STATİK-MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

Benzer belgeler
Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü

1. ÇEKME DENEYİ 1.1. DENEYİN AMACI

ÇEKME DENEYİ 1. DENEYİN AMACI

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması.

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. fatihay@fatihay.net

ÇEKME DENEYİ (1) MALZEME MÜHENDİSLİĞİ BÖLÜMÜ 1. DENEYİN AMACI:

TAHRİBATLI MALZEME MUAYENESİ DENEYİ

2. Amaç: Çekme testi yapılarak malzemenin elastiklik modülünün bulunması

ÇEKME DENEYİ ve ÇEKME DAYANIMI. ÇELİĞİN σ-ε DAVRANIŞI Şekil Değiştirme sertleşmesi

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ ve MALZEME MÜHENDİSLİĞİ BÖLÜMÜ METALİK MALZEMELERİN ÇEKME VE BASMA DENEY FÖYÜ


MALZEME BİLİMİ. Mekanik Özellikler ve Davranışlar. Doç. Dr. Özkan ÖZDEMİR. (DERS NOTLARı) Bölüm 5.

ÇEKME DENEYĠ. ġekil 1. Düşük karbonlu yumuşak bir çeliğin çekme diyagramı.

Malzemelerin Mekanik Özellikleri

MAK 305 MAKİNE ELEMANLARI-1

MUKAVEMET DERSİ. (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ

METALURJİ VE MALZEME MÜH. LAB VE UYG. DERSİ FÖYÜ

BİLGİSAYAR DESTEKLİ TASARIM VE ANALİZ (ANSYS)

MALZEMELERİN MEKANİK ÖZELLİKLERİ

METALİK MALZEMELERİN ÇEKME DENEYİ

Burma deneyinin çekme deneyi kadar geniş bir kullanım alanı yoktur ve çekme deneyi kadar standartlaştırılmamış bir deneydir. Uygulamada malzemelerin

= σ ε = Elastiklik sınırı: Elastik şekil değişiminin görüldüğü en yüksek gerilme değerine denir.

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

ÇEKME DENEYİ. Şekil. a) Çekme Deneyi makinesi, b) Deney esnasında deney numunesinin aldığı şekiler

T.C. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ M-220 ÇEKME DENEYİ

Bükme sonrasında elde edilmeye çalışılan parça şekli için geri yaylanma durumu dikkate alınmalıdır.

MUKAVEMET SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-I DERS NOTU

mukavemeti τ MPa. Sistemde emniyet katsayısı 4 olarak verildiğine göre; , pimlerin kayma akma mukavemeti

FZM 220. Malzeme Bilimine Giriş

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

MEKATRONĐK EĞĐTĐMĐNDE LABORATUAR UYGULAMALARINDA KULLANILMAK ÜZERE MASAÜSTÜ ÇEKME CĐHAZI TASARIMI

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu

Malzemenin Mekanik Özellikleri

PLASTİK ŞEKİL VERME YÖNTEMİ

Malzeme Bilimi Ve Labaratuvarı MEKANİK ÖZELLİKLER

ÇEKME/EĞME DENEY FÖYÜ

Mekanik Davranışın Temel Kavramları. Cisimlerin uygulanan dış kuvvetlere karşı gösterdiği tepkiye mekanik davranış denir.

MUKAVEMET(8. Hafta) MALZEMENİN MEKANİK ÖZELLİKLERİ ÇEKME DENEYİ

Uygulanan dış yüklemelere karşı katı cisimlerin birim alanlarında sergiledikleri tepkiye «Gerilme» denir.

MECHANICS OF MATERIALS

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme

BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ

Yrd.Doç.Dr. Hüseyin YİĞİTER

BURULMA DENEYİ 2. TANIMLAMALAR:

FZM 220. Malzeme Bilimine Giriş

METALİK MALZEMELERE UYGULANAN MEKANİK DENEYLER. (Ders Notları) Hazırlayan Prof. Dr. Gençağa Pürçek

BÖLÜM 5 MALZEMELERİN MEKANİK ÖZELLİKLERİ

MAK 305 MAKİNE ELEMANLARI-1

BÜKME. Malzemenin mukavemeti sınırlı olduğu için bu şekil değişimlerini belirli sınırlar içerisinde tutmak zorunludur.

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ

MALZEMELERİN MEKANİK ÖZELLİKLERİ

Kırılma Hipotezleri. Makine Elemanları. Eşdeğer Gerilme ve Hasar (Kırılma ve Akma) Hipotezleri

MALZEME BİLGİSİ DERS 8 DR. FATİH AY. fatihay@fatihay.net

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Bölüm-4 MALZEMELERDE ÇEKME-BASMA - KESME GERİLMELERİ VE YOUNG MODÜLÜ Malzemelerde Zorlanma ve Gerilme Şekilleri

LABORATUAR DENEY ESASLARI VE KURALLARI

Mukavemet. Betonarme Yapılar. Giriş, Malzeme Mekanik Özellikleri. Dr. Haluk Sesigür İ.T.Ü. Mimarlık Fakültesi Yapı ve Deprem Mühendisliği

Prof.Dr.İrfan AY. Arş.Gör.T.Kerem DEMİRCİOĞLU. Öğr. Murat BOZKURT. Balıkesir

Dişli çarklarda ana ölçülerin seçimi

PLASTİK ŞEKİLLENDİRME YÖNTEMLERİ

T.C. TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ

8. Hafta. Kirişlerin Kesme Kuvveti ve Eğilme E. Kiri. görece. beam) Nedir?; MUKAVEMET I : I : MUKAVEMET I MUKAVEMET I : 09/10 5.H. (kalınlıkxgenişlik)

BARTIN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ METALURJĠ VE MALZEME MÜHENDĠSLĠĞĠ

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ

REOLOJĐ. GERĐLME, ŞEKĐL DEĞĐŞĐMĐ ve ZAMAN ĐLĐŞKĐLERĐ

Malzemelerin Deformasyonu

Malzeme yavaşça artan yükler altında denendiği zaman, belirli bir sınır gerilmede dayanımı sona erip kopmaktadır.

Şekil 2.1. Yük uzama eğrisi [2].

MAKİNE ELEMANLARI DERS SLAYTLARI

YAPI MALZEMELERİ DERS NOTLARI

YTÜ Makine Mühendisliği Bölümü Mekanik Anabilim Dalı Özel Laboratuvar Dersi Strain Gauge Deneyi Çalışma Notu

BURULMA DENEYİ 2. TANIMLAMALAR:

BURSA TEKNĠK ÜNĠVERSĠTESĠ DOĞA BĠLĠMLERĠ, MĠMARLIK VE MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNE MÜHENDĠSLĠĞĠ BÖLÜMÜ

Burulma (Torsion) Amaçlar

Şekil 1.1. Beton çekme dayanımının deneysel olarak belirlenmesi

DENEY 2 ANKASTRE KİRİŞLERDE GERİNİM ÖLÇÜMLERİ

SERTLİK ÖLÇME DENEYLERİ

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ YORULMA DENEY FÖYÜ

TAHRİBATLI MALZEME MUAYENESİ

MAK 305 MAKİNE ELEMANLARI-1

DAYANIM İLE İLİŞKİLİ MALZEME ÖZELİKLERİ

DENEY NO: 9 ÜÇ EKSENLİ BASMA DAYANIMI DENEYİ (TRIAXIAL COMPRESSIVE STRENGTH TEST)

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ

İmal Usulleri. Plastik Şekil Verme

Yüzeysel Temellerin Sayısal Analizinde Zemin Özelliklerindeki Değişimin Etkisi

MEKANİK ANABİLİMDALI MUKAVEMET-2 UYGULAMA PROBLEMLERİ SAYFA:1

JFM 301 SİSMOLOJİ ELASTİSİTE TEORİSİ Elastisite teorisi yer içinde dalga yayılımını incelerken çok yararlı olmuştur.

MUKAVEMET FATİH ALİBEYOĞLU

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele

BETONUN DİĞER Doç. Dr. Halit YAZICI

MALZEMELERİN MEKANİK ÖZELLİKLERİ ve MALZEME MUAYENESİ

MUKAVEMET I : 09/10 4.H. Gerilme & Genleme

MUKAVEMET Öğr. Gör. Fatih KURTULUŞ

BETONARME KESİTLERİN EĞİLME MUKAVEMETLERİNİN BELİRLENMESİNDE TEMEL İLKE VE VARSAYIMLAR

MMT407 Plastik Şekillendirme Yöntemleri

İNŞAAT MÜHENDİSLİĞİNE GİRİŞ

Şekil Çekmeye veya basmaya çalışan kademeli milin teorik çentik faktörü kt

Makine Elemanları I Prof. Dr. İrfan Kaymaz. Temel bilgiler-flipped Classroom Mukavemet Esasları

Transkript:

STATİK-MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ

Çekme deneyi test numunesi

Çekme deney cihazı Elastik Kısımda gerilme: σ=eε

Çekme deneyinin amacı; malzemelerin statik yük altındaki elastik ve plastik davranışlarını belirlemektir. Bunun için boyutları standartlara uygun daire veya dikdörtgen kesitli deney parçası; çekme cihazına bağlanarak, eksenel ve değişken kuvvetler uygulanır. Çekme cihazı esas olarak; birbirine göre aşağı ve yukarı hareket edebilen, deney parçasının bağlandığı iki çene ve bunlara hareket veya kuvvet veren, bu iki büyüklüğü ölçen ünitelerden oluşur. Çenelerden birisi sabit hızda hareket ettirilerek deney parçasına değişken miktarlarda çekme kuvveti uygulanır ve bu kuvvete karşılık gelen uzama kaydedilir.

Küçük kuvvet seviyelerinde uzama miktarı kuvvet ile doğru orantılıdır. Malzeme elastik davranış içindedir; yani kuvvet kaldırılınca uzama sıfırlanır. Bu karakter P noktasına kadar devam eder. Orantı limiti P den sonra lineer fonksiyon eğimini değiştirir. Ancak elastik davranış devam eder. Elastik davranış E Elastik Limiti noktasında sona erer. E den sonra kalıcı; yani plastik deformasyonlar başlar. Kuvvet azaltıldığında lineer fonksiyona paralel bir yol izler. Ancak kuvvetin sıfır olduğu yerde deformasyon artık sıfır olmaz, belirli bir plastik deformasyon kalır. Malzeme yüklenmeye devam edilirse Y noktasında akar. Akma noktasında kuvvet aynı iken büyük miktarda plastik deformasyon oluşur. Akan malzeme çalışma sertleşmesi ne uğrar ve daha mukavim hale gelerek daha fazla kuvvet alabilir hale gelir.

Bu malzeme üzerindeki kuvvet daha da arttırılarak U noktasına ulaşılır. U noktası maksimum gerilme noktası olup, burada malzeme kesitinde lokal daralmalar başlar. Buna malzemenin boyun vermesi denir. Boyun verme de malzemenin çalışma sertleşmesine uğramasına sebep olur ve malzeme daha fazla gerilimler alabilir; ancak boyun bölgesinde kesit alanı daraldığından taşıdığı net kuvvet azalır. Numune genellikle kontrolsüz bir şekilde K noktasına ilerler ve orada kopar. Kuvvet-uzama eğrisinin altında kalan alan o numuneyi bozunuma uğratmak için gereken enerjiyi eşit olup; tokluk adı verilir.

Kuvvet-uzama eğrisi daha sonra yeniden ölçeklendirilir. Uzamalar malzemenin ilk uzunluğuna bölünerek birim-uzama ya çevrilir. Aynı şekilde kuvvet numunenin ilk kesit alanına bölünerek gerilim hesaplanır ve dikey eksen tekrar ölçeklendirilir. Malzeme kopana kadar önemli miktarda deformasyona uğradıysa sünek, az deforme olmuşsa gevrek yapıya sahiptir.

TANIMLAMALAR ve TEORİK BİLGİ Gerilme (σ): Birim alana etkiyen yük anlamına gelir ve aşağıdaki formülle hesaplanır. Birim Şekil Değiştirme (ε): Malzemeye kuvvet uygulandığı zaman oluşan boy değişiminin kuvvet uygulanmadan önceki ilk boya oranı. Elastisite Modülü (E): Malzemenin dayanımının (mukavemetinin) ölçüsüdür. Birim uzama ile normal gerilme (çekme ya da basma gerilmesi) arasındaki doğrusal ilişkinin bir sonucu olup birim uzama başına gerilme olarak tanımlanır. Birim uzama ile normal gerilme (çekme ya da basma gerilmesi) arasındaki doğrusal ilişki şöyle tanımlanabilir: Malzemeye kuvvet uygulandığında, malzemede meydana gelen uzamalar elastik sınırlar içinde gerilmelerle orantılıdır. Buna Hooke Kanunu adı verilmektedir. Elastisite modülü malzemeye ait karakteristik bir özelliktir.

Akma dayanımı ( a ): Uygulanan çekme kuvvetinin yaklaşık olarak sabit kalmasına karşın, plastik şekil değiştirmenin önemli ölçüde arttığı ve çekme diyagramının düzgünsüzlük gösterdiği kısma karşı gelen gerilme değeridir. Çekme dayanımı ( ç ): Bir malzemenin kopuncaya veya kırılıncaya kadar dayanabileceği en yüksek çekme gerilmesi olarak tanımlanır. Bu gerilme, çekme diyagramındaki en yüksek gerilme değeri olup, aşağıdaki formül ile bulunur. Kopma Gerilmesi (σ K ): Numunenin koptuğu andaki gerilme değeridir.

Yüzde Kopma uzaması (KU): Çekme numunesinin boyunda meydana gelen en yüksek yüzde plastik uzama oranı olarak tanımlanır. Çekme deneyine tabi tutulan numunenin kopan kısımlarının bir araya getirilmesi ile son boy ölçülür ve boyda meydana gelen uzama bağıntısı ile bulunur. Burada L o numunenin ilk ölçü uzunluğunu, L k ise numunenin kırılma anındaki boyunu gösterir. Kopma uzaması ise; bağıntısı yardımıyla belirlenir. Bu değer malzemenin sünekliğini gösterir. Yüzde Kesit Daralması (KD): Çekme numunesinin kesit alanında meydana gelen en büyük yüzde daralma veya büzülme oranı olup; bağıntısı ile hesaplanır. Burada A 0 deney numunesinin ilk kesit alanını, A k ise kırılma anındaki kesit alanını veya kırılma yüzeyinin alanını gösterir. A k nın hesaplanması isçin hacmin sabit kalacağı ifadesi kullanılır. Kesit daralması, kopma uzaması gibi sünekliğin bir göstergesidir. Sünek malzemelerde belirgin bir büzülme veya boyun verme meydana gelirken, gevrek malzemeler büzülme göstermezler. Şekil 2 de gevrek ve sünek malzemelerin kırılma davranışları şematik olarak gösterilmiştir.

Sünek Kırılma: Malzeme ilk önce plastik deformasyona uğrar, ardından kırılma meydana gelir. Gevrek Kırılma: Malzeme deformasyona uğramadan kırılır. Sünek ve Gevrek Malzemelere Ait Gerilme - Zorlanma Eğrileri

Gevrek Kayma Sünek Tam Sünek

Gevrek malzemenin kırılma şekli (b)sünek malzemenin kırılma şekli.

Çekme halinde σ gerilmesi ile oluşan ε şekil değiştirmesi arasındaki oran lineer elastik cisimlerde sabittir ve bu sabite E, elastisite modülü denir. Hooke yasası adı verilen bu bağıntıda çekme elastisite modülüne "Young modülü" de denir. Genellikle basınç halindekine eşit değerdedir.

yalnız elastik şekil değişimi yapan malzemelerde geçerlidir. Kil, bakır, kurşun gibi kolay şekillendirilen, plastik şekil değişimi yapan malzemelerde, çok düşük bir elastiklik limiti sonunda malzemede akma görülür.

Mühendislik açısından, malzemenin şekil değişimlerine elastik karşı koymasını gösterdiğinden, E'ninönemi çok büyüktür çeliğin elastisitemodülü 2.1 x 105MPa, alüminyum'un 0.7 x 105MPa dir. Bu durumda çelik, alüminyumdan 3 misli rijittirveya aynı yükü taşıyan aynı boyutlardaki bir çelik çubuk, bir alüminyum çubuğun üçte biri kadar uzayacaktır. Bu durum eğilme için de söz konusudur

Basma Deneyi

KESME DENEYİ ve KESME DAYANIMI Bir eksene göre birbirine zıt ve aralarında çok küçük uzaklık bulunan iki kuvvetin malzemeye etkimesi sonucu malzemede kesme gerilmeleri ve şekil değişimleri görülür.

KESME DENEYİ ve KESME DAYANIMI Bu deneyde yalnızca açılarda değişiklikler olur. Ayrıca saptanması en zor ve en az bilinen dayanımdır

Bir cisimde çekme ve basınç halinde gerilmeler ile birim şekil değiştirmeler arasında bir orantı var ise, böyle bir cisim basit kayma halinde de aynı özelliğe sahip olabilir Buradaki orantılılık sabiti olan G katsayısına kayma modülü denilmektedir.

G ve E arasında da şöyle bir bağıntı vardır: Burada, ν Poisson oranıdır (Basınç ve çekme durumları için oranının eşit olduğu varsayılmıştır). Bazı malzemelerde Elastisite modülleri çekme ve basınç halleri için eşit değildir. Kayma modülü değerleri, genellikle elastisite modülü değerlerinin % 40'ı civarındadır. G=0.40 E

İki noktadan yüklemeli deneylerde maksimum moment belirli bir aralıkta değer almaktadır. Bu aralıkta kesme kuvveti sıfırdır. Bir başka deyişle, salt eğilme hali söz konusudur. Eğilme deneylerinde sadece eğilme etkisi inceleneceğinden iki noktadan yüklemeli ikinci deney yöntemi daha sağlıklı sonuçlar vermektedir.

EĞİLME DENEYİ ve EĞİLME DAYANIMI

Tekil yüklemeli deneylerde açıklık boyunca tek noktada (açıklık ortası, yükleme noktası) maksimum moment oluşur ve o noktada kesme kuvveti de değer değiştirmektedir. Dolayısı ile saf eğilme durumundan söz edilemez.