BÖLÜM 1: TEMEL KAVRAMLAR
|
|
|
- Ece Pamuk
- 10 yıl önce
- İzleme sayısı:
Transkript
1 BÖLÜM 1: TEMEL KAVRAMLAR Hal Değişkenleri Arasındaki Denklemler Aralarında sıfıra eşitlenebilen en az bir veya daha fazla denklem kurulabilen değişkenler birbirine bağımlıdır. Bu denklemlerden bilinen değişkenler yerine yazılarak bilinmeyen hesaplanır. Hal değişkenlerini birbirine bağlayan eşitlikler termal hal denklemi adı verilir. Sabit olan her nicelik hal değişkeni olmaktan çıkar. İdeal gazların hal değişkenleri arasındaki bağımlılık koşulu; f(v, T, P, n) = pv-nrt = 0 veya v = f(t, p, n) = nrt/p şeklinde yazılabilir. Bir mol ideal gaz için aynı eşitlikler, f(v, T, P,) = pv-rt = 0 veya V = f(t, p) = RT/p şeklini alır. Sabit tutulan her nicelik değişken sayısını bir düşürür. Bağımlı değişkenler verildiğinde bir sistem gereğinden fazla ve yanlış şekilde tanımlanmış olur. Sistemi doğru olarak tanımlayabilmek için yalnızca bağımsız değişkenlerin verilmesi gerekir. Bazı durumlarda V, T, p değişkenleri yerine bunların birbirine göre kısmi değişme hızları ile orantılı ve değişkenlerin büyüklüğünden bağımsız hale getirilmiş mekanik katsayılar kullanılır. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 1
2 BÖLÜM 1: TEMEL KAVRAMLAR Katı, sıvı ve gazlar için denel yoldan belirlenebilen genleşme katsayısı ( ), bastırılabilme katsayısı ( ) ve basınç katsayısı ( ) sırasıyla aşağıdaki gibi tanımlanmıştır. 1 V T p, 1 V p T ve 1 p Değişkenlerin birbirine göre kısmi değişme hızları V ve p niceliklerine bölünerek şiddet özelliğindeki katsayılar elde edilmiştir. Sabit sıcaklıkta hacmin basınçla değişme hızı daima eksi işaretli olduğundan bastırılabilme katsayının artı çıkması için tanımında eksi işareti kullanılmıştır. Hal değişkenlerinin mutlak değerleri arasında bir integral bağımlılık koşulu yazılabildiği gibi bunların birbirine göre kısmi değişme hızları arasında da bir diferansiyel bağımlılık koşulu yazılabilir. Bir mol maddenin hacmi sıcaklık ve basınca bağlı olarak değişmektedir. Hacim, hem sıcaklık hem de basınç ile azaldığı ya da arttığı gibi bunlardan biri ile artarken diğeri ile azalabilir. Artma ve azalma miktarlarının mutlak değerleri eşit olduğunda hacim değişmeden kalır. V = f(t, p) = sabit p T v dv = T p dt + p T dp = 0 T p = -1 eşitliği bulunur. T p p v T Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 2
3 BÖLÜM 1: TEMEL KAVRAMLAR Aynı eşitlik V, T, p değişkenlerinin VTp, TpV ve pvt şeklindeki dairesel permütasyonundan yaralanılarak doğrudan yazılabilir. Sistemin mekanik katsayıları kullanıldığında diferansiyel bağımlılık koşulu, = /p şeklini alır. Böylece mekanik katsayılar arasındaki bağımlılık koşulu ortaya çıkar. Genellikle sıcaklığın da basıncın fonksiyonu olarak verilmektedir. İki kısmi değişme hızı bilindiğinde üçüncüsü diferansiyel bağımlılık koşulundan bulunur Diğer nicelikler arasında da benzer diferansiyel bağımlılık koşulu yazılabilir. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 3
4 BÖLÜM 1: TEMEL KAVRAMLAR Hal Fonksiyonlarının Özellikleri Değişimi, sistemin yalnızca ilk ve son haline bağlı olan niceliklere hal fonksiyonu adı verilir. Hal fonksiyonlarındaki değişmeler ilk halden son hale gidilirken izlenen yola bağlı değildir. Bu değişmeler doğrudan ölçülebilir veya hal değişkenlerindeki değişimlere bağlı olarak hesaplanabilir. Bazı hal fonksiyonlarının mutlak değeri ölçülebilir, bazılarınınki ölçülemez. Mutlak değeri ölçülebilen her nicelik bir hal değişkeni olarak alınabildiği gibi, diğer hal değişkenlerine bağlı bir hal fonksiyonu olarak da alınabilir. Buna göre, hacim de sıcaklık ve basınca bağlı bir hal fonksiyonu olarak düşünülebilir. Hacim fonksiyonunun sıcaklık ve basınca göre diferansiyeli; V=f(T, p) dv= T p dt + p T dp = dv 1 + dv 2 şeklinde yazılır. Burada kısmi türevi sabit basınçta hacmin sıcaklıkla değişme T p hızını, dt diferansiyeli sıcaklıktaki net değişme miktarını, ikisinin çarpımı olan terimi ise sabit basınçta sıcaklık değişmesinden kaynaklanan dv 1 hacim değişimini göstermektedir. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 4 T p dt
5 Benzer şekilde, kısmi türevi sabit sıcaklıkta hacmin basınçla p T değişme hızını, dp diferansiyeli basınçtaki net değişme miktarını, ikisinin çarpımı olan dp terimi ise sabit sıcaklıkta basınç p T değişiminden kaynaklanan dv 2 hacim değişimini göstermektedir. Değişme miktarları aynı kalmak koşulu ile, sıcaklık ve basıncın değişim sırası hacimdeki değişmeyi etkilemez. Önce T sonra p veya önce p sonra T ya da ikisi birlikte değiştiğinde hacim değişimi hep aynı kalır. Değeri, değişkenlerin değişim sırasından bağımsız olan bu tür diferansiyellere matematikte tam diferansiyel adı verilir. Tam diferansiyeli alınabilen her fonksiyona fizikokimyada hal fonksiyonu denilmektedir. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 5
6 Hacimdeki değişmenin, sıcaklık ve basıncın değişim sırasından bağımsızlığının matematiksel ifadesi aşağıdaki gibidir. p T p T = T p T p buna tam diferansiyellik koşulu denir. Bir mol ideal gaz için molar hacim V=f(T, p) = RT/p olarak verildiğinden tam diferansiyel olma koşulunun R/p 2 = -R/p 2 eşitliği ile sağlandığı kolaylıkla gösterilebilir. Hal fonksiyonlarından kısmi diferansiyel alınarak tam diferansiyellere geçilebildiği gibi, tam diferansiyellerden kısmi diferansiyel denklem çözümleri ile hal fonksiyonlarına geçilebilir. İlk ve son haller arasında belirli integral alınarak hacimdeki değişme miktarı bulunur. V 2 dv = V 2 V 1 = V 1 V Buradaki fark alma işlemcisidir. Bir halden çıkılıp çeşitli yollar izlenerek yine aynı hale gelinmesine çevrim veya döngü adı verilir. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 6
7 Çevrim sonunda ilk ve son hal üst üste geldiğinden, yani net hal değişimi olmadığından bir hal fonksiyonu olan hacimdeki değişme sıfır olacaktır. Bu durum aşağıdaki gibi gösterilir. dv = V 2 V 1 = V 1 V 1 = 0 Buradaki işareti bir çevrim boyunca integral alma işlemcisidir. Hacim için yapılan irdelemeler genel olarak düşünülen bir F hal fonksiyonu için de geçerlidir. Tam diferansiyel olma koşulunu sağlamayanlara tam olmayan diferansiyel adı verilir. Tam diferansiyeller d harfi ile, tam olmayan diferansiyeller ise harfi ile gösterilecektir. Tam olmayan diferansiyellere karşılık gelen fonksiyonlar hal fonksiyonu değildir. Bir halden diğer hale gidilirken değişimleri izlenen yola bağlı olan bu fonksiyonlara yol fonksiyonu diyeceğiz. İş ve ısı alışverişleri birer yol fonksiyonu, bunlar dışında kalan tüm termodinamik nicelikler ise birer hal fonksiyonudur. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 7
8 Örnek: Hal fonksiyonu ve tam diferansiyel olma koşulu Yarıçapı r ve yüksekliği h olan bir silindirin hacmi v = r 2 h bağıntısıyla verilmektedir. Silindirin hacmi olan v nin hal fonksiyonu olduğunu ve diferansiyel bağımlılık koşulunun sağlandığını gösteriniz. v = r 2 h = f(r, h) dv= v r h dr + h v r h r = r v h v h r dh = 2 rh dr + r 2 dh r h, h 2 rh = r (dv=tam diferansiyel, v=hal fonksiyonu) vhr v h r hrv, = -1, h r r v v h rvh πr 2 2v πr 3 1 2πrh = πr2 2πr2 h πr 3 1 2πrh r 2, 2 r = 2 r, = -1, -1 = -1 Ödev: Kapalı bir yüzeyin alanı r ve h değişkenlerine bağlı olarak A= r(r 2 +h 2 ) 1/2 bağıntısı ile verilmektedir. A nın hal fonksiyonu olduğunu ve diferansiyel bağımlılık koşulunu sağladığını gösteriniz. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 8
9 Örnek: Tam diferansiyelden hal fonksiyonunun bulunması df = (2ax + by +c)dx + (bx + 2cy + e) dy diferansiyelinin tam diferansiyel olduğunu kanıtlayarak f hal fonksiyonunu bulunuz. Tam diferansiyel olma koşulundan f x y x = x f x y, 2ax + by + c x = x bx + 2cy + e y, b=b df tam diferansiyeldir. K(y) bir sabit olmak üzere df diferansiyelinin x değişkenine göre belirsiz integrali alınarak bulunan f= ax 2 +byx+cx+k(y) fonksiyonunun x sabit tutularak y ye göre kismi türevi alınırsa, f f = bx + K(y) x bulunur. Verilen df diferansiyelden aynı kısmi değişme hızı, = bx +2cy + e olduğu açıktır. Sol tarafları bir birinin aynı olan son iki x bağıntının sağ tarafından bulunan dk(y) diferansiyelinin y ye göre belirsiz integrali Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 9
10 bx + K(y) K(y) = cy 2 + ey + I K(y) =bx +2cy + e, =2cy + e f = ax 2 + bxy + cx + cy 2 +ey + I fonksiyonu bulunur. Buna göre, tam diferansiyel bağıntısından hal fonksiyonunun bulunması bir kısmi diferansiyel denklem çözümüdür. Burada, sabitin bulunması yöntemi ile çözülen bu diferansiye denklem başka yöntemlerle de çözülerek f hal fonksiyonu bulunabilir. Ödev: dv = (nr/p)dt (nrt/p 2 )dp diferansiyelinin tam diferansiyel olduğunu kanıtlayarak v hal fonksiyonunu bulunuz. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 10
TERMODİNAMİĞİN BİRİNCİ YASASI
İç Enerji Fonksiyonu ve C v Isınma Isısı Kimyasal tepkimelerin olmadığı kapalı sistemlerde kütle yanında molar miktar da sabit kalmaktadır. Madde miktarı n mol olan kapalı bir ideal gaz sistemi düşünelim.
FİZİKOKİMYA I ARASINAV SORU VE CEVAPLARI 2013-14 GÜZ YARIYILI
Soru 1: Aşağıdaki ifadeleri tanımlayınız. a) Sistem b)adyabatik sistem c) Kapalı sistem c) Bileşen analizi Cevap 1: a) Sistem: Üzerinde araştırma yapmak üzere sınırladığımız bir evren parçasına verilen
TERMODİNAMİĞİN BİRİNCİ YASASI
İzotermal ve Adyabatik İşlemler Sıcaklığı sabit tutulan sistemlerde yapılan işlemlere izotermal işlem, ısı alışverişlerine göre yalıtılmış sistemlerde yapılan işlemlere ise adyabatik işlem adı verilir.
TERMODİNAMİĞİN TEMEL EŞİTLİKLERİ
Serbest İç Enerji (Helmholtz Enerjisi) Ve Serbest Entalpi (Gibbs Enerjisi) Fonksiyonları İç enerji ve entalpi fonksiyonları yalnızca termodinamiğin birinci yasasından tanımlanır. Entropi fonksiyonu yalnızca
KİNETİK GAZ KURAMI. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 1
Kinetik Gaz Kuramından Gazların Isınma Isılarının Bulunması Sabit hacimdeki ısınma ısısı (C v ): Sabit hacimde bulunan bir mol gazın sıcaklığını 1K değiştirmek için gerekli ısı alışverişi. Sabit basınçtaki
BÖLÜM 1: TEMEL KAVRAMLAR
BÖLÜM 1: TEMEL KAVRAMLAR İdeal Gaz Yasaları Gazlarla yapılan deneyler, 17. yüzyılda başlamış olup fizikokimya dalında yürütülen ilk bilimsel nitelikteki araştırmalardır. Gazlar için basınç (p), hacim (v),
KİNETİK GAZ KURAMI. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 1
Kinetik Gaz Kuramının Varsayımları Boyle, Gay-Lussac ve Avagadro deneyleri tüm ideal gazların aynı davrandığını göstermektedir ve bunları açıklamak üzere kinetik gaz kuramı ortaya atılmıştır. 1. Gazlar
Termodinamik Termodinamik Süreçlerde İŞ ve ISI
Termodinamik Süreçlerde İŞ ve ISI Termodinamik Hareketli bir pistonla bağlantılı bir silindirik kap içindeki gazı inceleyelim (Şekil e bakınız). Denge halinde iken, hacmi V olan gaz, silindir çeperlerine
Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.
Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini
Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası
Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası Sıcaklık, bir gaz molekülünün kütle merkezi hareketinin ortalama kinetic enerjisinin bir ölçüsüdür. Sıcaklık,
Birinci Mertebeden Adi Diferansiyel Denklemler
Birinci Mertebeden Adi Diferansiyel Denklemler Bir veya daha çok bağımlı değişken, bir veya daha çok bağımsız değişken ve bağımlı değişkenin bağımsız değişkene göre (diferansiyel) türevlerini içeren bağıntıya
Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ. Bölüm 4: Kapalı Sistemlerin Enerji Analizi
Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ 1 Amaçlar Özellikle otomobil motoru ve kompresör gibi pistonlu makinelerde yaygın olarak karşılaşılan hareketli sınır işi veya PdV işi olmak üzere değişik iş biçimlerinin
İDEAL GAZ KARIŞIMLARI
İdeal Gaz Karışımları İdeal gaz karışımları saf ideal gazlar gibi davranırlar. Saf gazlardan n 1, n 2,, n i, mol alınarak hazırlanan bir karışımın toplam basıncı p, toplam hacmi v ve sıcaklığı T olsun.
6. İDEAL GAZLARIN HAL DENKLEMİ
6. İDEAL GAZLARIN HAL DENKLEMİ Amaç: - Sabit bir miktar gaz (hava) için aşağıdaki ilişkilerin incelenmesi: 1. Sabit sıcaklıkta hacim ve basınç (Boyle Mariotte yasası) 2. Sabit basınçta hacim ve sıcaklık
KİNETİK GAZ KURAMI. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 1
Maxwell - Boltzmann Enerji ve Hız Dağılımları İçinde N molekül bulunan ve toplam enerjisi E olan bir gaz düşünelim. Gaz içindeki her molekül başına düşen E/N ortalama enerjisi çoğu molekülün sahip olduğu
TERMODİNAMİĞİN ÜÇÜNCÜ YASASI
Termodinamiğin Üçüncü Yasası: Mutlak Entropi Yalnızca entropi değişiminin hesaplanmasında kullanılan termodinamiğin ikinci yasasının ds = q tr /T şeklindeki matematiksel tanımından entropinin mutlak değerine
İstatistik ve Olasılık
İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel
Termodinamik. Öğretim Görevlisi Prof. Dr. Lütfullah Kuddusi. Bölüm 4: Kapalı Sistemlerin Enerji Analizi
Termodinamik Öğretim Görevlisi Prof. Dr. Lütfullah Kuddusi 1 Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ 2 Amaçlar Özellikle otomobil motoru ve kompresör gibi pistonlu makinelerde yaygın olarak karşılaşılan
Diferansiyel denklemler uygulama soruları
. Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,
NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER
Adı- Soyadı: Fakülte No : Gıda Mühendisliği Bölümü, 2015/2016 Öğretim Yılı, Güz Yarıyılı 00391-Termodinamik Dersi, Bütünleme Sınavı Soru ve Çözümleri 20.01.2016 Soru (puan) 1 (20) 2 (20) 3 (20) 4 (20)
NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER
Adı- Soyadı: Fakülte No : Gıda Mühendisliği Bölümü, 2016/2017 Öğretim Yılı, Güz Yarıyılı 00391-Termodinamik Dersi, Dönem Sonu Sınavı Soru ve Çözümleri 13.01.2017 Soru (puan) 1 (20) 2 (20) 3 (20) 4 (20)
TERMODİNAMİĞİN TEMEL YASALARI
TERMODİNAMİĞİN TEMEL YASALARI Giriş Yoktan enerji üretmek ve ısıyı işe dönüştürmek için yapılan çalışmalar sonucu termodinamik bilim dalı ortaya çıkmıştır. Fiziksel ve kimyasal olaylardaki denge konumu
Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ
Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ http://public.cumhuriyet.edu.tr/alipinarbasi/ 1 Prof. Dr. Ali PINARBAŞI Amaçlar Özellikle otomobil motoru ve kompresör gibi pistonlu makinelerde yaygın olarak
BÖLÜM 1: TEMEL KAVRAMLAR
Sistem ve Hal Değişkenleri Üzerinde araştırma yapmak üzere sınırladığımız bir evren parçasına sistem, bu sistemi çevreleyen yere is ortam adı verilir. İzole sistem; Madde ve her türden enerji akışına karşı
Enerji iş yapabilme kapasitesidir. Kimyacı işi bir süreçten kaynaklanan enerji deyişimi olarak tanımlar.
Kinetik ve Potansiyel Enerji Enerji iş yapabilme kapasitesidir. Kimyacı işi bir süreçten kaynaklanan enerji deyişimi olarak tanımlar. Işıma veya Güneş Enerjisi Isı Enerjisi Kimyasal Enerji Nükleer Enerji
MAK 210 SAYISAL ANALİZ
MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan
O )molekül ağırlığı 18 g/mol ve 1g suyun kapladığı hacimde
1) Suyun ( H 2 O )molekül ağırlığı 18 g/mol ve 1g suyun kapladığı hacimde 10 6 m 3 olduğuna göre, birbirine komşu su moleküllerinin arasındaki uzaklığı Avagadro sayısını kullanarak hesap ediniz. Moleküllerin
Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi
Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Akışkanlar dinamiğinde, sürtünmesiz akışkanlar için Bernoulli prensibi akımın hız arttıkça aynı anda
MAK 210 SAYISAL ANALİZ
MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması
Math 322 Diferensiyel Denklemler Ders Notları 2012
1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler
SONLU FARKLAR GENEL DENKLEMLER
SONLU FARKLAR GENEL DENKLEMLER Bir elastik ortamın gerilme probleminin Airy gerilme fonksiyonu ile formüle edilebilen halini göz önüne alalım. Problem matematiksel olarak bölgede biharmonik denklemi sağlayan
fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı
10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.
ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞTĐRME DERSĐ GAZLAR KONU ANLATIMI
2008 ANKARA ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞTĐRME DERSĐ GAZLAR KONU ANLATIMI DERS SORUMLUSU:Prof. Dr. Đnci MORGĐL HAZIRLAYAN:Derya ÇAKICI 20338451 GAZLAR Maddeler tabiatta katı, sıvı ve gaz olmak
Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.
Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)
BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM
BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
HOMOGEN OLMAYAN DENKLEMLER
n. mertebeden homogen olmayan lineer bir diferansiyel denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) şeklinde olduğunu ve bununla ilgili olan n. mertebeden lineer homogen denlemin
Bahar Yarıyılı D_IFERANS_IYEL DENKLEMLER II ARA SINAV 6 Nisan 2011 Süre: 90 dakika CEVAP ANAHTARI. y = c n x n+r. (n + r) c n x n+r 1 +
DÜZCE ÜN_IVERS_ITES_I FEN-EDEB_IYAT FAKÜLTES_I MATEMAT_IK BÖLÜMÜ 010-011 Bahar Yarıyılı D_IFERANS_IYEL DENKLEMLER II ARA SINAV 6 Nisan 011 Süre: 90 dakika CEVAP ANAHTARI 1. 0p x d y + dy + xy = 0 diferansiyel
8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği
MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak ya Kullanım Şartları hakkında bilgi almak için
EDUCATIONAL MATERIALS
PROBLEM SET 1. (2.1) Mükemmel karıştırılmış, sabit hacimli tank, aynı sıvıyı içeren iki giriş akımına sahiptir. Her akımın sıcaklığı ve akış hızı zamanla değişebilir. a) Geçiş işlemini ifade eden dinamik
Bölüm 7 ENTROPİ. Bölüm 7: Entropi
Bölüm 7 ENTROPİ 1 Amaçlar Termodinamiğin ikinci kanununu hal değişimlerine uygulamak. İkinci yasa verimini ölçmek için entropi olarak adlandırılan özelliği tanımlamak. Entropinin artış ilkesinin ne olduğunu
Maddeye hareket veren kuvveti, Isaac Newton (1642-1727) aşağıdaki matematiksel ifadeyle tanımlamıştır.
1 1. TEMEL TARİF VE KAVRAMLAR (Ref. e_makaleleri) Kuvvet Maddeye hareket veren kuvveti, Isaac Newton (1642-1727) aşağıdaki matematiksel ifadeyle tanımlamıştır. F=ma Burada F bir madde parçacığına uygulanan
HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU
HİDROLİK Yrd. Doç. Dr. Fatih TOSUNOĞLU Ders Hakkında Genel Bilgiler Görüşme Saatleri:---------- Tavsiye edilen kitaplar: 1-Hidrolik (Prof. Dr. B. Mutlu SÜMER, Prof. Dr. İstemi ÜNSAL. ) 2-Akışkanlar Mekaniği
Diferensiyel denklemler sürekli sistemlerin hareketlerinin ifade edilmesinde kullanılan denklemlerdir.
.. Diferensiyel Denklemler y f (x) de F ( x, y, y, y,...) 0 veya y f ( x, y, y,...) x ve y değişkenlerinin kendileri ve türevlerini içinde bulunduran denklemlerdir. (Türevler; "Bağımlı değişkenin değişiminin
Şekil 7.1 Bir tankta sıvı birikimi
6 7. DİFERENSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMLERİ Diferensiyel denklemlerin sayısal integrasyonunda kullanılabilecek bir çok yöntem vardır. Tecrübeler dördüncü mertebe (Runge-Kutta) yönteminin hemen hemen
8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği
MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için
Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.
ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da
Bölüm 3 SAF MADDENİN ÖZELLİKLERİ
Bölüm 3 SAF MADDENİN ÖZELLİKLERİ 1 Amaçlar Amaçlar Saf madde kavramının tanıtılması Faz değişimi işleminin fizik ilkelerinin incelenmesi Saf maddenin P-v-T yüzeylerinin ve P-v, T-v ve P-T özelik diyagramlarının
İkinci Mertebeden Lineer Diferansiyel Denklemler
A(x)y + B(x)y + C(x)y = F (x) (5) Denklem (5) in sağ tarafında bulunan F (x) fonksiyonu, I aralığı üzerinde sıfıra özdeş ise, (5) denklemine lineer homogen; aksi taktirde lineer homogen olmayan denklem
TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi
TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi Merkezleri aynı, aralarında dielektrik madde bulunan iki küreden oluşur. Elektrik Alanı ve Potansiyel Yarıçapları ve ve elektrotlarına uygulanan
MAK 210 SAYISAL ANALİZ
MAK 210 SAYISAL ANALİZ BÖLÜM 7- SAYISAL TÜREV Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ İntegral işlemi gibi türev işlemi de mühendislikte çok fazla kullanılan bir işlemdir. Basit olarak bir fonksiyonun bir noktadaki
Bölüm 2. Sıcaklık ve Gazların Kinetik Teorisi. Prof. Dr. Bahadır BOYACIOĞLU
Bölüm 2 Sıcaklık ve Gazların Kinetik Teorisi Prof. Dr. Bahadır BOYACIOĞLU Sıcaklık ve Gazların Kinetik Teorisi Gazlarda Basınç Gaz Yasaları İdeal Gaz Yasası Gazlarda Basınç Gazlar parçacıklar arasında
1. Aşağıda verilen fiziksel büyüklüklerin dönüşümünde? işareti yerine gelecek sayıyı bulunuz.
Şube Adı- Soyadı: Fakülte No: NÖ-A NÖ-B Kimya Mühendisliği Bölümü, 2016/2017 Öğretim Yılı, 00323-Akışkanlar Mekaniği Dersi, 2. Ara Sınavı Soruları 10.12.2016 Soru (puan) 1 (20) 2 (20) 3 (20) 4 (20) 5 (20)
Akışkan Kinematiği 1
Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden
ZEMİN SUYU Zeminde Su Akımı ve Akım Ağları. Y.Doç.Dr. Saadet A. Berilgen
ZEMİN SUYU Zeminde Su Akımı ve Akım Ağları Y.Doç.Dr. Saadet A. Berilgen 1 Zeminde Su Akımının Matematiksel İfadesi Laplace Denklemi ve iki boyutlu akım (2D- Seepage) Yer altı suyu akım bölgesi içinde bir
18.034 İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
Korelasyon, Korelasyon Türleri ve Regresyon
Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.
11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı
11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri
BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ
BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini
olduğundan A ve B sabitleri sınır koşullarından
TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi Merkezleri aynı, aralarında dielektrik madde bulunan iki küreden oluşur. Elektrik Alanı ve Potansiyel Yarıçapları ve ve elektrotlarına uygulanan
5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek
Boyut analizi, göz önüne alınan bir fiziksel olayı etkileyen deneysel değişkenlerin sayısını ve karmaşıklığını azaltmak için kullanılan bir yöntemdir. Akışkanlar mekaniğinin gelişimi ağırlıklı bir şekilde
!" #$%&'! ( ')! *+*,(* *' *, -*.*. /0 1, -*.*
2. BÖLÜM SAF MADDELERİN ERMODİNAMİK ÖZELLİKLERİ Saf madde Saf madde, her noktasında aynı e değişmeyen bir kimyasal bileşime sahip olan maddeye denir. Saf maddenin sadece bir tek kimyasal element eya bileşimden
İstatistiksel Mekanik I
MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir.
1 İNTEGRAL BİR FONKSİYONUN DİFERANSİYELİ Tanım: f: [a,b] R, x f(x) fonksiyonu (a,b) aralığında türevli olmak üzere, x değişkeninin değişme miktarı x ise f '(x). x ifadesine f(x) fonksiyonunun diferansiyeli
T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L
T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L 1 Denklemler 1.1 Doğru deklemleri İki noktası bilinen ya da bir noktası ile eğimi bilinen doğruların denklemlerini yazabiliriz.
8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği
MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için
18.034 İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
İşaret ve Sistemler. Ders 11: Laplace Dönüşümleri
İşaret ve Sistemler Ders 11: Laplace Dönüşümleri Laplace Dönüşüm Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) yada L[f(t)] olarak gösterilir. Burada tanımlanan s: İşaret ve Sistemler
8. HAFTA ZAMANA BAĞLI ISI İLETİMİ
8. HAFTA ZAMANA BAĞLI ISI İLETİMİ Fiziksel öneminin anlaşılması için Fourier sayısı Fourier sayısı, cisim içerisinde iletilen ısının, depolanan ısıya oranının bir ölçütüdür. Büyük Fourier sayısı değeri,
TEMEL ELEKTROT SİSTEMLERİ Silindirsel Elektrot Sistemi
Aralarında yalıtkan madde (dielektrik) bulunan silindir biçimli eş eksenli yada kaçık eksenli, iç içe yada karşılıklı, paralel ve çapraz elektrotlar silindirsel elektrot sistemlerini oluştururlar. Yüksek
Termodinamik İdeal Gazlar Isı ve Termodinamiğin 1. Yasası
İdeal Gazlar Isı ve Termodinamiğin 1. Yasası İdeal Gazlar P basıncında, V hacmindeki bir kaba konulan kütlesi m ve sıcaklığı T olan bir gazın özellikleri ele alınacaktır. Bu kavramların birbirleriyle nasıl
Sağ Taraf Fonksiyonu İle İlgili Özel Çözüm Örnekleri(rezonans durumlar)
3.1.2.1. Sağ Taraf Fonksiyonu İle İlgili Özel Çözüm Örnekleri(rezonans durumlar) ÖRNEK: y + 4.y + 4.y = 5.sin2x diferensiyel denkleminin genel çözümünü bulalım: Homojen kısmın çözümü: y + 4.y + 4.y = 0
matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı
matematik SORU BANKASI Süleyman ERTEKİN LYS KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ KONU ÖZETLERİ Öğrenci Kitaplığı SORU BANKASI matematik LYS EDAM Öğrenci Kitaplığı 18 EDAM ın yazılı izni olmaksızın,
biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces
TANIM n bir doğal sayı ve a 0, a 1, a 2,..., a n 1, a n birer gerçel sayı olmak üzere, P(x) = a 0 + a 1 x + a 2 x 2 +... + a n 1 x n 1 +a n x n biçimindeki ifadelere x değişkenine bağlı, gerçel (reel)
Gazların sıcaklık,basınç ve enerji gibi makro özelliklerini molekül kütlesi, hızı ve sayısı gibi mikroskopik özelliklerine bağlar.
KİNETİK GAZ KURAMI Gazların sıcaklık,basınç ve enerji gibi makro özelliklerini molekül kütlesi, hızı ve sayısı gibi mikroskopik özelliklerine bağlar. Varsayımları * Gazlar bulundukları kaba göre ve aralarındaki
FİZ304 İSTATİSTİK FİZİK. Mikrokopik Teori ve Makroskopik Ölçümler I. Prof.Dr. Orhan ÇAKIR Ankara Üniversitesi, Fizik Bölümü 2017
FİZ304 İSTATİSTİK FİZİK Mikrokopik Teori ve Makroskopik Ölçümler I Prof.Dr. Orhan ÇAKIR Ankara Üniversitesi, Fizik Bölümü 2017 Mutlak Sıcaklık Bir sistemin mutlak sıcaklığını belirlemek için İdeal gazın
Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN
Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,
8.04 Kuantum Fiziği Ders XII
Enerji ölçümünden sonra Sonucu E i olan enerji ölçümünden sonra parçacık enerji özdurumu u i de olacak ve daha sonraki ardışık tüm enerji ölçümleri E i enerjisini verecektir. Ölçüm yapılmadan önce enerji
1. HAFTA Giriş ve Temel Kavramlar
1. HAFTA Giriş ve Temel Kavramlar TERMODİNAMİK VE ISI TRANSFERİ Isı: Sıcaklık farkının bir sonucu olarak bir sistemden diğerine transfer edilebilen bir enerji türüdür. Termodinamik: Bir sistem bir denge
UYGULAMALI MATEMATİK KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI
ÖABT UYGULAMALI MATEMATİK KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT UYGULAMALI MATEMATİK KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı ya da bir kısmı, yazarın izni
Katı ve Sıvıların Isıl Genleşmesi
Katı ve Sıvıların Isıl Genleşmesi 1 Isınan cisimlerin genleşmesi, onları meydana getiren atom ve moleküller arası uzaklıkların sıcaklık artışı ile artmasındandır. Bu olayı anlayabilmek için, Şekildeki
BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ
BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ MÜKEMMEL GAZ DENEY FÖYÜ 1.Deneyin Adı: Mükemmel bir gazın genişlemesi
SINAV SÜRESİ 90 DAKİKADIR. BAŞARILAR
FİZİKSEL KİMYA I FİAL SIAVI 0.0.0 : AD SYAD : İMZA SRU 5 Toplam PUA 0. Zn(k) + C(g) ----> Zn(g) + C (g) reaksiyonu için standart reaksiyon entalpisinin sıcaklığa bağımlılığı olduğuna göre reaksiyon için;
DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü
DİNAMİK - 7 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 7. HAFTA Kapsam: Parçacık Kinetiği, Kuvvet İvme Yöntemi Newton hareket
8.SINIF CEBirsel ifadeler
KAZANIM : 8.2.1.1. Basit cebirsel ifadeleri anlar ve farklı biçimlerde yazar. Hatırlatma 2 + 4y - 5 ifadesi bir cebirsel ifadedir ve değişkenler ve y dir. Cebirsel İfade: İçinde bir veya birden fazla bilinmeyen
DENEY 5 RC DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMASI
DENEY 5 R DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMAS Amaç: Deneyin amacı yüklenmekte/boşalmakta olan bir kondansatörün ne kadar hızlı (veya ne kadar yavaş) dolmasının/boşalmasının hangi fiziksel büyüklüklere
İdeal gaz Moleküllerin özhacimlerinin moleküllerin serbestçe dolaştıkları tüm hacim oranı çok küçük olan (yani tüm hacim yanında ihmal edilebilecek
İdeal gaz Moleküllerin özhacimlerinin moleküllerin serbestçe dolaştıkları tüm hacim oranı çok küçük olan (yani tüm hacim yanında ihmal edilebilecek kadar küçük kalan), Moleküllerinin arasında çekme ve
KPSS ÖABT İLKÖĞRETİM MATEMATİK. Tamamı Çözümlü SORU BANKASI. 50 soruda SORU
KPSS ÖABT 09 İLKÖĞRETİM MATEMATİK Tamamı Çözümlü SORU BANKASI 50 soruda SORU Komisyon ÖABT İLKÖĞRETİM MATEMATİK TAMAMI ÇÖZÜMLÜ SORU BANKASI ISBN 978-605--9-6 Kitapta yer alan bölümlerin tüm sorumluluğu
Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,
Bölüm 33 Denklemler 33.1 İkinci Dereceden Denklemler İkinci dereceden Bir Bilinmeyenli Denklemler a,b,c IR ve a 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli
MAK 210 SAYISAL ANALİZ
MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani
5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek
Boyut analizi, göz önüne alınan bir fiziksel olayı etkileyen deneysel değişkenlerin sayısını ve karmaşıklığını azaltmak için kullanılan bir yöntemdir. kışkanlar mekaniğinin gelişimi ağırlıklı bir şekilde
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
İnstagram:kimyaci_glcn_hoca GAZLAR-1.
GAZLAR-1 Gazların Genel Özellikleri Maddenin en düzensiz hâlidir. Maddedeki molekül ve atomlar birbirinden uzaktır ve çok hızlı hareket eder. Tanecikleri arasında çekim kuvvetleri, katı ve sıvılarınkine
Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş
Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların
İTKİLİ MOTORLU UÇAĞIN YATAY UÇUŞ HIZI
İTKİLİ MOTORLU UÇAĞIN YATAY UÇUŞ HIZI Mustafa Cavcar Anadolu Üniversitesi Havacılık ve Uzay Bilimleri Fakültesi 26470 Eskişehir Yatay uçuş sabit uçuş irtifaında yeryüzüne paralel olarak yapılan uçuştur.
E = U + KE + KP = (kj) U = iç enerji, KE = kinetik enerji, KP = potansiyel enerji, m = kütle, V = hız, g = yerçekimi ivmesi, z = yükseklik
Enerji (Energy) Enerji, iş yapabilme kabiliyetidir. Bir sistemin enerjisi, o sistemin yapabileceği azami iştir. İş, bir cisme, bir kuvvetin tesiri ile yol aldırma, yerini değiştirme şeklinde tarif edilir.
NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER
Adı- Soyadı: Fakülte No : Gıda Mühendisliği Bölümü, 2015/2016 Öğretim Yılı, Güz Yarıyılı 00391-Termodinamik Dersi, Dönem Sonu Sınavı Soru ve Çözümleri 07.01.2016 Soru (puan) 1 (20) 2 (20) 3 (20) 4 (20)
MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI
MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin
