İTKİLİ MOTORLU UÇAĞIN YATAY UÇUŞ HIZI
|
|
|
- Kudret Yeşil
- 8 yıl önce
- İzleme sayısı:
Transkript
1 İTKİLİ MOTORLU UÇAĞIN YATAY UÇUŞ HIZI Mustafa Cavcar Anadolu Üniversitesi Havacılık ve Uzay Bilimleri Fakültesi Eskişehir Yatay uçuş sabit uçuş irtifaında yeryüzüne paralel olarak yapılan uçuştur. İki tür yatay uçuştan bahsedilebilir: 1. İvmeli yatay uçuş 2. İvmesiz yatay uçuş İvmeli yatay uçuş, uçağın hızlandığı veya yavaşladığı uçuştur. İvmesiz yatay uçuş ise uçağın hızının sabit olduğu, hızlanmadığı veya yavaşlamadığı yatay uçuştur. Bu nedenle, bu tür yatay uçuşa daimi yatay uçuş denir. Bu ünitede uçak hareketleri incelenirken, uçağın ivmelenmediği kabul edilerek, daimi yatay uçuş hali ele alınacaktır. Daimi Yatay Uçuşta Uçağa Etki Eden Kuvvetler Şekil 1. Daimi yatay uçuşta uçağa etki eden kuvvetler Daimi yatay uçuşta uçağa, kütlesinden kaynaklanan ağırlık, ; ağırlığı dengeleyerek havada tutunmasını sağlayan taşıma, ; ileri doğru hareketini sağlayan itki, ve sürükleme,, kuvveti etkir. Hesap kolaylığı bakımından bu kuvvetlerin tamamının aynı düzlemde olduğu ve uçağın ağırlık merkezine etkidiği kabul edilir. Ayrıca, uçağa herhangi bir yanal kuvvetin etkimediği kabul edilir. Bu kuvvetlerin etkisi altındaki uçağın hareket denklemleri: 0 (1) 0 (2) olur. Taşımanın ağırlığa eşit olması uçağın belirli, sabit bir irtifada tutunmasını sağlar. İtkinin sürüklemeye eşit olması uçağın sabit hızda hareketini sağlar. Taşıma ve sürükleme ise aşağıdaki gibi ifade edilebilir: 2 (3)
2 2 (4) Uçağın sürükleme katsayısının, taşıma katsayısına bağlı olarak parabolik bir değişim gösterdiği kabul edilebilir. Bu durumda, sürükleme poleri aşağıdaki gibi olacaktır: (5) Minimum Hız Uçağın herhangi bir andaki uçuş hızı (1) ve (3) denklemlerinden bulunabilir: 2 (6) Bu hız ifadesine göre belirli bir ağırlık ve irtifa için minimum hız, taşıma katsayısının maksimum olduğu hücum açısında elde edilir. Bu hız aynı zamanda tutunma kaybı hızıdır: 2 (7) Minimum Sürükleme ve Minimum Sürükleme Hızı Hareket denklemlerinden birincisine göre taşıma, ağırlığa eşit olduğundan, (1) ve (3) bağıntılarından taşıma katsayısı: 2 (8) şeklinde bulunur. Taşıma katsayısı (5) ile verilen sürükleme polerinde yerine konarak sürükleme katsayısı aşağıdaki gibi bulunur: 4 Bu sürükleme katsayısı ifadesi (4) denkleminde yerine konduğunda, sürüklemenin hıza bağlı ifadesi aşağıdaki gibi elde edilir: 2 2 (9) Sürükleme bağıntısının birinci kısmı hızın karesine bağlı olarak değişen parazit sürüklemedir. Parazit sürükleme uçak hızlandıkça, hızın karesiyle orantılı olarak büyür: 2
3 Bağıntının ikinci kısmı ise hızın karesi ile ters orantılı olarak değişen indüklenmiş sürüklemedir. İndüklenmiş sürükleme, uçak hızlandıkça hızın karesiyle orantılı olarak küçülür. 2 Parazit ve indüklenmiş sürüklemelerin hıza bağlı değişimleri Şekil 2 de verilmektedir. Şekil 2. Sürüklemenin uçuş hızı ile değişimi Şekil 2 den görüleceği üzere sürükleme, hızından başlayarak, belli bir hıza kadar olan hız aralığında, hıza bağlı olarak bir azalma göstermektedir. Bu bölgede parazit sürükleme artsa dahi indüklenmiş sürüklemedeki azalma daha hakimdir. Ancak, bu belli hızdan sonra sürükleme hıza bağlı olarak yeniden büyümektedir. Görüldüğü gibi sürükleme belli bir hızda minimum olmaktadır. Sürüklemenin minimum olduğu bu hıza minimum sürükleme hızı,, denir. Sürüklemenin minimuma indiği hızda, parazit ve indüklenmiş sürüklemeler de, hem birbirlerine, hem de minimum sürüklemeye eşittir. (10) Bu durumda, minimum sürükleme hızının hesaplanması çok kolaydır. Çünkü (10) bağıntısından: O halde: 2 2
4 / 2 (11) Minimum sürükleme hızı uçak performansı açısından çok önemli bir hızdır. Bu hızın önemi yeri geldikçe daha sonraki konularda ayrıntılı olarak açıklanacaktır. Bu noktada, minimum sürükleme hızının uçak daha ağır iken veya daha yüksek irtifalarda uçarken daha büyük olacağını söylemek yeterlidir. Minimum sürükleme hızı (11) ile bulunduğuna göre minimum sürükleme, bu hız ifadesi (9) bağıntısında kullanılarak kolaylıkla hesaplanabilir: ifadesinden Bilindiği üzere, parabolik polere sahip bir uçağın maksimum finesi aşağıdaki gibi ifade edilmektedir: O halde, minimum sürükleme aşağıdaki gibidir: 1 2 (12) Görüldüğü gibi uçağın minimum sürüklemesi sadece ağırlığına ve maksimum finesine bağlıdır. Minimum sürükleme hız veya irtifa ile değişmez, ancak daha önce de belirtildiği gibi minimum sürüklemeyi veren hız uçağın ağırlığı ve uçuş irtifaı ile değişir. Yatay Uçuş Hızının Bulunması Yatay uçuşta (2) denkleminde verildiği gibi itki ve sürükleme eşit olduğuna göre, sürükleme ifadesinde bu eşitliği sağlayan hız uçağın yatay uçuş hızı, olacaktır (Şekil 3). O halde (2) ve (9) denklemlerinden: 2 2 yazılabilir. minimum sürükleme hızına oranlanarak boyutsuz hızı elde edildiği ve nin boyutsuz hız ve minimum sürükleme hızına bağlı hali sürükleme ifadesinde yerine konduğunda aşağıdaki ifade elde edilir:
5 2 2 Şekil 3. Yatay uçuşta itki ve sürüklemenin eşitliği Minimum sürükleme hızının (11) ile verilen hali bu denklemde yerine konduğunda, itki ve boyutsuz hız arasında aşağıdaki eşitlik bulunur: olduğuna göre 1 2 (13) Eğer, minimum sürükleme için (12) ile verilen ifade de göz önünde bulundurularak, aşağıdaki gibi bir boyutsuz itki faktörü: (14) tanımlanır ve itkinin hızla değişmediği kabul edilirse, (13) denkleminden aşağıdaki gibi bir kuadratik fonksiyon elde edilir: 2 10 (15) Bu kuadratiğin çözümünden, yatay uçuş hızı bulunur:
6 1 (16) Buradan görüldüğü üzere yatay uçuş hızı minimum sürükleme hızına ve uygulanan itki kuvvetinin minimum sürüklemeye oranına bağlıdır. (16) denkleminden görüleceği üzere, yatay uçuş için mutlaka olmalıdır. 1 (17) Maksimum Yatay Uçuş Hızı Motorlara maksimum itki uygulandığı takdirde olacağından, bu itki faktörüne karşılık gelen yatay uçuş hızı, maksimum yatay uçuş hızı olur. Ancak, bazı uçaklar için, bu yöntemle bulunan maksimum hız, uçağın yapısal mukavemetinin çok üzerinde bir hız olabilir. Bu nedenle, her uçak için dizaynı sırasında bir maksimum işletme hızı, ve maksimum işletme Mach sayısı, belirlenir. Eğer motor itkisine bağlı olarak hesaplanan maksimum hız maksimum işletme hızının üzerinde ise, bu durumdaki maksimum yatay uçuş hızı artık dur; veya hesaplanan maksimum hıza karşılık gelen Mach sayısı maksimum işletme Mach sayısının üzerindeyse, bu durumdaki maksimum yatay uçuş Mach sayısı artık dur. Maksimum Yatay Uçuş Hızının Uçuş İrtifaı ile Değişimi Şekil 4. İtki, sürükleme ve yatay uçuş hızının irtifa ile değişimi Bilindiği üzere itkili motorların maksimum itkisi irtifa arttıkça küçülür. Buna karşılık, ağırlığın sabit kaldığı kabul edilirse, uçağın sürükleme eğrisi, minimum sürükleme sabit kalmak üzere, irtifa arttıkça sağa doğru kayar. Bu durum Şekil 4 de gösterilmektedir. Şekilden görüleceği üzere alçak irtifalarda büyük itki kuvveti ve büyük sürükleme, dolayısıyla küçük bir maksimum yatay uçuş hızı oluşur. İrtifa arttıkça, maksimum itki küçülüyor olmasına rağmen, sürükleme de azaldığı için, maksimum yatay uçuş hızı büyür. Ancak, belli bir irtifadan sonra oranı çok
7 küçüldüğünden, maksimum yatay uçuş hızı da küçülür. Şekilden görüldüğü gibi deniz seviyesindeki maksimum yatay uçuş hızı olmak ve 0, 1, 2, 3 indisleri artan irtifaları göstermek üzere ancak olur. Uçuş Tavanı Uçuş tavanı uçağın yatay uçuş yapabileceği maksimum irtifadır. Bu irtifada, bu irtifaya karşılık gelen maksimum itki ve uçağın minimum sürüklemesi birbirine eşittir. Dolayısıyla 1 olur. Motorlardan Birinin Durması Halinde Yatay Uçuş Hızı Şekil 5. Motorlardan birinin durması halinde yatay uçuş hızı Uçuş esnasında uçağın motorlarından biri herhangi bir arıza nedeniyle durabilir. Uçağın bu şartlar altında da emniyetli bir şekilde uçuşuna devam ederek, en yakın havaalanına kadar gidebilmesi gerekir. Tüm motorlar faal halde iken itki ise, motorlardan birinin durması halinde itki olur. Bu durumda boyutsuz itki faktörü de 1
8 1 olacaktır. Bu şartlar altında, yatay uçuş hızı aşağıdaki bağıntı ile bulunur. 1 1 (18) Uçağın motorlarından biri durduğu halde yatay uçuş hızı, tüm motorların faal olduğu haldekinden daha küçük olacaktır. Bu durum Şekil 5 de verilen grafikte gösterildiği gibi, (18) denklemi ile hesaplanarak da bulunabilir. Motorlarından biri durmuş olan bir uçağın uçuş tavanı da düşer. Bilindiği üzere, itkili motorların itkisi irtifa ile azalır. Basit bir yaklaşımla bir motorun itkisi için izafi yoğunluğa bağlı olarak aşağıdaki ilişkinin varlığından söz edilebilir: (19) Burada bir motorun deniz seviyesindeki itkisidir. Bu durumda sayıda motora sahip bir uçak için Dolayısıyla, tüm motorların faal olduğu halde, uçuş tavanında ve bu irtifadaki izafi hava yoğunluğu olur. Motorlardan biri durduğu halde, itki kuvveti Dolayısıyla, uçuş tavanında 1 1 ve bu irtifadaki izafi hava yoğunluğu Buradan görüldüğü üzere 1 Bilindiği gibi izafi hava yoğunluğu, alçak irtifalarda, yüksek irtifalardakinden daha büyüktür. O halde daha düşük bir irtifaya karşılık gelmektedir.
9 Eşdeğer Hız Bazı hallerde uçuş hızının eşdeğer hız olarak tanımlanan hız cinsinden ifade edilmesi pratik olmaktadır. Sıkıştırılabilmenin ihmal edildiği hallerde gerçek hız ve eşdeğer hız arasında aşağıdaki ilişki mevcuttur: (20) Eşdeğer hız, belli bir irtifadaki gerçek hızın, standart atmosfer şartlarında, deniz seviyesine indirgenmiş eşdeğerini gösterir. Deniz seviyesinde 1 olduğundan eşdeğer ve gerçek hız birbirine eşittir. Eğer eşdeğer hız bütün irtifalarda değişmiyor ve sabit kalıyorsa, gerçek hız deniz seviyesi dışında, irtifa arttıkça büyür. Bunun tersi olarak, eğer gerçek hız bütün irtifalarda değişmiyor ve sabit kalıyorsa, eşdeğer hız deniz seviyesi dışında, irtifa arttıkça küçülür. Bu durum Şekil 6 da gösterilmiştir. Şekil 6. Eşdeğer hız ve gerçek hızın irtifa ile değişimi
AERODİNAMİK KUVVETLER
AERODİNAMİK KUVVETLER Hazırlayan Prof. Dr. Mustafa Cavcar Aerodinamik Kuvvet Bir uçak üzerinde meydana gelen aerodinamik kuvvetlerin bileşkesi ( ); uçağın havayagörehızının () karesi, havanın yoğunluğu
AERODİNAMİK KUVVETLER
AERODİNAMİK KUVVETLER Prof.Dr. Mustafa Cavcar Anadolu Üniversitesi, Sivil Havacılık Yüksekokulu, 26470 Eskişehir Bir uçak üzerinde meydana gelen aerodinamik kuvvetlerin bileşkesi ( ); uçağın etrafından
UYGULAMA 1. Prof.Dr. Mustafa Cavcar Anadolu Üniversitesi, Sivil Havacılık Yüksekokulu, 26470 Eskişehir. Tablo 1. Uygulamalar için örnek uçak
UYGULAMA 1 Prof.Dr. Mustafa Cavcar Anadolu Üniversitesi, Sivil Havacılık Yüksekokulu, 26470 Eskişehir Tablo 1. Uygulamalar için örnek uçak Uçak Tipi HTK-224-TF-1 BOYUTLAR Kanat Alanı 77.3 m 2 Kanat Açıklığı
SEYAHAT MENZİLİ. Prof.Dr. Mustafa CAVCAR 26 Mart 2014
SEYAHAT MENZİLİ Prof.Dr. Mustafa CAVCAR 26 Mart 2014 Temel Kavramlar Özgül Yakıt Sarfiyatı Uçağın birim zamanda, birim tepki kuvveti başına harcadığı yakıt miktarıdır. Uçuş irtifaına ve Mach sayısına bağlı
ANADOLU ÜNİVERSİTESİ HAVACILIK VE UZAY BİLİMLERİ FAKÜLTESİ. Prof. Dr. Mustafa Cavcar 8 Mayıs 2013
ANADOLU ÜNİVERSİTESİ HAVACILIK VE UZAY BİLİMLERİ FAKÜLTESİ TIRMANMA PERFORMANSI Tırmanma Açısı ve Tırmanma Gradyanı Prof. Dr. Mustafa Cavcar 8 Mayıs 2013 Bu belgede jet motorlu uçakların tırmanma performansı
UYGULAMA 2. Prof.Dr. Mustafa Cavcar Anadolu Üniversitesi, Sivil Havacılık Yüksekokulu, 26470, Eskişehir
UYGULAMA 2 Prof.Dr. Mustafa Cavcar Anadolu Üniversitesi, Sivil Havacılık Yüksekokulu, 26470, Eskişehir HTK-224-TF-2 BOYUTLAR Kanat Alanı 77.3 m 2 Kanat Açıklığı 26.34 m Boyu 26.16 m Yüksekliği 8.61 m MOTORLAR
YATAY UÇUŞ SEYAHAT PERFORMANSI (CRUISE PERFORMANCE)
YATAY UÇUŞ SEYAHAT PERFORMANSI (CRUISE PERFORMANCE) Yakıt sarfiyatı Ekonomik uçuş Yakıt maliyeti ile zamana bağlı direkt işletme giderleri arasında denge sağlanmalıdır. Özgül Yakıt Sarfiyatı (Specific
UÇUŞ MEKANİĞİ ve UÇAK PERFORMANSI Güç Sistemi Kuvvetleri (Devam)
UÇUŞ MEKANİĞİ ve UÇAK PERFORMANSI Güç Sistemi Kuvvetleri (Devam) Hazırlayan Prof. Dr. Mustafa CAVCAR Güç Sistemi Kuvvetleri Türbojet ve Türbofan Motorlar Türbojet Türbofan Türbojet ve türbofan motorlar,
Hareket Kanunları Uygulamaları
Fiz 1011 Ders 6 Hareket Kanunları Uygulamaları Sürtünme Kuvveti Dirençli Ortamda Hareket Düzgün Dairesel Hareket http://kisi.deu.edu.tr/mehmet.tarakci/ Sürtünme Kuvveti Çevre faktörlerinden dolayı (hava,
BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM
BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini
Bölüm-4. İki Boyutta Hareket
Bölüm-4 İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme
BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ
BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini
DÜZLEMDE GERİLME DÖNÜŞÜMLERİ
3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F
Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü
Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Kimya Mühendisliği Bölümü Kimya Mühendisliği Laboratuvarı Venturimetre Deney Föyü Hazırlayan Arş.Gör. Orhan BAYTAR 1.GİRİŞ Genellikle herhangi bir akış
MAK 210 SAYISAL ANALİZ
MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan
GİRİŞ. UCK 421 - Tepki ile Tahrik 1. Hafta
UCK 421 - Tepki ile Tahrik 1. Hafta GİRİŞ Tahrik (propulsion) Birimler ve Boyutlar İşletim Zarfı ve Standart Atmosfer Hava-Soluyan Motorlar Uçak Performansı 1 Tahrikin Tanımı Tahrik (propulsion) genel
SİLİNDİRİK ELEKTROT SİSTEMLERİ
EM 420 Yüksek Gerilim Tekniği SİLİNDİRİK ELEKTROT SİSTEMLERİ YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRONIK YÜK. MÜH. Not: Tüm slaytlar, listelenen ders kaynaklarından alıntı yapılarak ve faydalanılarak
EŞANJÖR (ISI DEĞİŞTİRİCİSİ) DENEYİ FÖYÜ
EŞANJÖR (ISI DEĞİŞTİRİCİSİ) DENEYİ FÖYÜ Giriş Isı değiştiricileri (eşanjör) değişik tiplerde olup farklı sıcaklıktaki iki akışkan arasında ısı alışverişini temin ederler. Isı değiştiricileri başlıca yüzeyli
JAA ATPL Eğitimi (METEOROLOJİ)
JAA ATPL Eğitimi (METEOROLOJİ) Ibrahim CAMALAN Meteoroloji Mühendisi 2012 Altimetre: Altimetre 950 hpa dan 1050 hpa ya kadar skalası bulunan bir aneroid barometre olup, basınç yerine irtifayı gösterecek
5. SANTRİFÜJ POMPALARDA TEORİK ESASLAR
5. SANTRİFÜJ POMPALARDA TEORİK ESASLAR 5.7..5. Pompa veriminin saptanması ve pompa karakteristik eğrilerinin çizimi Pompa verimi; pompanın suya verdiği gücü (hbg), pompanın yuttuğu güce () oranlanmasıyla
G = mg bağıntısı ile bulunur.
ATIŞLAR Havada serbest bırakılan cisimlerin aşağı doğru düşmesi etrafımızda her zaman gördüğümüz bir olaydır. Bu düşme hareketleri, cisimleri yerin merkezine doğru çeken bir kuvvetin varlığını gösterir.
DİNAMİK TEKNOLOJİNİN BİLİMSEL İLKELERİ
7 TEKNOLOJİNİN BİLİMSEL İLKELERİ Adem ÇALIŞKAN Hareket veya hareketteki değişmelerin sebeplerini araştırarak kuvvetle hareket arasındaki ilişkiyi inceleyen mekaniğin bölümüne dinamik denir. Hareket, bir
HİDROLİK MAKİNALAR YENİLENEBİLİR ENERJİ KAYNAKLARI
HİDROLİK MAKİNALAR YENİLENEBİLİR ENERJİ KAYNAKLARI HİDROLİK TÜRBİN ANALİZ VE DİZAYN ESASLARI Hidrolik türbinler, su kaynaklarının yerçekimi potansiyelinden, akan suyun kinetik enerjisinden ya da her ikisinin
MAK 210 SAYISAL ANALİZ
MAK 210 SAYISAL ANALİZ BÖLÜM 7- SAYISAL TÜREV Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ İntegral işlemi gibi türev işlemi de mühendislikte çok fazla kullanılan bir işlemdir. Basit olarak bir fonksiyonun bir noktadaki
Bölüm 3 SAF MADDENİN ÖZELLİKLERİ
Bölüm 3 SAF MADDENİN ÖZELLİKLERİ 1 Amaçlar Amaçlar Saf madde kavramının tanıtılması Faz değişimi işleminin fizik ilkelerinin incelenmesi Saf maddenin P-v-T yüzeylerinin ve P-v, T-v ve P-T özelik diyagramlarının
ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFERİ LABORATUARI
ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFERİ LABORATUARI DENEY FÖYÜ DENEY ADI ZORLANMIŞ TAŞINIM DERSİN ÖĞRETİM ÜYESİ DENEYİ YAPTIRAN ÖĞRETİM ELEMANI DENEY
Akışkanların Dinamiği
Akışkanların Dinamiği Akışkanların Dinamiğinde Kullanılan Temel Prensipler Gaz ve sıvı akımıyla ilgili bütün problemlerin çözümü kütlenin korunumu, enerjinin korunumu ve momentumun korunumu prensibe dayanır.
Nötr (yüksüz) bir için, çekirdekte kaç proton varsa çekirdeğin etrafındaki yörüngelerde de o kadar elektron dolaşır.
ATOM ve YAPISI Elementin özelliğini taşıyan en küçük parçasına denir. Atom Numarası Bir elementin unda bulunan proton sayısıdır. Protonlar (+) yüklü olduklarından pozitif yük sayısı ya da çekirdek yükü
Şekil 1:Havacılık tarihinin farklı dönemlerinde geliştirilmiş kanat profilleri
TEORİ Şekil 1:Havacılık tarihinin farklı dönemlerinde geliştirilmiş kanat profilleri İlk motorlu uçuşun yolunu açan ihtiyaç duyulan taşımayı sağlayacak kanat profillerinin geliştirilmesi doğrultusunda
Analog Alçak Geçiren Filtre Karakteristikleri
Analog Alçak Geçiren Filtre Karakteristikleri Analog alçak geçiren bir filtrenin genlik yanıtı H a (jω) aşağıda gösterildiği gibi verilebilir. Ω p : Geçirme bandı kenar frekansı Ω s : Söndürme bandı kenar
F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER
ALTERNATİF AKIM DEVRELERİ A. DEVRE ELEMANLARI VE TEMEL DEVRELER Alternatif akım devrelerinde akımın geçişine karşı üç çeşit direnç (zorluk) gösterilir. Devre elamanları dediğimiz bu dirençler: () R omik
Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş
Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri
MADDENİN AYIRT EDİCİ ÖZELLİKLERİ. Nazife ALTIN Bayburt Üniversitesi, Eğitim Fakültesi
MADDENİN AYIRT EDİCİ ÖZELLİKLERİ Bayburt Üniversitesi, Eğitim Fakültesi www.nazifealtin.wordpress.com MADDENİN AYIRT EDİCİ ÖZELLİKLERİ Bir maddeyi diğerlerinden ayırmamıza ve ayırdığımız maddeyi tanımamıza
ZENER DİYOTLAR. Hedefler
ZENER DİYOTLAR Hedefler Bu üniteyi çalıştıktan sonra; Zener diyotları tanıyacak ve çalışma prensiplerini kavrayacaksınız. Örnek devreler üzerinde Zener diyotlu regülasyon devrelerini öğreneceksiniz. 2
Açık hava basıncını ilk defa 1643 yılında, İtalyan bilim adamı Evangelista Torricelli keşfetmiştir. Yaptığı deneylerde Torriçelli Deneyi denmiştir.
GAZ BASINCI 1)AÇIK HAVA BASINCI: Dünyanın çevresindeki hava tabakası çeşitli gazlardan meydana gelir. Bu gaz tabakasına atmosfer denir. Atmosferdeki gazlar da, katı ve sıvılarda ki gibi ağırlığından dolayı
Geometriden kaynaklanan etkileri en aza indirmek için yük ve uzama, sırasıyla mühendislik gerilmesi ve mühendislik birim şekil değişimi parametreleri elde etmek üzere normalize edilir. Mühendislik gerilmesi
BÖLÜM 1: TEMEL KAVRAMLAR
BÖLÜM 1: TEMEL KAVRAMLAR Hal Değişkenleri Arasındaki Denklemler Aralarında sıfıra eşitlenebilen en az bir veya daha fazla denklem kurulabilen değişkenler birbirine bağımlıdır. Bu denklemlerden bilinen
T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 2
T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 2 DOĞAL VE ZORLANMIŞ TAŞINIMLA ISI TRANSFERİ DENEYİ ÖĞRENCİ NO: ADI SOYADI:
MAK 210 SAYISAL ANALİZ
MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani
Bir cisme etki eden kuvvetlerin bileşkesi sıfır ise, cisim ya durur, ya da bir doğru boyunca sabit hızla hareketine devam eder.
DİNAMİK Hareket veya hareketteki değişmelerin sebeplerini araştırarak kuvvetle hareket arasındaki ilişkiyi inceleyen mekaniğin bölümüne dinamik denir. Dinamiğin üç temel prensibi vardır. 1. Eylemsizlik
Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş
Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 13 Parçacık Kinetiği: Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 13 Parçacık
1.1 Yapı Dinamiğine Giriş
1.1 Yapı Dinamiğine Giriş Yapı Dinamiği, dinamik yükler etkisindeki yapı sistemlerinin dinamik analizini konu almaktadır. Dinamik yük, genliği, doğrultusu ve etkime noktası zamana bağlı olarak değişen
Elastisite Teorisi Düzlem Problemleri için Sonuç 1
Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Düzlem Gerilme durumu için: Bilinmeyenler: Düzlem Şekil değiştirme durumu için: Bilinmeyenler: 3 gerilme bileşeni : 3 gerilme bileşeni : 3 şekil değiştirme
Açık Drenaj Kanallarının Boyutlandırılması. Prof. Dr. Ahmet ÖZTÜRK
Açık Drenaj Kanallarının Boyutlandırılması Prof. Dr. Ahmet ÖZTÜRK Drenaj kanalları, drenaj alanına ilişkin en yüksek yüzey akış debisi veya drenaj katsayısı ile belirlenen kanal kapasitesi gözönüne alınarak
HİDROLOJİ. Buharlaşma. Yr. Doç. Dr. Mehmet B. Ercan. İnönü Üniversitesi İnşaat Mühendisliği Bölümü
HİDROLOJİ Buharlaşma Yr. Doç. Dr. Mehmet B. Ercan İnönü Üniversitesi İnşaat Mühendisliği Bölümü BUHARLAŞMA Suyun sıvı halden gaz haline (su buharı) geçmesine buharlaşma (evaporasyon) denilmektedir. Atmosferden
ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-I
HEDEFLER İÇİNDEKİLER TÜREV UYGULAMALARI-I Artan ve Azalan Fonksiyonlar Fonksiyonların Maksimum ve Minimumu Birinci Türev Testi İkinci Türev Testi Türevin Geometrik Yorumu Türevin Fiziksel Yorumu MATEMATİK-1
SİSTEMİ YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRONIK YÜK. MÜH.
EM 420 Yüksek Gerilim Tekniği DÜZLEMSEL ELEKTROT SİSTEMİ YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRONIK YÜK. MÜH. Not: Tüm slaytlar, listelenen ders kaynaklarından alıntı yapılarak ve faydalanılarak
Işıma Şiddeti (Radiation Intensity)
Işıma Şiddeti (Radiation Intensity) Bir antenin birim katı açıdan yaydığı güçtür U=Işıma şiddeti [W/sr] P or =Işıma yoğunluğu [ W/m 2 ] Örnek-4 Bir antenin güç yoğunluğu Olarak verildiğine göre, ışıyan
KAYMALI YATAKLAR II: Radyal Kaymalı Yataklar
KAYMALI YATAKLAR II: Radyal Prof. Dr. İrfan KAYMAZ Mühendislik Fakültesi Makine Mühendisliği Bölümü Giriş Bu bölüm sonunda öğreneceğiniz konular: Radyal yataklama türleri Sommerfield Sayısı Sonsuz Genişlikte
Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş
Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 7 İç Kuvvetler Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 7. İç Kuvvetler Bu bölümde, bir
P u, şekil kayıpları ise kanal şekline bağlı sürtünme katsayısı (k) ve ilgili dinamik basınç değerinden saptanır:
2.2.2. Vantilatörler Vantilatörlerin görevi, belirli bir basınç farkı yaratarak istenilen debide havayı iletmektir. Vantilatörlerde işletme karakteristiklerini; toplam basınç (Pt), debi (Q) ve güç gereksinimi
DEN 322. Pompa Sistemleri Hesapları
DEN 3 Pompa Sistemleri Hesapları Sistem karakteristiği B h S P P B Gözönüne alınan pompalama sisteminde, ve B noktalarına Genişletilmiş Bernoulli denklemi uygulanırsa: L f B B B h h z g v g P h z g v g
GÜÇ Birim zamanda yapılan işe güç denir. SI (MKS) birim sisteminde güç birimi
İŞ-GÜÇ-ENERJİ İŞ Yola paralel bir F kuvveti cisme yol aldırabiliyorsa iş yapıyor demektir. Yapılan iş, kuvvet ile yolun çarpımına eşittir. İş W sembolü ile gösterilirse, W = F. Δx olur. Burada F ile Δx
DİNAMİK MEKANİK. Şekil Değiştiren Cisimler Mekaniği. Mukavemet Elastisite Teorisi Sonlu Elemanlar Analizi PARÇACIĞIN KİNEMATİĞİ
DİNAMİK Dinamik mühendislik mekaniği alanının bir alt grubudur: Mekanik: Cisimlerin dış yükler altındaki davranışını inceleyen mühendislik alanıdır. Aşağıdaki alt gruplara ayrılır: MEKANİK Rijit-Cisim
Çözüm: Borunun et kalınlığı (s) çubuğun eksenel kuvvetle çekmeye zorlanması şartından;
Soru 1) Şekilde gösterilen ve dış çapı D 10 mm olan iki borudan oluşan çelik konstrüksiyon II. Kaliteli alın kaynağı ile birleştirilmektedir. Malzemesi St olan boru F 180*10 3 N luk değişken bir çekme
Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır.
Bölüm 5: Hareket Yasaları(Özet) Önceki bölümde hareketin temel kavramları olan yerdeğiştirme, hız ve ivme tanımlanmıştır. Bu bölümde ise hareketli cisimlerin farklı hareketlerine sebep olan etkilerin hareketi
olduğundan A ve B sabitleri sınır koşullarından
TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi Merkezleri aynı, aralarında dielektrik madde bulunan iki küreden oluşur. Elektrik Alanı ve Potansiyel Yarıçapları ve ve elektrotlarına uygulanan
MAKİNE ELEMANLARI DERS SLAYTLARI
MAKİNE ELEMANLARI DERS SLAYTLARI YORULMA P r o f. D r. İ r f a n K A Y M A Z P r o f. D r. A k g ü n A L S A R A N A r ş. G ör. İ l y a s H A C I S A L İ HOĞ LU Aloha Havayolları Uçuş 243: Hilo dan Honolulu
FİZİK PROJE ÖDEVİ İŞ GÜÇ ENERJİ NUR PINAR ŞAHİN 11 C 741
FİZİK PROJE ÖDEVİ İŞ GÜÇ ENERJİ NUR PINAR ŞAHİN 11 C 741 İŞ İş kelimesi, günlük hayatta çok kullanılan ve çok geniş kapsamlı bir kelimedir. Fiziksel anlamda işin tanımı tektir. Yola paralel bir F kuvveti
ĐŞ GÜÇ ENERJĐ. Zaman. 5. Uygulanan kuvvet cisme yol aldıramıyorsa iş yapılmaz. W = 0
ĐŞ GÜÇ ENERJĐ Đş kelimesi, günlük hayatta çok kullanılan ve çok geniş kapsamlı bir kelimedir. Fiziksel anlamda işin tanımı tektir.. Yapılan iş, kuvvet ile kuvvetin etkisinde yapmış olduğu yerdeğiştirmenin
Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş
Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 15 Parçacık Kinetiği: İmpuls ve Momentum Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 15 Parçacık
Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş
Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların
KOÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) Bölümü Dinamik Dersi (Türkçe Dilinde) 2. Çalişma Soruları / 21 Ekim 2018
SORU-1) Şekilde gösterilen uzamasız halat makara sisteminde A'daki ipin ucu aşağı doğru 1 m/s lik bir hızla çekilirken, E yükünün hızının sayısal değerini ve hareket yönünü sistematik bir şekilde hesaplayarak
Gaz hali genel olarak molekül ve atomların birbirinden uzak olduğu ve çok hızlı hareket ettiği bir haldir.
GAZLAR Maddeler tabiatta katı, sıvı ve gaz olmak üzere üç halde bulunurlar. Gaz hali genel olarak molekül ve atomların birbirinden uzak olduğu ve çok hızlı hareket ettiği bir haldir. Gaz molekülleri birbirine
METEOROLOJİ. IV. HAFTA: Hava basıncı
METEOROLOJİ IV. HAFTA: Hava basıncı HAVA BASINCI Tüm cisimlerin olduğu gibi havanın da bir ağırlığı vardır. Bunu ilk ortaya atan Aristo, deneyleriyle ilk ispatlayan Galileo olmuştur. Havanın sahip olduğu
YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRO NIK Y Ü K. M Ü H.
EM 420 Yüksek Gerilim Tekniği EŞ MERKEZLİ KÜRESEL ELEKTROT SİSTEMİ YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRO NIK Y Ü K. M Ü H. Not: Tüm slaytlar, listelenen ders kaynaklarından alıntı yapılarak
TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi
TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi Merkezleri aynı, aralarında dielektrik madde bulunan iki küreden oluşur. Elektrik Alanı ve Potansiyel Yarıçapları ve ve elektrotlarına uygulanan
DEĞİŞİK HALLER DENKLEMİ
1 ERSİN SOYBERK Elektrik Y.müh.(İ.T.Ü) TEİAŞ Genel müd. den emekli Gazi Üniversitesi Mühendislik. Fak. Elektrik Bölümü Öğretim görevlilerinden e-mail : [email protected] Enerji iletim hatlarında değişik
Deprem Etkisi Altında Tasarım İç Kuvvetleri
Prof. Dr. Günay Özmen [email protected] Deprem Etkisi Altında Tasarım İç Kuvvetleri 1. Giriş Deprem etkisi altında bulunan çok katlı yapılarda her eleman için kendine özgü ayrı bir elverişsiz deprem
Fizik 203. Ders 6 Kütle Çekimi-Isı, Sıcaklık ve Termodinamiğe Giriş Ali Övgün
Fizik 203 Ders 6 Kütle Çekimi-Isı, Sıcaklık ve Termodinamiğe Giriş Ali Övgün Ofis: AS242 Fen ve Edebiyat Fakültesi Tel: 0392-630-1379 [email protected] www.aovgun.com Kepler Yasaları Güneş sistemindeki
Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş
Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların
V = g. t Y = ½ gt 2 V = 2gh. Serbest Düşme NOT:
Havada serbest bırakılan cisimlerin aşağı doğru düşmesi etrafımızda her zaman gördüğümüz bir olaydır. Bu düşme hareketleri, cisimleri yerin merkezine doğru çeken bir kuvvetin varlığını gösterir. Daha önceki
Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır.
Newton un II. yasası Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır. Bir cisme F A, F B ve F C gibi çok sayıda kuvvet etkiyorsa, net kuvvet bunların
Elektrik Akımı, Direnç ve Ohm Yasası
1. Akım Şiddeti Elektrik akımı, elektrik yüklerinin hareketi sonucu oluşur. Ancak her hareketli yük akım yaratmaz. Belirli bir bölge ya da yüzeyden net bir elektrik yük akışı olduğu durumda elektrik akımından
7. HAFTA ZAMANA BAĞLI ISI İLETİMİ
7. HAFTA ZAMANA BAĞLI ISI İLETİMİ YIĞIK SİSTEM ÇÖZÜMLEMESİ Isı transfer çözümlemesinde, bütün ısı transfer işlemi süresince bazı cisimlerin aslında iç sıcaklığı üniform kalan- bir yığın gibi davrandığı
Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş
Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.
!" #$%&'! ( ')! *+*,(* *' *, -*.*. /0 1, -*.*
2. BÖLÜM SAF MADDELERİN ERMODİNAMİK ÖZELLİKLERİ Saf madde Saf madde, her noktasında aynı e değişmeyen bir kimyasal bileşime sahip olan maddeye denir. Saf maddenin sadece bir tek kimyasal element eya bileşimden
DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü
DİNAMİK - 7 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 7. HAFTA Kapsam: Parçacık Kinetiği, Kuvvet İvme Yöntemi Newton hareket
Prof.Dr. Mehmet Zor DEU Muh.Fak. Makine Muh. Bölümü
Prof.Dr. Mehmet Zor DEU Muh.Fak. Makine Muh. Bölümü Ders Kitabı : Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige, Wiley Yardımcı Kaynak: Mühendislik Mekaniği: Statik,
Pamukkale Üniversitesi. Makine Mühendisliği Bölümü. MENG 219 Deney Föyü
Pamukkale Üniversitesi Makine Mühendisliği Bölümü MENG 219 Deney Föyü Deney No: Deney Adı: Deney Sorumluları: Deneyin Amacı: X Basınç Ölçümü Doç. Dr. Kadir Kavaklıoğlu ve Araş. Gör. Y Bu deneyin amacı
DENEY 4 ÇARPIŞMALAR VE LİNEER MOMENTUMUN KORUNUMU
DENEY 4 ÇARPIŞMALAR VE LİNEER MOMENTUMUN KORUNUMU AMAÇ: Deneyin amacı esnek ve esnek olmayan çarpışmalarda lineer momentum ve kinetik enerji korunumunu incelemektir. GENEL BİLGİLER: Bir nesnenin lineer
Bölüm 3. Tek Serbestlik Dereceli Sistemlerin Zorlanmamış Titreşimi
Bölüm 3 Tek Serbestlik Dereceli Sistemlerin Zorlanmamış Titreşimi Sönümsüz Titreşim: Tek serbestlik dereceli örnek sistem: Kütle-Yay (Yatay konum) Bir önceki bölümde anlatılan yöntemlerden herhangi biri
Akışkanların Dinamiği
Akışkanların Dinamiği Akışkanların Dinamiğinde Kullanılan Temel Prensipler Gaz ve sıvı akımıyla ilgili bütün problemlerin çözümü kütlenin korunumu, enerjinin korunumu ve momentumun korunumu prensibe dayanır.
KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ
KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ Bu bölümde, düzlemsel kinematik, veya bir rijit cismin düzlemsel hareketinin geometrisi incelenecektir. Bu inceleme, dişli, kam ve makinelerin yaptığı birçok işlemde
Dairesel Temellerde Taban Gerilmelerinin ve Kesit Zorlarının Hesabı
Prof. Dr. Günay Özmen İTÜ İnşaat Fakültesi (Emekli), İstanbul [email protected] Dairesel Temellerde Taban Gerilmelerinin ve Kesit Zorlarının Hesabı 1. Giriş Zemin taşıma gücü yeter derecede yüksek ya
SEYAHAT PERFORMANSI MENZİL
SEYAHAT PERFORMANSI MENZİL Uçakların ne kadar paralı yükü, hangi mesafeye taşıyabildikleri ve bu esnada ne kadar yakıt harcadıkları en önemli performans göstergelerinden biridir. Bir uçağın kalkış noktasından,
KAYMALI YATAKLAR-II RADYAL YATAKLAR
Makine Elemanları 2 KAYMALI YATAKLAR-II RADYAL YATAKLAR Doç.Dr. Ali Rıza Yıldız 1 Bu Bölümden Elde Edilecek Kazanımlar Radyal yataklama türleri Sommerfield Sayısı Sonsuz Genişlikte Radyal Yatak Hesabı
3.1. Basınç 3. BASINÇ VE AKIŞKAN STATİĞİ
3. BASINÇ VE AKIŞKAN STATİĞİ Doç.Dr. Serdar GÖNCÜ (Ağustos 2011) 3.1. Basınç Bir akışkan tarafından birim alana uygulanan normal kuvvete basınç denir Basınç birimi N/m 2 olup buna pascal (Pa) denir. 1
GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET
GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET Yrd. Doç. Dr. Emine AYDIN Yrd. Doç. Dr. Elif BORU 1 GENEL YÜKLEME DURUMUNDA GERİLME ANALİZİ Daha önce incelenen gerilme örnekleri eksenel yüklü yapı elemanları
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması
10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Laplace Devre Çözümleri Aşağıdaki devrenin
Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi
Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Akışkanlar dinamiğinde, sürtünmesiz akışkanlar için Bernoulli prensibi akımın hız arttıkça aynı anda
MOTORLAR-5 HAFTA GERÇEK MOTOR ÇEVRİMİ
MOTORLAR-5 HAFTA GERÇEK MOTOR ÇEVRİMİ Yrd.Doç.Dr. Alp Tekin ERGENÇ GERÇEK MOTOR ÇEVRİMİ Gerçek motor çevrimi standart hava (teorik) çevriminden farklı olarak emme, sıkıştırma,tutuşma ve yanma, genişleme
MAK 308 MAKİNA DİNAMİĞİ Bahar Dr. Nurdan Bilgin
MAK 308 MAKİNA DİNAMİĞİ 017-018 Bahar Dr. Nurdan Bilgin EŞDEĞER ATALET MOMENTİ Geçen ders, hız ve ivme etki katsayılarını elde ederek; mekanizmanın hareketinin sadece bir bağımsız değişkene bağlı olarak
Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği
ANTENLER Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü Ders içeriği BÖLÜM 1: Antenler BÖLÜM 2: Antenlerin Temel Parametreleri BÖLÜM 3: Lineer Tel Antenler BÖLÜM 4: Halka Antenler
E = U + KE + KP = (kj) U = iç enerji, KE = kinetik enerji, KP = potansiyel enerji, m = kütle, V = hız, g = yerçekimi ivmesi, z = yükseklik
Enerji (Energy) Enerji, iş yapabilme kabiliyetidir. Bir sistemin enerjisi, o sistemin yapabileceği azami iştir. İş, bir cisme, bir kuvvetin tesiri ile yol aldırma, yerini değiştirme şeklinde tarif edilir.
Uluslararası Yavuz Tüneli
Uluslararası Yavuz Tüneli (International Yavuz Tunnel) Tünele rüzgar kaynaklı etkiyen aerodinamik kuvvetler ve bu kuvvetlerin oluşturduğu kesme kuvveti ve moment diyagramları (Aerodinamic Forces Acting
Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.
ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da
DENEY 5 RC DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMASI
DENEY 5 R DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMAS Amaç: Deneyin amacı yüklenmekte/boşalmakta olan bir kondansatörün ne kadar hızlı (veya ne kadar yavaş) dolmasının/boşalmasının hangi fiziksel büyüklüklere
Elektromanyetik Dalga Teorisi
Elektromanyetik Dalga Teorisi Ders-2 Dalga Denkleminin Çözümü Düzlem Elektromanyetik Dalgalar Enine Elektromanyetik Dalgalar Kayıplı Ortamda Düzlem Dalgalar Düzlem Dalgaların Polarizasyonu Dalga Denkleminin
