RF MİKROELEKTRONİK GÜRÜLTÜ



Benzer belgeler
RF MİKROELEKTRONİK DÜŞÜK GÜRÜLTÜLÜ YÜKSELTİCİ (LNA)

RF MİKROELEKTRONİK TEMEL BİLGİLER

ANALOG FİLTRELEME DENEYİ

DENEY 5: FREKANS CEVABI VE BODE GRAFİĞİ

Elektrik Devre Lab

Güç Spektral Yoğunluk (PSD) Fonksiyonu

DENEY 7 BJT KUVVETLENDİRİCİLERİN FREKANS CEVABI

Deney 2: FARK YÜKSELTEÇ

EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular

ANALOG ELEKTRONİK - II YÜKSEK GEÇİREN FİLTRE

8. FET İN İNCELENMESİ

DENEY NO:2 BJT Yükselticinin Darbe Cevabı lineer kuvvetlendirme Yükselme Süresi Gecikme Çınlama Darbe üst eğilmesi

DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri

Çukurova Üniversitesi Biyomedikal Mühendisliği

EEM 202 DENEY 9 Ad&Soyad: No: RC DEVRELERİ-II DEĞİŞKEN BİR FREKANSTA RC DEVRELERİ (FİLTRELER)

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir.

DENEY 1:JFET TRANSİSTÖR VE KARAKTERİSTİKLERİ

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ

DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ

AREL ÜNİVERSİTESİ DEVRE ANALİZİ

ELM 331 ELEKTRONİK II LABORATUAR DENEY FÖYÜ

Bölüm 14 Temel Opamp Karakteristikleri Deneyleri

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU AKTİF FİLTRELER

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 2008 DEVRELER II LABORATUARI

DENEY 6: MOSFET. Şekil 6.1. n ve p kanallı MOSFET yapıları

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUVARI I

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME

DENEY FÖYÜ 4: Alternatif Akım ve Osiloskop

DENEY-3. FET li Yükselticiler

İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

Bölüm 12 İşlemsel Yükselteç Uygulamaları

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Seri ve Paralel RLC Devreleri

Yükselteçlerde Geri Besleme

Şekil 1. n kanallı bir FET in Geçiş ve Çıkış Özeğrileri

BJT (Bipolar Junction Transistor) :

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü

Şekil 1. Geri beslemeli yükselteçlerin genel yapısı

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU

ANALOG HABERLEŞME (GM)

Karadeniz Teknik Üniversitesi Mühendislik Fakültesi * Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı * Elektronik Laboratuarı I

Bölüm 7 FET Karakteristikleri Deneyleri

6. DENEY Alternatif Akım Kaynağı ve Osiloskop Cihazlarının Kullanımı

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV)

BÖLÜM 2 İKİNCİ DERECEDEN FİLTRELER

Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Laboratuvarı I İŞLEMSEL YÜKSELTECİN TEMEL ÖZELLİKLERİ VE UYGULAMALARI

Çukurova Üniversitesi Biyomedikal Mühendisliği

Deney 2: FET in DC ve AC Analizi

DENEY 25 HARMONİK DİSTORSİYON VE FOURIER ANALİZİ Amaçlar :

ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ

AC DEVRELERDE BOBİNLER

ALÇAK FREKANS GÜÇ YÜKSELTEÇLERİ VE ÇIKIŞ KATLARI

11. SINIF SORU BANKASI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 6. Konu ALTERNATİF AKIM VE TRANSFORMATÖRLER TEST ÇÖZÜMLERİ

SAYISAL İŞARET İŞLEME LABORATUARI LAB 5: SONSUZ DÜRTÜ YANITLI (IIR) FİLTRELER

DENEY NO:1 BJT Yükselticinin frekans Cevabı

DENEY 9: JFET KARAKTERİSTİK EĞRİLERİ

Kinematik Modeller. Kesikli Hale Getirilmiş Sürekli Zaman Kinematik Modeller: Rastgele giriş yok ise hareketi zamanın bir polinomu karakterize eder.

8. ALTERNATİF AKIM VE SERİ RLC DEVRESİ

Bölüm 10 İşlemsel Yükselteç Karakteristikleri

ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ

DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP

MOSFET. MOSFET 'lerin Yapısı

Deney 3: Opamp. Opamp ın (işlemsel yükselteç) çalışma mantığının ve kullanım alanlarının öğrenilmesi, uygulamalarla pratik bilginin pekiştirilmesi.

DENEY 8. OPAMP UYGULAMALARI-II: Toplayıcı, Fark Alıcı, Türev Alıcı, İntegral Alıcı Devreler

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

BÖLÜM 4 RADYO ALICILARI. 4.1 Süperheterodin Alıcı ANALOG HABERLEŞME

Çukurova Üniversitesi Biyomedikal Mühendisliği

Bölüm 3 AC Devreler. 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak.

DENEY TARİHİ RAPOR TESLİM TARİHİ NOT

DENEY 6: SERİ/PARALEL RC DEVRELERİN AC ANALİZİ

DENEY 10: SERİ RLC DEVRESİNİN ANALİZİ VE REZONANS

Çukurova Üniversitesi Biyomedikal Mühendisliği

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK222 TEMEL ELEKTRİK LABORATUARI-II

REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc

ALTERNATİF AKIMIN TEMEL ESASLARI

ĐŞLEMSEL YÜKSELTEÇLER

Öğrenci No Ad ve Soyad İmza DENEY 3. Tümleşik Devre Ortak Source Yükselteci

3.5. Devre Parametreleri

Elektrik Elektronik Mühendisliği Bölümü Elektronik Laboratuarı I DENEY-2 TEMEL YARI ĐLETKEN ELEMANLARIN TANIMLANMASI (BJT, FET, MOSFET)

DENEY 7 Pasif Elektronik Filtreler: Direnç-Kondansatör (RC) ve Direnç-Bobin (RL) Devreleri

ENDÜSTRİYEL ELEKTRONİK İŞLEMSEL KUVVETLENDİRİCİLERİN LİNEER UYGULAMALARI HAKAN KUNTMAN EĞİTİM-ÖĞRETİM YILI

Alternatif Akım Devre Analizi

DENEY 8 FARK YÜKSELTEÇLERİ

KABLOSUZ İLETİŞİM

Zıplayan Tanecikler Faz geçişleri ve kararsızlık için modelleme

* DC polarma, transistörün uçları arasında uygun DC çalışma gerilimlerinin veya öngerilimlerin sağlanmasıdır.

DENEY 5: İŞLEMSEL YÜKSELTEÇLER ve UYGULAMA DEVRELERİ

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1

Deneyle İlgili Ön Bilgi:

11. SINIF SORU BANKASI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 6. Konu ALTERNATİF AKIM VE TRANSFORMATÖRLER TEST ÇÖZÜMLERİ

ALTERNATİF AKIMIN TANIMI

Ders İçerik Bilgisi. Dr. Hakan TERZİOĞLU Dr. Hakan TERZİOĞLU 1

DENEYİN AMACI: Bu deneyde MOS kuvvetlendiricilerden ortak kaynaklı ve ortak akaçlı devreler incelenecektir.

6. Bölüm: Alan Etkili Transistörler. Doç. Dr. Ersan KABALCI

YÜZÜNCÜ YIL ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG ELEKTRONİK DENEY RAPORU

Transkript:

RF MİKROELEKTRONİK GÜRÜLTÜ

RASTGELE BİR SİNYAL Gürültü rastgele bir sinyal olduğu için herhangi bir zamandaki değerini tahmin etmek imkansızdır. Bu sebeple tekrarlayan sinyallerde de kullandığımız ortalama güç kavramını kullanarak gürültünün büyüklüğünü ifade ederiz. Bu integralde kullanılan T periyodu gürültü sinyalinin en düşük frekanslı parçasının periyodunun birkaç katı olacak şekilde alınır.

GÜRÜLTÜ SPEKTRUMU Herhangi bir sinyalin 10 khz frekansındaki değerini ölçmek için diğer bütün spektrumu filtreleyip 10 khz deki ortalama gücünü ölçmemiz gerekir

GÜRÜLTÜ SPEKTRUMU Gürültü sinyalinin her bir frekansta 1 Hz lik filtrelerden geçirilmiş halinin gücü ölçüldüğünde spektral güç dağılımı S x (f)elde edilmiş olur.

SPEKTRAL GÜÇ DAĞILIMI (SGD) S x (f)in altında kalan toplam alan x(t)nin ortalama gücüne eşittir. İki taraflı spektrada sol taraf sağ tarafın simetriğidir fakat güç eksenindeki değerler yarıya bölünmüştür. Sonuçta alttaki alan aynıdır. Çift taraflı Tek taraflı

DİRENÇ GÜRLÜTÜSÜ R1 değerine sahip bir direncin tek taraflı SGD si aşağıdaki gibidir. Denklemde k= 1.38 10-3 J/KBoltzmann sabitidir, T mutlak sıcaklıktır.böylesi bir SGD dağılımı beyaz olarak anılır çünki beyaz ışık gibi bütün frekans değerlerinden eşit güç miktarında sinyali içinde barındırır. (a) Bu gürültü voltajının ortalama güç değeri nedir? (b) S v (f)nin birimi nedir? (c) 50Ωluk bir direncin oda sıcaklığında 1 Hz deki gürültü voltajını hesaplayın.

DİRENÇ GÜRLÜTÜSÜ (a) S v (f)in altındaki alan sonsuz olarak görünmektedir. Bu durum mümkün değildir çünki dirençteki gürültünün kaynağı ortamdaki sonlu ısıdır. Gerçekte S v (f)f> 1 THz frekanslarında azalmaya başlar ve toplam gürültü enerjisi sonlu hale gelir. Bu durumda direnç gürültüsü gerçekte beyaz değildir.

DİRENÇ GÜRLÜTÜSÜ (b) S v (f)in birimi (V /Hz)dir. Bu durumda SGD yi aşağıdaki gibi yazmak mümkündür V = 4kTR n Burada V n V n in 1 Hz bant genişliğindeki ortalama gücünü temsil etmektedir. Burada ortalama işlemi aynı gürültü farklı zamanlarda birkaç sefer ölçülerek alınır. Bunu belirtmek için üst çizgi kullanılır.

DİRENÇ GÜRLÜTÜSÜ (c) T=300 K de 50 Ωluk bir direnç için = 4kTR = 4 1.38 10 3 300 50 V n = V n 8.8 10 19 V Hz V n = 0.91 nv Hz

TRANSFER FONKSİYONU ETKİSİ SGD nin tanımlanmasındaki en büyük sebep deterministik sinyaller için frekans ekseninde kullanılan operasyonların rastgele sinyaller içinde kullanılmasını sağlamaktır. Çıkıştaki SGD girişteki SGD nin devrenin transfer fonksiyonunun mutlak değerinin karesiyle çarpılmasıdır. Karenin sebebi SGD vin V li olmasıdır.

CİHAZ GÜRÜLTÜSÜ Herhangi bir cihazın gürültüsü seri bağlanmış bir voltaj kaynağı yada paralel bağlanmış bir akım kaynağı olarak modellenebilir. Kaynağın kutuplarının yönü önemli değildir fakat bu kutupların hesaplamalar sırasında aynı olması önemlidir.

ÖRNEK Aşağıdaki şekilde görülen RLC devresinin çıkışındaki gürültü voltajının SGD sini çiziniz R 1 in gürültüsünü I n1 gürültü kaynağı olarak modellediğimizde V n /I n1 oranı RLC devresinin toplam empedansı olan Z T ye eşittir. Bu durumda f 0 da L 1 ve C 1 rezonansa girerek devreyi R1 den ibaret hale dönüştürür ve bu noktada gürültü 4kTR 1 e eşit olur. f 0 ın altındaki ve üstündeki frekanslarda devrenin empedansı düşer ve çıkıştaki gürültü voltajıda düşer

DEVRE GÜRÜLTÜSÜ Pasif ve resiprokal bir devrenin iki terminali arasından görünen empedansın reel kısmı Re{Z out }ise bu devrenin bu iki terminal arasından görünen termal SGD si 4kTRe{Z out } olur.

MOSFET de GÜRÜLTÜ Doyum bölgesinde çalışan bir MOS transistörün termal gürültüsü şekilde görülen akım kaynağı yada voltaj kaynağı şeklinde modellenebilir.

MOSFET de GÜRÜLTÜ Burada γuzun kanallı transistörlerde 0.67 den kısa kanallı transistörlerde ye kadar değişen bir katsayıdır. g m ise kısa kanal etkisi W görmezden gelindiğinde g = µ C V V dir m n ox L ( ) GS T

KAPI DİRENCİNİN GÜRÜLTÜSÜ Yüksek frekans devrelerinde kullanılan transistör tasarımlarında kapı uzunluğu fazla olduğundan kapı direncinin termal gürültüsü de görmezden gelinemeyecek kadar fazla olur. Fakat kapı direncinin gürültü modellemesi klasik direnç gürültüsüne göre farklı olduğundan ayrıca belirtilmesi gerekir.

KAPI DİRENCİNİN GÜRÜLTÜSÜ Şekil a daki gibi bir kapı için kapı direnci dir. Burada R kapı iletkeninin birim karesinin direncidir. Bu kapı direncinin SGD si RG 4kT dir. 3 İyi bir tasarımda

TİTREŞİM GÜRÜLTÜSÜ Titreşim gürültüsü kapı yalıtkanı ile yarıiletken yüzey arasında hapsolmuş yüklerin yol açtığı frekansın tersiyle orantılı SGD ye sahip bir gürültüdür. Titreşim gürültüsünün SGD si: Bu gürültü voltajı kapı terminaline seri bağlanır.

TİTREŞİM GÜRÜLTÜSÜ Şeklindeki titreşim gürültüsü voltajı şekilde görüldüğü gibi bir akım kaynağı şekline dönüştürülüp de bağlanabilir. Bu durumda akım kaynağının değeri aşağıdaki gibidir.

KÖŞE FREKANSI Köşe frekansı titreşim gürültüsünün değerinin termal gürültüye eşit olduğu frekans değeridir. Hesaplamada kapı direncinin gürültüsü görmezden gelinmiştir

BJT GÜRÜLTÜSÜ Bipolar transistörlerin base emitör ve kollektör terminallerinin iç dirençleri gürültü oluştururlar. Bunların haricinde bipolar transistörlerde shot gürültüsü denen bir gürültü vardır. Bu gürültü şekilde görülen iki akım kaynağı ile modellenir.

GİRİŞTE GÖSTERİLEN GÜRÜLTÜ Herhangi bir gürültülü devrenin içindeki gürültü kaynakları girişte gürültü voltajı ve gürültü akımı olarak iki kaynaklı bir şekilde gösterilebilir.

GİRİŞTE GÖSTERİLEN GÜRÜLTÜ Gürültü voltajını bulmak için iki devrenin de girişleri kısa devre yapılır ve çıkıştaki gürültü voltajları birbirine eşitlenir. Gürültü akımını bulmak için iki devrenin girişleri açık devre yapılır ve çıkıştaki gürültü voltajları eşitlenir.

GÜRÜLTÜ KATSAYISI Gürültü katsayısı bir devrede girişten çıkışa SNR (sinyal gürültü oranı) in ne kadar değiştiğini gösteren bir parametredir. Bu parametre sadece devrenin gürültüsüne bağlı değildir. Aynı zamanda önceki basamaktan gelen SNR değerinede bağlıdır. Örneğin giriş sinyalindeki gürültü değeri sıfır olsaydı NF sonsuz olurdu.

GÜRÜLTÜ KATSAYISI

NF GÜRÜLTÜ KATSAYISI = 1+ α V n A v 1. V Rs Yukarıda verilen gürültü katsayısı formülünün sağ tarafı aşağıdaki şekilde sadeleştirilebilir. A 0 = α n, out = Vn + A v V Rs = 4kTR s V A 4kTR 0 s

GÜRÜLTÜ KATSAYISI Gürültü katsayısını hesaplamanın iki yöntemi vardır. 1. Toplam çıkış gürültüsünü devrenin voltaj kazancına böleriz ve çıkan sonucu kaynak gürültüsü olan R s in gürültüsüne göre normalize ederiz.. Yükselticinin kendi çıkış gürültüsünü hesaplarız bunu voltaj kazancına böleriz çıkan sonucuda R s in gürültüsüne göre normalize ederiz çıkan sonuca bir ekleriz. Vn 1 NF = 1+. α A V v Rs

ÖRNEK Şekildeki R p direncinin gürültü katsayısını hesaplayın.

ÖRNEK Şekilde görünen ortak source devresinin gürültü katsayısını R S kaynak direncine göre hesaplayınız. M 1 FET inin kapasitanslarını ve titreşim gürültüsünü görmezden geliniz ve I 1 akım kaynağının ideal olduğunu varsayınız.

ÇÖZÜM Gürültü kaynakları eklenince devre şekildeki hale döner. Devreyi analiz ettiğimizde gürültü katsayısı aşağıdaki gibi çıkar.

KASKAD BAĞLANTIDA NF Tek bir basamak için: Vn 1 NF = 1+. = 1+ α A V v Aşağıda görülen kaskad bağlantıya tek bir blok gibi bakarsak hesaplamamız gerekenler bloğun çıkış gürültü voltajı ve yansımaları da hesaba katan voltaj kazancıdır. Rs V A n 0 A 1. V Rs 0 = α A v

KASKAD BAĞLANTIDA NF Yansımaları hesaba katan voltaj kazancı: Unutulmaması gerekir ki 1. basamağın girişinde yansıma olduğu gibi 1. basamağın çıkışı ile. basamağın girişi arasında da yansıma olur ve bu yansıma sağ altta görülen devre kullanılarak hesaplanır.

KASKAD BAĞLANTIDA NF İki basamağın çıkışta oluşturduğu gürültü önce birinci basamağın çıkış gürültüsünün birinci ile ikinci arasındaki yansıma katsayısı ve ikinci basamğın voltaj kazanıcının her ikisinin kareleriyle çarpılması ve bu sonuca ikinci basamağın çıkış gürültüsünün eklenmesiyle bulunur. V n = V n + V n1 ( R + R ) in R in out1 A v

KASKAD BAĞLANTIDA NF Bulunan değerler NF formülüne yerleştirilince 0 1. 1 RS n t V A V NF + = ( ) 1 1 v out in in n n n A R R R V V V + + =

KASKAD BAĞLANTIDA NF Toplam NF değerini birinci ve ikinci basamakların NF değeri cinsinden aşağıdaki gibi ifade ederiz. NF t formülünün ikinci kısmının paydası kullanılabilir güç kazancı olarak bilinir ve tam uyumlu bir yüke verilen maksimum çıkış gücünün (P out,av ) tam uyumlu bir kaynaktan alınan maksimum giriş gücüne (P S,av ) oranıdır.

KASKAD BAĞLANTIDA NF O halde ikinci basamağın NF değeri birinci basamağın kullanılabilir güç kazancı oranında azalmış olur. Bu formülü çok basamaklı kaskad bağlantılar için aşağıdaki gibi genelleyebiliriz. Bu demek oluyor ki kaskad bağlantılarda sonradan gelen basmakların gürültüsü önemsiz hale geliyor ve gürültüsü en önemli olan basamak ilk basamak oluyor. Hatırlanacağı gibi eğrisellikte durum tam tersidir.

ÖRNEK Şekildeki gibi kaskad bağlanmış ortak source devresinin gürültü katsayısını hesaplayınız. FET kapasitanslarını ve titreşim gürültülerini görmezden geliniz.

ÇÖZÜM Öncelikle NF

ÖRNEK Şekilde görülen devrenin gürültü katsayısını hesaplayınız. FET kapasitanslarını titreşim gürültüsünü, kısa kanal etkilerini, ve body etkisini görmezden geliniz.

ÇÖZÜM Kısa kanal etkisini görmezden gelirsek r 0 sonsuz olur.