarı İletken

İletken, Yalıtkan ve Yarı İletken Diyot, transistör, tümleşik (entegre) devreler ve isimlerini buraya sığdıramadağımız daha birçok elektronik elemanlar, yarı iletken malzemelerden yapılmışlardır. Bu kısımdaki en önemli konulardan biri,

Detaylı

JFM 301 SİSMOLOJİ ELASTİSİTE TEORİSİ Elastisite teorisi yer içinde dalga yayılımını incelerken çok yararlı olmuştur.

JFM 301 SİSMOLOJİ ELASTİSİTE TEORİSİ Elastisite teorisi yer içinde dalga yayılımını incelerken çok yararlı olmuştur. JFM 301 SİSMOLOJİ ELASTİSİTE TEORİSİ Elastisite teorisi yer içinde dalga yayılımını incelerken çok yararlı olmuştur. Prof. Dr. Gündüz Horasan Deprem dalgalarını incelerken, yeryuvarının esnek, homojen

Detaylı

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik II Dersi Birinci Ara Sınavı

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik II Dersi Birinci Ara Sınavı Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik II Dersi Birinci Ara Sınavı 9 Mart 20 Hazırlayan: Yamaç Pehlivan Başlama saati: :00 Bitiş Saati: 2:20 Toplam Süre: 80 Dakika Lütfen adınızı ve

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI 12. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGA MEKANİĞİ 2. Konu ELEKTROMANYETİK DALGA ETKİNLİK VE TEST ÇÖZÜMLERİ 2 Elektromanyetik Dalga Testin 1 in Çözümleri 1. B manyetik alanı sabit v hızıyla hareket ederken,

Detaylı

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB)

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB) ÖĞENME ALANI : FZKSEL OLAYLA ÜNTE 3 : YAŞAMIMIZDAK ELEKTK (MEB) B ELEKTK AKIMI (5 SAAT) (ELEKTK AKIMI NED?) 1 Elektrik Akımının Oluşması 2 Elektrik Yüklerinin Hareketi ve Yönü 3 ler ve Özellikleri 4 Basit

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU DİRENÇLER Direnci elektrik akımına gösterilen zorluk olarak tanımlayabiliriz. Bir iletkenin elektrik

Detaylı

2/13/2018 MALZEMELERİN GRUPLANDIRILMASI

2/13/2018 MALZEMELERİN GRUPLANDIRILMASI a) Kullanış yeri ve amacına göre gruplandırma: 1) Taşıyıcı malzemeler: İnşaat mühendisliğinde kullanılan taşıyıcı malzemeler, genellikle betonarme, çelik, ahşap ve zemindir. Beton, çelik ve ahşap malzemeler

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI 12. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGA MEKANİĞİ 2. Konu ELEKTROMANYETİK DALGA ETKİNLİK VE TEST ÇÖZÜMLERİ 2 Elektromanyetik Dalga Etkinlik A nın Yanıtları 1. Elektromanyetik spektrum şekildeki gibidir.

Detaylı