VİSKOZİTE ÖLÇÜM YÖNTEMLERİ VE YÜZEY GERİLİMİ DENEY FÖYÜ

Benzer belgeler
VİSKOZİTE ÖLÇÜM YÖNTEMLERİ VE YÜZEY GERİLİMİ DENEY FÖYÜ

Maddelerin Fiziksel Özellikleri

POLİMER ÇÖZELTİLERİN YOĞUNLUK, VİSKOZİTE ve YÜZEY GERİLİMİ ÖLÇÜMÜ DENEY FÖYÜ

Viskozite, Boyutsuz Reynolds Sayısı, Laminer ve Türbülanslı akımlar

< 2100 Laminer Akım > 4000 Türbülent Akım Arası : Kararsız durum (dönüşüm)

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ ORGANİK KİMYA LABORATUVARI DENEY 8 : YÜZEY GERİLİMİNİN BELİRLENMESİ

Borularda Akış. Hesaplamalarda ortalama hız kullanılır.

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU

AKIŞ REJİMİNİN BELİRLENMESİ

Makina Mühendisliği Bölümü Makine Laboratuarı

EŞANJÖR (ISI DEĞİŞTİRİCİSİ) DENEYİ FÖYÜ

Farmasötik Teknoloji ABD

Bölüm 2: Akışkanların özellikleri. Doç. Dr. Tahsin Engin Sakarya Üniversitesi Makine Mühendisliği Bölümü

SU ÜRÜNLERİNDE MEKANİZASYON

3. AKIŞKANLARDA FAZ DEĞİŞİKLİĞİ OLMADAN ISI TRANSFERİ

VENTURİMETRE DENEYİ 1. GİRİŞ

Bölüm 8: Borularda sürtünmeli Akış

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BÜLENT ECEVİT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK490 Makine Laboratuarı Dersi Akışkanlar Mekaniği Deneyi

KİNETİK GAZ KURAMI. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 1

2. Basınç ve Akışkanların Statiği

ÇEV-220 Hidrolik. Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT

Sistem Özellikleri 10/7/2014. Basınç, P Sıcaklık, T. Hacim, V Kütle, m Vizkozite Isıl İletkenlik Elastik Modülü

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü

ÇEV-220 Hidrolik. Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT

DERS-3 -REOLOJİ- VİSKOZİTE VE AKIŞ TİPLERİ

5.NEWTONIAN VE NEWTONIAN OLMAYAN AKIŞKANLARIN VİSKOZİTESİNİN BELİRLENMESİ (ROTASYONEL REOMETRE)

4.Sıkıştırılamayan Akışkanlarda Sürtünme Kayıpları

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

ASİSTAN ARŞ. GÖR. GÜL DAYAN

TAŞINIMIN FİZİKSEL MEKANİZMASI

METEOROLOJİ. IV. HAFTA: Hava basıncı

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

5. BORU HATLARI VE BORU BOYUTLARI

(b) Model ve prototipi eşleştirmek için Reynolds benzerliğini kurmalıyız:

BÖLÜM 6 PROSES DEĞİŞKENLERİNİN İNCELENMESİ

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFERİ LABORATUARI

3.1. Basınç 3. BASINÇ VE AKIŞKAN STATİĞİ

Akışkanlar Mekaniği Yoğunluk ve Basınç: Bir maddenin yoğunluğu, birim hacminin kütlesi olarak tanımlanır.

VİSKOZİTE SIVILARIN VİSKOZİTESİ

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

Ders Notları 3 Geçirimlilik Permeabilite

Hareket Kanunları Uygulamaları

T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 2

KAYMALI YATAKLAR I: Eksenel Yataklar

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

NÖ-A NÖ-B. Şube. Alınan Puan. Adı- Soyadı: Fakülte No: 1. Aşağıda verilen fiziksel büyüklüklerin eşit olduğunu gösteriniz. 1/6

Isı Kütle Transferi. Zorlanmış Dış Taşınım

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB-305 KİMYA MÜHENDİSLİĞİ LABORATUVARI I

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Taşınım Olayları II MEMM2009 Akışkanlar Mekaniği ve Isı Transferi bahar yy. borularda sürtünmeli akış. Prof. Dr.

4. Adveksiyon ve Difüzyon Süreçleri

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

YILDIZ TEKNİK ÜNİVERSİTESİ

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

Akışkanların Dinamiği

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUVARI

AKIŞ REJİMİNİN BELİRLENMESİ

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB 305 KİMYA MÜHENDİSLİĞİ LABORATUVARI - 1

DERS-5 VİSKOZİTE ÖLÇÜM YÖNTEMLERİ

SIVILAR YÜZEY GERİLİMİ. Bir sıvı içindeki molekül diğer moleküller tarafından sarılmıştır. Her yöne eşit kuvvetle çekilir.daha düşük enerjilidir.

AKM 205 BÖLÜM 3 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

Momentum iletimi. Kuvvetin bileşenleri (Momentum akısının bileşenleri) x y z x p + t xx t xy t xz y t yx p + t yy t yz z t zx t zy p + t zz

Sıvılar ve Katılar. Maddenin Halleri. Sıvıların Özellikleri. MÜHENDİSLİK KİMYASI DERS NOTLARI Yrd. Doç. Dr. Atilla EVCİN

ATIK SULARIN TERFİSİ VE TERFİ MERKEZİ

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI Numara: Adı Soyadı: SORULAR-CEVAPLAR

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii

AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

KBM0308 Kimya Mühendisliği Laboratuvarı I BERNOLLİ DENEYİ. Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1

Akışkanların Dinamiği

AKM BÖLÜM 11 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET

KARARLI HAL ISI İLETİMİ. Dr. Hülya ÇAKMAK Gıda Mühendisliği Bölümü

KİNETİK GAZ KURAMI. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 1

Fizik 101-Fizik I Dönme Hareketinin Dinamiği

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Alınan Puan NOT: Yalnızca 5 soru çözünüz, çözmediğiniz soruyu X ile işaretleyiniz. Sınav süresi 90 dakikadır. SORULAR ve ÇÖZÜMLER

(2) Sürtünme doğmaz, dolayısıyla mekanik enerji ısıya dönüşmez.

Deneye Gelmeden Önce;

BORULARDA BASINÇ KAYBI VE SÜRTÜNME DENEYİ

6. İDEAL GAZLARIN HAL DENKLEMİ

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY 9A GERİNİM ÖLÇER KULLANARAK GERİLİM ANALİZİ YAPILMASI

Özel Laboratuvar Deney Föyü

KİMYASAL DENGE. AMAÇ Bu deneyin amacı öğrencilerin reaksiyon denge sabitini,k, deneysel olarak bulmalarıdır.

ELEKTRİKSEL POTANSİYEL

AKM 205 BÖLÜM 6 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

Fizik 101-Fizik I Statik Denge ve Esneklik

1. Aşağıda verilen fiziksel büyüklüklerin dönüşümünde? işareti yerine gelecek sayıyı bulunuz.

Prof. Dr. Selmin TOPLAN

2. SUYUN BORULARDAKİ AKIŞI

BİYOLOLOJİK MALZEMENİN TEKNİK ÖZELLİKLERİ PROF. DR. AHMET ÇOLAK

BURULMA DENEYİ 2. TANIMLAMALAR:

ISI TRANSFERİ LABORATUARI-1

SAYBOLT VĐSKOZĐTE DENEYĐ

Transkript:

ONDOKUZ MAYIS ÜNİVESİTESİ KİMYA MÜH. BÖLÜMÜ KML I LAB. VİSKOZİTE ÖLÇÜM YÖNTEMLEİ VE YÜZEY GEİLİMİ DENEY FÖYÜ A. VİSKOZİTE ÖLÇÜM YÖNTEMLEİ Amaç: Belirlenen sıvıların viskozitelerinin ölçülmesi ve viskozitenin sıcaklıkla değişiminin incelenmesi Tanım Viskozite : Bir akışkanın (sıvı veya gaz) viskozitesi, akışkan üzerine uygulanan kaydırma kuvvetinin karşılaştığı sürtünme direncinin bir ölçüsüdür. Bir akışkan bir yüzey üzerinden geçerek aktığı zaman, yüzeye hemen komşu olan akışkan tabakası durgun haldedir, yüzeyden itibaren birbirini izleyen tabakaların hızları giderek artar, yani yüzeye yakın tabakaların hızları düşük, yüzeyden uzak olan tabakaların hızları ise daha yüksektir. Şekil 1'de dv kadar akma hızı farkına sahip ve birbirlerinden dx kadar bir mesafe ile ayrılmış halde, bir akışkan içerisinde birbirine paralel iki tabaka görülmektedir. Newton'un viskoz akış (diğer adıyla laminer veya tabakalı akış) kanununa göre, sıvı içerisinde iki komşu tabakanın birbirine göre hareketine direnç gösteren F sürtünme kuvveti, A alanı ve dv/dx (hız gradienti) ile orantılıdır. Bu durum denklem 1'de matematiksel olarak ifade edilebilir. Orantı katsayısı ƞ, "viskozite katsayısı" veya basitçe "viskozite" olarak bilinir. Viskozitenin tersi olan akıcılık (1 / ƞ) ise ɸ simgesiyle gösterilir. SI birim sisteminde viskozitenin birimi Pa.s (pascal x saniye)dir. Bu birim kgm -1 s -1 ile eşdeğerdir. CGS birim sistemindeki viskozite birimi ise poise (g cm -1 s -1 )'dir. 1 poise (puvaz) = 0.1 Pa.s veya 1Cp (santipuvaz) =1 mpas (mili Pa.s)'dır. Eşitlik 1'in uygulandığı akış, laminer (tabakalı) veya Newtonian akış veya diğer adıyla viskoz akış adıyla bilinir. Bu akış şeklinde, moleküler hızların net bileşeni sıvının akış yönünde olup, akan sıvı tabakalarının birbirini kesmediği düşünülür. Sıvının akış hızının çok büyük olmadığı durumlarda ancak laminer akış şekli gözlenir. Hızlı akma durumlarında, tabakalı akış kaybolup türbülanslı akış (diğer adıyla girdaplı akış) şekli ortaya çıkar. Bu akışta, akan sıvı tabakaları birbirini keser ve bu durumda Eşitlik 1 artık uygulanmaz. Bu akış tipleri, 1883'de ilk defa Osborne eynolds tarafından yapılan bir deneyle ortaya konmuştur. eynolds'un deneyinde, cam bir boru içi su dolu bir depoya bağlanmış olup, boru içindeki suyun akma hızı arzu edilen değere ayarlanabilmektedir. Borunun giriş ucuna bir nozul (emzik) konularak, boru içerisine renklendirilmiş su verilebilmektedir. eynolds, yapmış olduğu deneyler sonucunda, suyun akma hızı az olduğunda renkli suya ait akım iplikçiğinin bütün boru boyunca devam ettiğini görmüştür.

11 eynolds, bu deneyi borunun değişik noktalarındaki kesitlere uygulamış ve bu kısımlarda renkli suya ait akım iplikçiğinin bozulmadığını ve akışkanın birbirine paralel ve düz doğrular boyunca aktığını görmüştür. Akışkanın akım hızı arttırıldığında, hızın belirli bir değerinden sonra renkli suya ait akım iplikçiğinin ortadan kalktığı ve bütün su kütlesinin renklendiği görülmüştür. Diğer bir ifadeyle, yüksek akış hızlarında, suyu meydana getiren parçacıklar borunun uzun ekseni boyunca birbirine paralel hareket etmeyip, borunun kısa ekseni boyunca da hareket etmeye başlarlar ve böylece tam bir karışma (yani türbülans) meydana gelir. Akımın bu şekilde bir ipten diğerine değiştiği andaki sıvı akım hızı "kritik hız" olarak adlandırılır. eynolds, daha sonra yaptığı deneylerde bu iki tip akış şeklinin meydana geliş şartlarını incelemiş ve kritik hızın; boru çapına, akışkanın akış hızına, yoğunluğuna ve viskozitesine bağlı olduğunu bulmuş ve bu dört faktörün sadece bir şekilde gruplandırılabileceğini göstermiştir. eynolds'un ileri sürdüğü ve eynolds sayısı (e) olarak bilinen ifade, e = dv (2) şeklinde verilmektedir. Burada, d, borunun iç çapı; v, boru boyunca akışkanın ortalama akım hızı (bu hız, akışkanın hacimsel debisi borunun kesitine bölünerek bulunur);, akışkanın yoğunluğu; ise akışkanın viskozitesidir. Boyutsuz (birimsiz) bir grup olan eynolds sayısı, hidrodinamik incelemelerde büyük bir önem taşır ve kimya mühendisliğinde yaygın şekilde kullanılır. eynolds sayısının 2000'den büyük olduğu değerlere karşılık gelen akış hızlarında, türbülans ile karşılaşılır. Bazı kolloidal süspansiyonlar ve polimer moleküllerinin çözeltileri için viskozite, kayma hızına bağlı olup bu durum Newtonian olmayan davranış olarak bilinir. Kayma gerilimi (veya kayma zoru) süspanse olmuş parçacıkları yönlendirir veya onların düzenlerini değiştirirse, kayma hızı arttıkça viskozite azalması görülebilir. 3.2. Viskozite Ölçüm metotları 3.2.1. Kapiler akış metotları Viskozite ölçümleri genellikle akışkanın, dairesel kesitli bir boru içerisinden akıtılmış akma hızının ölçülmesi ile yapılır. Bu hız verisi elde edildikten sonra, borunun boyutları ve etkiyen basınçtan, Poiseuille tarafından geliştirilen teoriye dayanarak viskozite hesaplanır. Sıkıştırılamayan bir akışkanın; uçlarındaki basınçların P1 ve P2, yarıçapının r ve uzunluğunun 1 olduğu bir boru içinden aktığını düşünelim. Borunun duvarındaki sıvı durgun haldedir; akış hızı borunun merkezinde maksimuma erişir. 1 uzunluklu ve yarıçaplı bir silindirin yüzey alanı 2πr1'dir ve Eşitlik 1'e göre böyle bir sıvı silindirine etkiyen sürtünme kuvveti; F = - dv dr 2 πr1 (3) şeklinde verilir. Burada hız gradienti adı verilen dv/dr negatif bir niceliktir. F kuvveti, bu silindirdeki akışkanı iten kuvvet (basınç kuvveti) tarafından tamamen dengelenir. Bu kuvvet, silindirin kesit alanı olan πr 2 ile basınç farkının (P1 - P2) çarpımıdır. Böylece, - dv dr 2 πr1 = π r 2 (P1 - P 2 ) (4) veya dv = - r 2 1 ( P 1 - P 2 ) dr ifadesi bulunur. Bu ifadenin belirsiz integrali alınırsa, (5)

12 v = - (P 1 - P 2 ) 41 r 2 + sabit (6) eşitliği elde edilir. r = olduğu zaman hız sıfır olduğundan; integral sabiti, sabit = (P 1 - P 2 ) 2 41 (7) ve bu sebepten, v = P 1 - P 2 ( 2 - r 41 2 ) (8) değerini alır. Birim zamanda borudan akan sıvının toplam hacmi (dv / dt), her bir kesit elementi üzerinde integrasyonla bulunur. Her bir element 2πrdr=da kadar bir yüzey alanına sahiptir ve bu sebepten, dv da v rvdr dt. 2 (9) 0 ( P1 P2 ) 21 2 r dr 0 0 r 3 dr = (P 1 - P 2 ) π 4 8 1 (11) şeklindeki "Poiseuille denklemi" elde edilir. Son eşitliği t, 0 t integral alınırsa aşağıdaki denklem elde edilir. 4 4 P P t V t veya (12) 81 8V 1 Burada t; uygulanan P basıncında, r yarıçaplı ve 1 uzunluklu bir kapiler boru içerisinden sıvının V hacminin akması için gerekli zamanı göstermektedir. Bir sıvının viskozitesi yukarıda türetilen Eşitlik 12 kullanılarak bulunabileceği gibi, düşey boru kullanılması halinde borunun çıkış ve giriş uçları arasındaki akışkan basınçlarının farkı ( P), sıvılarda hidrostatik basınca eşit alınabilir, P = 1 g (13) Burada sıvının yoğunluğu, g ise yerçekimi ivmesidir. Böylece Eşitlik 12 ve 13'ten; = 1 g π 4 t = π 4 g t 8 1 8V Bu eşitlikteki ρ t çarpanının katsayısı olan çarpanlar aynı bir viskozimetre için sabittir. k = π 4 g/8v (14) Bu sabiti kullanarak eşitliği yeniden yazarsak, = k t (15) elde edilir. Eğer Eşitlik 15, aynı viskozimetrede iki ayrı sıvı için yazılıp taraf tarafa oranlanırsa; (10) (16)

13 Burada 2 indisiyle gösterilen büyüklükler viskozitesi tayin edilecek sıvıyla alakalı, 1 indisiyle gösterilen büyüklükler viskozitesi bilinen sıvıyla (referans sıvıyla) alakalıdır. Oswald viskozimetresi veya Ubbelohde viskozimetresi (Şekil 3) kullanılarak viskozitesi bilinen ve bilinmeyen sıvıların belli hacimlerinin (V) akma zamanları bulunur ve bu bilgilerden (1 ve 2 biliniyor) Eşitlik 16 yardımıyla viskozitesi bilinmeyen sıvının viskozitesi bulunur. = A e E a / T (17) denklemi viskozite katsayısının sıcaklığa bağlılığını göstermektedir. Bu denklemin her iki tarafının logaritması alındığında; E a log = log A + 2.303 x. 1 T (18) elde edilir. Denklemdeki A bir katsayı, Ea : viskozluk enerjisini gösterir. Değişik sıcaklıklarda bir sıvının viskozite katsayıları tayin edilip log -1/T grafiği oluşturulursa bir doğru elde edilir. Doğrunun eğiminden Ea hesaplanır. Ea = eğim x 2.303 x (19) Şekil 3. Viskozite ölçümünde kullanılan iki ayrı viskozimetre 3.1.2. Düşen Küre Metodu Stokes'e göre r yarıçaplı bir küre bir sıvı içerisinde sabit bir v hızı (dx/dt) ile düşerken karşılaştığı sürtünme kuvveti (Şekil 4); F = 6 π r v (20) ifadesiyle verilir. 6 π r çarpanına "Stokes katsayısı" veya "sürtünme katsayısı" adı verilir. Sıvı içerisinde sabit v hızıyla düşen küre üzerine etkiyen sürtünme kuvveti, kürenin sıvı içerisindeki ağırlık kuvvetine eşittir. Böylece, mg = 6 π r v (21) veya 3 4 π r 3 ( 1-2 ) g = 6 π r v (22) ve buradan (23)

14 bağıntısı elde edilir. Böylece, yarıçapı r ve yoğunluğu 1 olan bir kürenin yoğunluğu 2 olan bir sıvı içerisindeki düşme hızı (v) bulunup; Eşitlik 23'den viskozitesi hesaplanabilir. Bu metot özellikle, büyük moleküllü polimerlerin derişik çözeltilerinde olduğu gibi, yüksek viskoziteye sahip çözeltiler için uygundur. Şekil 4. 2 yoğunluğundaki bir sıvı içerisinde düşmekte olan 1 yoğunluklu ve r yarıçaplı bir küre. Küreye yukarı doğru etkiyen sürtünme kuvveti ile kürenin sıvı içerisindeki ağırlık kuvvetinin birbirine eşit olduğu andaki sabit v hızı, "limit hız" olarak adlandırılır. 3.1.3. Döner Silindir Metodu Viskozite ölçümünde kullanılan diğer bir alet, döner silindir viskozimetresidir. Bu aletle, dış silindirde sıvının dönmesi sağlanır; bu içteki silindire bağlı olan tele bir tork (burkulma kuvveti) uygulanmasına yol açar. Alet, viskozitesi bilinen sıvılarla kalibre edilir ve böylece tork'tan viskozite hesaplanır. 3.2. Sıvıların Viskozitesi Üzerine Sıcaklık ve Basınç Etkisi Çoğu sıvıların viskozitesi, artan sıcaklıkla azalır. Boşluk (hole) teorisine göre, bir sıvı içerisinde boşluklar bulunmaktadır ve moleküller sürekli boşluklara hareket ederler. Bu olay akışa izin verir, fakat bir molekülün bir boşluğa taşınması bir aktivasyon enerjisine ihtiyaç duyduğundan enerji gerektirir. Yüksek sıcaklıklarda, aktivasyon enerjisi daha kolay temin edilebildiğinden, sıcaklık yükseldikçe sıvı daha kolay akar. Viskozitenin sıcaklıkla değişimi, aşağıdaki ifadeye oldukça iyi uyar: = A exp (Ea / T) (24) Burada Ea viskoz akışa ait aktivasyon enerjisidir. Bir sıvının akıcılığı da kimyasal reaksiyonlarda olduğu gibi sıcaklıkla üstel bir şekilde değiştiğinden, viskozite ölçümlerinde sıcaklık kontrolüne önem verilmektedir. Diğer yandan, artan basınçla bir sıvının viskozitesi azalır, çünkü basıncın arttırılması sıvı içerisindeki boşluk sayısını azaltır ve bunun sonucu moleküllerin hareketi zorlaşır. 3.3. Gazların Viskozitesi Bir akışkan içerisinde, farklı hızlarla hareket eden iki paralel plaka arasındaki sürtünme kuvvetinden dolayı, viskozitenin ortaya çıktığını gördük. Gazlara ait viskozite teorisi sıvılarınkinden çok farklıdır. Bu deneyde, bizim asıl konumuz sıvıların viskozitesi ile ilgili olduğundan, gazların viskozitesine çok kısa bir şekilde değineceğiz. Gazlarda, iki paralel plaka arasındaki sürtünme kuvvetinin doğması, moleküllerin bir plakadan bir diğerine geçmesinin bir sonucudur. Gazların viskozite modelini anlayabilmek için faydalı bir benzetme olarak; v kadar farklı hızlarla paralel hatlar üzerinde aynı yönde hareket eden iki treni göz önüne alabiliriz. Yolcuların bu trenden diğerine atlayarak eğlenen garip kişiler olduklarını düşünelim. Hızlı giden trenden yavaş giden trene atlayan bir yolcu yavaş giden trene m v kadar bir momentum aktarır ve bunun sonucu onun hızını artırıcı bir etki yapar. Bu olayın

15 aksi olursa, yani yavaş seyreden trenden hızlı seyreden trene bir yolcu atladığında m v kadar bir momentumu hızlıdan alır ve onu hızını yavaşlatıcı bir etki yapar. Sonuç olarak, trenlerin hızları eşitlenmeye doğru gider ve net etki trenler arasında sanki bir sürtünme varmış gibi kendini gösterir. İşte aynı durum akmakta olan gaz katmanları (veya düzlemleri) arasında söz konusudur. Gazlara ait viskozite ifadesi aşağıdaki şekilde verilmektedir. (m k T ) 1/2 = π 3/2 d 2 (25) Teorik olarak türetilmiş olan bu ifade deneysel olarak da doğrulanmıştır. Bu ifadeye göre bir gazın viskozitesi molekül çapına (d), molar kütleye (m) ve sıcaklığa (T) bağlıdır. Gazın yoğunluğu ve basıncı gazın viskozitesine etki etmez. Bu durum ilk bakışta şaşırtıcı gibi gözükmekte ise de, açıklanması zor değildir. Daha yüksek yoğunluklarda, bir tabakadan komşu tabakaya daha çok sayıda molekül atlar, fakat ortalama serbest yol () daha kısa olduğundan her bir atlama daha az momentum aktarımına yol açar. Böylece bu iki etki birbirini yok eder. Ayrıca Eşitlik 25'den viskozitenin sıcaklığın kareköküyle arttığı görülür. Deneysel olarak da doğrulanmış olan bu tahmin, sıvılardaki durumun tam tersidir. Sıcaklıkla viskozitenin artışını basitçe şöyle açıklayabiliriz: Sıcaklık yükseldikçe bir tabakadan komşu tabakaya daha çok sayıda molekül geçer ve böylece tabakalar arası sürtünme ve de viskozite artar. 3.4. Çözeltilerin Viskozitesi Temel prensiplere dayalı olarak çözeltilerin viskozitelerinin iyi bir şekilde irdelenmesi zor bir iştir. Bundan dolayı, çözeltilerin viskoziteleri daha ziyade deneysel olarak incelenmektedir. Özellikle, polimer moleküllerinin çözeltilerinin viskoziteleri incelenerek, polimer moleküllerinin büyüklüğü ve şekli hakkında bilgiler elde edilir. Su gibi bir sıvıya bir çözünen eklendiği zaman, genellikle viskozite artar. 3.5. Deneyin Amacı Bir sıvının değişik sıcaklıklarda viskozite katsayılarını bularak viskozluk enerjisini hesaplamak. 3.6. Deneyin Yapılışı Deney için gerekli alet ve malzemeler; sıcaklık ayarı yapılabilen termostat, Ubbelohde viskozimetresi, kronometre, saf su ve viskozitesi tayin edilecek başka bir sıvı. Yıkama suyu ile yıkanıp temizlenmiş Ubbelohde viskozimetresine belli hacimde saf su konup 20 C'deki termostata yerleştirilir. Sıcaklık dengesi kurulduktan sonra L ucuna takılan bir puar vasıtasıyla sıvının a çizgisinin üstüne çıkması sağlanır. Sonra serbest bırakılır. Sıvı a seviyesine geldiği anda kronometre çalıştırılır, b'ye geldiği anda durdurulur. Kronometrede ölçülen zaman aralığı, 20 C'de a ve b çizgileri arasında suyun akma süresidir. Termostatın sıcaklığı sırasıyla 25, 30, 35 ve 45 C'ye yükseltilerek her sıcaklıkta a ve b çizgileri arasından akma süreleri ölçülür. Viskozimetre yıkanıp iyice kurutulduktan sonra saf su için yapılan işlemlerin aynısı viskozluk enerjisi bulunacak sıvı içinde yapılır. Daha sonra aşağıdaki tablo düzenlenir. T(K) Suyun akış süresi (t, sn) Sıvının akış süresi (t, sn) Suyun yoğunluğu (do) Sıvının yoğunluğu Sıvının viskozitesi 1 / T Sıvı için log

3.7. Hesaplamalar -Suyun deney sıcaklıklarındaki yoğunluk ve viskozite değerleri literatürden bulunur. -Su için bulunan değerler kullanılarak 16 numaralı eşitlik yardımıyla 2. sıvının her bir sıcaklık değeri için viskozitesi hesaplanır. -Su ve 2. sıvının farklı sıcaklık değerleri için hesaplanan viskozite değerlerinin logaritmaları 18 numaralı eşitlikte gösterildiği gibi 1/T değerlerine karşı grafiğe geçirilir. Elde edilen grafiğin eğiminden E değeri, y eksenini kestiği noktadan ise A değeri hesaplanır. -Yapılan hesaplamalar ve grafiklerden iki farklı sıvının viskoziteleri ve viskozite değerlerinin sıcaklıkla değişimleri yorumlanır. SOULA 1. Viskozite ve viskozite çeşitlerini açıklayarak yazınız. 2. Akışkan, newtonyan akışkan, newtonyan olmayan akışkan, laminer akış ve türbülent akış ifadelerini tanımlayınız. 3. Viskozitenin sıcaklık ve basınçla değişimini kısaca açıklayınız. 4. Viskozite kavramları hangi alanlarda önemlidir açıklayınız. NOT: Öğrencilerin deneye gelirken yukarıdaki soruları laboratuvar ajandalarına cevaplamış olmaları gerekmektedir.