BİR DIESEL MOTORUNDA SIKIŞTIRMA ORANI ARTIŞININ PERFORMANSA ETKİSİ

Benzer belgeler
İÇTEN YANMALI MOTORLARDA SOĞUTMA SUYU SICAKLIĞININ MOTOR PERFORMANSINA ETKİLERİ ÜZERİNE DENEYSEL BİR ARAŞTIRMA

SIKIŞTIRMA ORANININ BİR DİZEL MOTORUN PERFORMANS VE EMİSYONLARINA ETKİLERİ

Otto ve Dizel Çevrimlerinin Termodinamik Analizi. Bölüm 9: Gaz Akışkanlı Güç Çevrimleri

Adnan Parlak, İsmet Çevik, Osman Eldoğan

İÇTEN YANMALI MOTORLARDA MOMENT, GÜÇ ve YAKIT SARFİYATI KARAKTERİSTİKLERİNİN BELİRLENMESİ

Prof. Dr. Selim ÇETİNKAYA

Dizel Motorlarında Enjeksiyon Basıncı ve Maksimum Yakıt Miktarının Motor Performansı ve Duman Emisyonlarına Etkilerinin İncelenmesi

Gerçek ve ideal çevrimler, Carnot çevrimi, hava standardı kabulleri, pistonlu motolar

MOTORLAR-5 HAFTA GERÇEK MOTOR ÇEVRİMİ

Buji ile ateşlemeli motorlar için teorik çevrimin (Hava Standart OTTO çevrimi) Sıkıştırma ile ateşlemeli motorlar için teorik çevrimin (Dizel Teorik

BUJİ İLE ATEŞLEMELİ MOTORLARDA TEK NOKTA YAKIT ENJEKSİYON VE KARBÜRATÖR SİSTEMLERİNİN PERFORMANSA ETKİLERİ ÜZERİNE DENEYSEL BİR ARAŞTIRMA

T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR LABORATUVARI BUHAR TÜRBİNİ DENEYİ FÖYÜ

HR. Ü. Müh. Fak. Makina Mühendisliği Bölümü Termodinamik II Final Sınavı (15/06/2015) Adı ve Soyadı: No: İmza:

Motor kullanıcısı açısından seçimi etkileyen faktörler:

Dört stroklu diesel motor

İçten yanmalı motorlarda temel kavramlarının açıklanması Benzinli ve dizel motorların çalışma prensiplerinin anlatılması

Bölüm 3 Motor Çalışma Koşullarının Emisyonlara Etkisi

Tarımsal Mekanizasyon 18. Ulusal Kongresi Tekirdağ 187 KÜÇÜK GÜÇLÜ İÇTEN PATLAMALI MOTORLARIN KARAKTERİSTİK ÖZELLİKLERİ VE POMPA AKUPLASYONU

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi ECOLOGICAL PERFORMANCE ANALYSIS OF IRREVERSIBLE OTTO CYCLE

MAKİNE VE MOTOR DERS NOTLARI 4.HAFTA

Bölüm 7 ENTROPİ. Bölüm 7: Entropi

EŞANJÖR (ISI DEĞİŞTİRİCİSİ) DENEYİ FÖYÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

MOTORLAR. 1 Ders Adi: MOTORLAR 2 Ders Kodu: MAK Ders Türü: Seçmeli 4 Ders Seviyesi Lisans

T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR LABORATUVARI BUHAR TÜRBİNİ DENEYİ FÖYÜ

SAKARYA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ

Bölüm 8 EKSERJİ: İŞ POTANSİYELİNİN BİR ÖLÇÜSÜ. Bölüm 8: Ekserji: İş Potansiyelinin bir Ölçüsü

R-712 SOĞUTMA LABORATUAR ÜNİTESİ DENEY FÖYLERİ

HAVA SOĞUTMALI BİR SOĞUTMA GURUBUNDA SOĞUTMA KAPASİTESİ VE ETKİNLİĞİNİN DIŞ SICAKLIKLARLA DEĞİŞİMİ

Soru 5) Pistonun, silindir içersinde iki ölü nokta arasında yaptığı tek bir harekete ne denir? a) Çevrim b) Vakum c) Basma d) Zaman

İÇTEN YANMALI MOTORLAR 2. BÖLÜM EK DERS NOTLARI

GEMĐLERDE KULLANILAN VAKUM EVAPORATÖRLERĐNDE OPTĐMUM ISI TRANSFER ALANININ BELĐRLENMESĐ

ÖZGEÇMİŞ. Osmaniye Korkut Ata Üniversitesi Makine Mühendisliği Bölümü Osmaniye/Türkiye Telefon : /3688 Faks :

Termal Bariyer Kaplı Bir Buji Ateşlemeli Motora Su Enjeksiyonunun Motor Performans ve Egzoz Emisyonları Üzerine Etkilerinin İncelenmesi

Bölüm 6 TERMODİNAMİĞİN İKİNCİ YASASI

İÇİNDEKİLER ÖNSÖZ Bölüm 1 DAİRESEL HAREKET Bölüm 2 İŞ, GÜÇ, ENERJİ ve MOMENTUM

Bölüm 7 ENTROPİ. Bölüm 7: Entropi

TERMODİNAMİĞİN BİRİNCİ YASASI

YAKIT OLARAK CH 4 KULLANAN DEĞİŞKEN SIKIŞTIRMA ORANLI BUJİ İLE ATEŞLEMELİ BİR MOTORUN İDEAL HAVA-YAKIT ÇEVRİM ANALİZİ İLE TEORİK SİMÜLASYONU

NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 5 PSİKROMETRİK İŞLEMLERDE ENERJİ VE KÜTLE DENGESİ

SORULAR VE ÇÖZÜMLER. Adı- Soyadı : Fakülte No :

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ LABORATUARI

ANADOLU ÜNİVERSİTESİ HAVACILIK VE UZAY BİLİMLERİ FAKÜLTESİ

BUHARLI VE BİRLEŞİK GÜÇ ÇEVRİMLERİ

Atmosferik Sıcaklığın ve Basıncın Taşıt Performansına Etkileri

DEN 322. Diesel Motor Karakteristikleri

Dünya Enerji Konseyi Türk Milli Komitesi TÜRKİYE 10. ENERJİ KONGRESİ

BURSA TEKNİK ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVAR DERSİ. Yakıt Püskürtme Sistemleri Deneyi

SOĞUTMA ÇEVRİMLERİ 1

Termodinamik Termodinamik Süreçlerde İŞ ve ISI

8. Silindirlerin Düzenleniş Şekline Göre

METİL VE ETİL ESTERİN DİZEL YAKITI OLARAK KULLANILMA İMKANLARININ DENEYSEL OLARAK ARAŞTIRILMASI ÖZET

Etanol Dizel Yakıt Karışımlarının Kısmi Homojen Dolgulu Bir Dizel Motorun Performansına Etkisi

HR. Ü. Müh. Fak. Makina Mühendisliği Bölümü Termodinamik II Final Sınavı (22/05/2017) Adı ve Soyadı: No: İmza:

14th International Combustion Symposium (INCOS2018) April 2018

Bölüm 9 GAZ AKIŞKANLI GÜÇ ÇEVRİMLERİ. Bölüm 9: Gaz Akışkanlı Güç Çevrimleri

MAKİNE MÜHENDİSLİĞİNE GİRİŞ Ders 3

SANTRİFÜJ POMPA DENEYİ

Makale. ile ihtiyacın eşitlendiği kapasite modülasyon yöntemleri ile ilgili çeşitli çalışmalar gerçekleştirilmiştir

Halit YAŞAR. Doç. Dr. Makina Mühendisliği Bölümü Otomotiv Anabilim Dalı Öğretim Üyesi

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

Dizel Yakıtındaki Sıcaklık Değişiminin Püskürtülen Yakıt Miktarına Etkisi ve Dinamik Yakıt Sıcaklığı Kontrolü

Biyodizel Yakıtla Çalıştırılan Küçük Güçlü Bir Diesel Motorun Performans ve Emisyonuna Giriş Hava Basıncının Etkisinin İncelenmesi

MOTOR LAB. Deney Föyleri

T.C. BALIKESİR ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ TE-605 SERİ PARALEL HAVA KOMPRESÖR EĞİTİM SETİ

Atık Kızartma Yağı Metil Esterinin Bir Dizel Motorunda, Motor Performansı ve Egzoz Emisyonlarına Etkisinin Araştırılması

Hidrojen Depolama Yöntemleri

NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER

Aspir Biyodizelinde Farklı Enjektör Basınçlarının Motor Performansına Etkisi

HHO HÜCRESİNİN PERFORMANSININ DENEYSEL OLARAK İNCELENMESİ. Konya, Türkiye,

OREN303 ENERJİ YÖNETİMİ KERESTE KURUTMADA ENERJİ ANALİZİ/SÜREÇ YÖNETİMİ

Hidrostatik Güç İletimi. Vedat Temiz

Tek silindirli bir dizel motorda atık biyodizel kullanımının motor performansı ve emisyonlarına etkisi

Soru No Program Çıktısı 3, ,10 8,10

T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

ENTROPİ. Clasius eşitsizliği. Entropinin Tanımı

Temel Motor Teknolojisi

Dizel Motorlarında Yanma Odası İçerisine Su Püskürtmenin Egzoz Emisyonlarına Etkisi

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

TERMODİNAMİK II BUHARLI GÜÇ ÇEVRİMLERİ. Dr. Nezaket PARLAK. Sakarya Üniversitesi Makine Müh. Böl. D Esentepe Kampüsü Serdivan-SAKARYA

NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER

O )molekül ağırlığı 18 g/mol ve 1g suyun kapladığı hacimde

T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUVARI

Benzin nitrometan karışımlarının özgül yakıt sarfiyatı ve emisyonlara etkisinin incelenmesi

TEKNİK FİZİK ÖRNEK PROBLEMLER-EK2 1

İçten Yanmalı Motorların Doğalgazla Çalışır Hale Getirilmeleri ve Dönüştürülmüş Motorların Performans Parametrelerinin Analizi

HACETTEPE ÜNİVERSİTESİ GIDA MÜHENDİSLİĞİ BÖLÜMÜ GMU 319 MÜHENDİSLİK TERMODİNAMİĞİ Çalışma Soruları #4 ün Çözümleri

HR. Ü. Müh. Fak. Makina Mühendisliği Bölümü Termodinamik I Bütünleme Sınavı (02/02/2012) Adı ve Soyadı: No: İmza:

YTÜ Makine Mühendisliği Bölümü Hidromekanik ve Hidrolik Makinalar Anabilim Dalı Özel Laboratuvar Dersi Kompresör Deneyi Çalışma Notu

Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ. Bölüm 4: Kapalı Sistemlerin Enerji Analizi

Bölüm 7 ENTROPİ. Prof. Dr. Hakan F. ÖZTOP

DEN 322. Boru Donanımları ve Pompalar

T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 2

SÜLEYMAN DEMĠREL ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ MOTORLAR LABORATUARI DENEY FÖYÜ DENEY ADI MOTORLAR DENEYĠ

Buji ile Ateşlemeli Bir Motorda Çalışma Parametrelerinin Egzoz Emisyonlarına Etkilerinin Deneysel Olarak İncelenmesi

DERS BÖLÜMLERİ VE 14 HAFTALIK DERS KONULARI. Ders Sorumluları: Prof.Dr. Muammer ÖZGÖREN, Yrd. Doç.Dr. Faruk KÖSE

Ürün Hakkında. Genel Özellikler

14th International Combustion Symposium (INCOS2018) April 2018

Soru No Puan Program Çıktısı 3, ,8 3,10 1,10

Transkript:

PAMUKKALE ÜNİVERSİESİ MÜHENDİ SLİK FAKÜLESİ PAMUKKALE UNIVERSIY ENGINEERING COLLEGE MÜHENDİSLİK BİLİMLERİ DERGİSİ JOURNAL OF ENGINEERING SCIENCES YIL CİL SAYI SAYFA : 003 : 9 : : 7-77 BİR DIESEL MOORUNDA SIKIŞIRMA ORANI ARIŞININ PERFORMANSA EKİSİ Adnan PARLAK Sakarya Üniversitesi, eknik Eğitim Fakültesi, Makine Eğitimi Bölümü, Esentepe/Sakarya Geliş arihi : 09.08.00 ÖZE Bu çalışmada farklı ekstrem sıcaklık oranlarında, sıkıştırma oranı değişiminin bir Diesel motorunun güç ve verimi üzerine etkisini araştırmak amacıyla teorik Diesel çevrim analizi gerçekleştirilmiştir. Optimum sıkıştırma oranını veren bağıntı çıkarılmıştır. eorik Diesel çevrim analizi, sıkıştırma oranı sürekli arttırıldığında optimum noktadan itibaren motor performansında düşmenin olduğunu göstermektedir. Deneysel çalışmada, ön yanma odalı tek silindirli sıkıştırma oranı değiştirilebilir Ricardo E6 tipi bir Diesel motorunda sıkıştırma oranı 8.0'den 9.60'a çıkarıldığında özgül yakıt sarfiyatının % 8'e varan oranda arttığı, efektif verimin ise % 7.5'e varan oranda azaldığı tespit edilmiştir. Anahtar Kelimeler : Sıkıştırma oranı, Çevrim analizi, Diesel motoru HE EFFECS OF INCREASE HE COMPRESSION RAIO ON PERFORMANCE OF A DIESEL ENGINE ABSRAC An optimisation of the Diesel cycle has been performed for power output and thermal efficiency with respect to compression ratio for various extreme temperature ratio. he relation between compression ratio and extreme temperature ratio, which gives optimum performance is derived. As the compression ratio of the diesel engine is increased in comparison to the optimum value of the engine, it is shown that the performance of the engine is decreased. he experimental study agrees with these results. In this study, compression ratio of a single cylinder pre-combustion chamber variable compression ratio Ricardo E6 type engine with the optimum compression ratio of 8.0 was increased to 9.60. As a results of this increase, specific fuel consumption was increased about 8 % and brake thermal efficiency was decreased about 7.5 %. Key Words : Compression ratio, Cycle analysis, Diesel engine. GİRİŞ İçten yanmalı motorlarda yanma sonu ürünleri dışarı atılır ve yeni dolgu motora girer; dolayısıyla iş yapan akışkan termodinamik çevrimi tamamlamaz. Bununla birlikte gerçek içten yanmalı motorlar termodinamik bakımdan incelenirken açık çevrime çok yakın bir çevrim mukayese çevrimi olarak ele alınır (Öztürk ve Kılıç, 985). Gerçek açık çevrimlere benzeyen mukayese çevrimlerine, ideal hava çevrimleri denir. İdeal çevrimlerin önemi, değişik parametrelerin çevrime olan tesirlerini incelemeye imkan sağlamasıdır. Bu parametreler gerçek motorda da aynı yönde tesir ederler ve motor geliştirme çalışmalarında yol gösterici olmaları nedeniyle önemlidir (Safgönül, 98; Borat ve ark., 995; Parlak ve Yaşar, 00). Çevrime ısı transferi ve iç sürtünmeler gibi tersinmezlikler ilave edilerek gerçek motor verilerine daha yakın sonuçların elde 7

edilmesi mümkündür (Junxing et al., 999; Bhattacharyya, 000). Sıkıştırma oranı, motor performansını doğrudan etkileyen önemli bir dizayn parametresidir. Dolayısıyla optimum sıkıştırma oranının tespiti güç ve verim üzerine etkisini bilmek açısından önem arz eder. Bu çalışmada, sıkıştırma oranının motor performansı üzerine etkisini incelemek amacıyla bir teorik Diesel çevrim analizi gerçekleştirilmiş ve elde edilen sonuçlar deneysel bulgularla karşılaştırılmıştır. Sıkıştırma oranının çok yükseltilmesi, çevrim veriminin azalmasına ve sürtünmeden kaynaklanan güç kayıplarının artmasına neden olmaktadır (Stone, 989; Bhattacharyya, 000). Sıkıştırma oranı artışının motor performansına etkisini incelemek amacıyla yapılan bir deneysel çalışmada, sıkıştırma oranı 8'den 9'a çıkarıldığında özgül yakıt sarfiyatında % 6.5'e varan oranda bir artmanın meydana geldiği ifade edilmiştir (akeuchi et al., 985). Sıkıştırma oranındaki artış optimum noktayı geçtiğinde net güçte düşme meydana gelmektedir (Bhattacharya, 000; Parlak ve ark., 00).. EORİK DIESEL ÇEVRİM ANALİZİ Bu çalışmada, teorik Diesel çevriminin analizi aşağıdaki kabullere göre yapılmıştır: Çevrimde iş yapan akışkan olarak mükemmel gaz (ideal gaz) kabul edilen hava alınmıştır, Yanma işlemi yerine, yüksek sıcaklıktaki bir ısı kaynağından iş yapan akışkana ısı geçişi olmaktadır, Çevrimin içinde cereyan ettiği kap cidarlarına ısı transferi yoktur, Gerçek motor çevrimindeki emme ve egzoz işlemleri yerine, iş yapan akışkandan atmosferik çevreye ısı geçişiyle termodinamik çevrim tamamlanmaktadır. Bütün hal değişimleri tersinirdir, Özgül ısılar sıcaklıkla değişmemektedir ve k = c p /c v =.4 alınmıştır. eorik Diesel çevrim analizinde imum güç ve bu güce karşılık gelen verimi esas alan bir kriter göz önüne alınmıştır. Çevrim analizi esnasında sıcaklık artma oranı, = 4-7 arasında ve sıkıştırma oranı,-4 arasında alınmıştır. İdeal Diesel çevriminin P-V ve -S diyagramları Şekil de görülmektedir. Çevrimde meydana gelen olaylar şunlardır: -: Adyabatik sıkıştırma, -3: Sabit basınçta yanma (ısı alma), 3-4: Adyabatik genişleme, 4-: Sabit hacimde egzoz ( ısı verme). Şekil. eorik diesel çevriminin P-V ve -S diyagramı Çevrimde dikkate alınan parametreler : = (Ekstrem sıcaklık oranı) V = (Sıkıştırma oranı) V V3 ζ = (Püskürtme oranı) V İş gören akışkanı, sürekli akışlı ve kararlı kabul ederek, çevrimin net gücü aşağıdaki gibi yazılabilir : W& = Q& 3 Q& 4 = m[c & p(3 ) cv (4 )] () Burada c v ve c p sırasıyla sabit hacim ve sabit basınçtaki özgül ısılardır. m& = kg/s ve 3 = alınarak, W & c ( ) c ( 4 = p v ) () Çevrimde dikkate alınan parametreler yukarıdaki bağıntıda yerine konularak yeniden düzenlenirse W = cv k. ( k. ζ ) ( ( ). k ) (3) bulunur. (3) denkleminde gerekli düzenlemeler yapılıp boyutsuz iş ifadesine dönüştürüldüğünde, W W = c v bulunur. k = k( ) ( k k( k) ) (4) Mühendislik Bilimleri Dergisi 003 9 () 7-77 7 Journal of Engineering Sciences 003 9 () 7-77

Diesel çevriminin termik verimi ise, k k( k) = (5) k k( ) W & bulunur. (4) denklemi sıkıştırma oranı, 'na göre imize edildiğinde, imum boyutsuz gücü veren sıkıştırma oranı, * k k = (6) bulunur. Maksimum boyutsuz güç ve bu güce karşılık gelen verim, (6) bağıntısının sırasıyla (4) ve (5) bağıntılarında yerine konulmasıyla, ( W ) = (+ k ) (+ k) k + (7) * = k( k+ k k+ ) k (8) bulunur. Şekil 'deki - W ve Şekil 3'deki - W grafiklerine bakıldığında exterm sıcaklık oranı arttıkça güç ve verimin arttığı ancak, sabit extrem sıcaklık oranlarında, sıkıştırma oranı arttırıldıkça W optimum noktaya kadar artış göstermektedir. Optimum noktadan itibaren sıkıştırma oranı artırılmaya devam edilirse ' W in düştüğü görülmektedir. Bu durum, sıkıştırma oranının optimum nokta civarında tutulması gerektiğini göstermektedir. Optimum noktadan sonra sıkıştırma oranı artırıldığında verimdeki artış devam etmekte ancak; artış hızı yavaşlamaktadır. W & Şekil. Farklı değerleri için - W değişimi (değişen sıkıştırma oranlarında) Şekil 3. Farklı için sıkıştırma oranına bağlı olarak - W net değişimi. Güçteki düşme, düşük ekstrem sıcaklık oranlarında optimum sıkıştırma oranından sonra çok belirgin iken ( = 4), ekstrem sıcaklık oranı arttıkça bu etki azalmaktadır ( = 7). Çevrim tersinmez olarak ele alındığında, sıkıştırma oranı arttırılmaya devam edilirse hem gücün hemde verimin düştüğü görülmektedir (Bhattacharya, 000; Wang et al., 00; Parlak ve Yasar, 003). Bununla birlikte, termal bariyer uygulamasıyla ekstrem sıcaklık oranı arttırılarak, motorun daha düşük sıkıştırma oranında çalıştırılması da mümkündür (Parlak ve ark., 00). 3. MAERYAL VE MEO Çalışmada özellikleri ablo de verilen Ricardo E6-MS/8/76 tipi deney motoru kullanılmıştır. est düzeneğinin şematik görünüşü ise Şekil 4 de görülmektedir. ablo. Deney Motoruna Ait eknik Özellikler MOOR ÖZELLİKLER Motor tipi E6-MS/8/76 Silindir sayısı Silindir çapı (mm) 76. Silindir stroku(mm) 0 Silindir hacmi (cm 3 ) 507 Sıkıştırma oranı 4.5-0 Devir(d/d) 000-3000 Püskürtme avansı 0-40 Deneyler esnasında supap ayarları, motor katalogunda belirtilen değerlere göre ayarlanmış, enjektör açma basıncı 50 bar a test edilmiş, segmanlar yenilenmiştir. Emme havasının ölçümünde eğik manometre-sönümleme tank düzeneği kullanılmıştır. Mühendislik Bilimleri Dergisi 003 9 () 7-77 73 Journal of Engineering Sciences 003 9 () 7-77

Deneylerde her bir sıkıştırma oranında motor 000 devir/dak'dan 00 devir/dak'a kadar 400 devir/dak. aralıkla ve 5 ayrı yük kademesinde ölçülmüştür. 4. DENEY SONUÇLARI VE ARIŞMA Detaylı bir inceleme için yumurta eğrileri Şekil 5 de gösterilen 4 ayrı bölgede incelenmiştir. Bu bölgeler: Şekil 4. Motor test düzeneğinin şematik görünümü Sıkıştırma oranı, motor gövdesine monte edilen dişli mekanizma vasıtasıyla, komple silindir gömleği ve silindir başlığının silindir motor gövdesi içerisinde yukarı veya aşağı hareketi ile değiştirilmektedir. Motor sıkıştırma oranı değişimi hareketli silindir başlığı ile sabit gövde arasına monte edilmiş /50 hassasiyetli bir mikrometre vasıtasıyla ölçülmüştür. Milimetre cinsinden ölçülen değerler üretici firmanın vermiş olduğu dönüşüm grafiğinden girilerek motorun sıkıştırma oranı bulunmuştur. Deneyde kullanılan Diesel motorunun silindir kapağında Ricardo comet tipi ön yanma odası mevcuttur. Ön yanma odası küresel formdaki üst yarı ve ana yanma odasına konik bir biçimde açılan alt yarı parçadan oluşmaktadır. Deneyler esnasında motor, elektrik dinamometresiyle yüklenmiştir. Yüklemeler esnasında elde edilen elektrik enerjisi ısıtıcı dirençler üzerinden havuza verilerek harcanmıştır. Deneyler esnasında kimyasal formülü C 5 H 8 olan Diesel yakıtı kullanılmıştır. Motor devri, yük, emme manifold sıcaklığı, egzoz sıcaklığı, motor soğutma suyu giriş-çıkış sıcaklıkları, yakıt tüketim zamanları her bir test noktası için kaydedilmiştir. Her ölçüm noktasında motor kararlı çalışmayı sağlayıncaya kadar yeterli bir süre beklenilmiştir. Ölçümlerde hatayı minimize etmek amacıyla 5 ölçümün ortalaması alınmıştır. Her bir test noktasındaki yakıt tüketim süresinin tespiti önem arz etmektedir. Ölçüm hassasiyetini artırmak için, başlangıç ve bitiş sürelerinin tespitinde infrared alıcı ve vericiler kullanılmıştır. Alıcıdan alınan sinyaller bilgisayarda, assemly dilinde yazılmış program tarafından işlenmiş ve ölçüm süresi bittiğinde ölçüm durdurularak tüketim süresi 0.0 s hassasiyetle bilgisayar ekranında gösterilmiştir. pme (bar) 6.8 5.4 4.5 3.4.7 000 600 00 n (Devir/dak). Bölge: Düşük yük-düşük devir,. Bölge: Yüksek yük- Düşük devir, 3. Bölge: Düşük yük-yüksek devir ve 4. Bölge: Yüksek yük-yüksek devirdir Şekil 5. Eş NO x eğrilerine ait bölgeler Şekil 6'da 8.0 ve 9.60 sıkıştırma oranlarındaki performans ve karşılaştırmalı performans haritaları verilmiştir Deneysel çalışma sonucunda bulunan özgül yakıt sarfiyat ve efektif verim değerleri sırasıyla Şekil 7 ve Şekil 8'de görülmektedir. Şekil 7(a)'da normal motorda en avantajlı bölgenin düşük devir yüksek yük bölgesi olduğu görülmektedir. Aynı bölge baz alındığında, 9.60 sıkıştırma oranında (Şekil 7(b), özgül yakıt sarfiyatında önemli ölçüde artmanın olduğu gözlenmektedir. Bölgelerdeki değişimleri şekil 7(c) de karşılaştırmalı olarak daha net bir şekilde görmek mümkündür. Şehir içerisindeki araçların daha çok düşük devir bölgelerinde çalıştığı düşünülürse, sıkıştırma oranındaki artışa neden olabilecek bir uygulamanın, doğuracağı sonucun önemi ortaya çıkar. eorik Diesel çevrim analizinden de görüleceği gibi sıkıştırma oranındaki artış optimum noktadan sonra motor performansında kötüleşmenin meydana geldiğini göstermektedir. Dolayısıyla teorik analiz sonuçları ile deneysel bulgular uygunluk arz etmektedir. 4 3 Mühendislik Bilimleri Dergisi 003 9 () 7-77 74 Journal of Engineering Sciences 003 9 () 7-77

Performans haritalarına dikkat edildiğinde 8.0 sıkıştırma oranında minimum yakıt sarfiyatı 000-400 devir/dak. ve 5-6.8 bar çalışma aralığında (düşük devir yüksek yük bölgesi) 60 g/kwh olarak gerçekleşmektedir. 9.60 sıkıştırma oranında ise özgül yakıt sarfiyatında bariz bir artış göze çarpmaktadır. Bu sıkıştırma oranında minimum özgül yakıt sarfiyatı 00-800 devir/dak ve 6-6.7 bar aralığında 70 g/kwh olarak gözlenmektedir. a) = 8.0 9.60 sıkıştırma oranında elde edilen minimum yakıt sarfiyatı (70 g/kwh) baz alındığında 8.0 sıkıştırma oranında, aynı yakıt sarfiyat değeri çok daha geniş bir çalışma aralığında (4.3-6.8 bar ve 000-800 devir/dak. aralığı) elde edilmektedir. Minimum yakıt sarfiyatının elde edildiği bölgeler genellikle düşük devir yüksek yük bölgeleri olduğundan yukarıda belirtilen zararlara ilave olarak ağır vasıta araçları şehirlerarası yolculuklarda tırmanma şeritlerinde yüksek yük ve düşük devir bölgelerinde çalıştırıldığından yakıt sarfiyatındaki artış önemli seviyelere çıkabilir. Optimum sıkıştırma oranından sonraki yüksek sıkıştırma oranlarında performanstaki düşmeye, sürtünmeye harcanan gücün artması neden olmaktadır. Sürtünmenin motor performasına etkisini dikkate alan teorik çalışmalar bunu doğrulamaktadır (Bhattacharya, 000; Wang et al., 00; Parlak ve ark., 00). b) =9.6 ---=9.6 =8.0 be: g/kwh Pe Şekil 8 de Farklı sıkıştırma oranlarında motor devrine bağlı olarak özgül yakıt sarfiyatındaki değişme görülmektedir. Düşük devir ve tüm yüklerde özgül yakıt sarfiyatındaki artışın etkisi çok büyüktür. Devir arttıkça bu etkinin azaldığı görülmektedir. Özgül yakıt sarfiyatındaki artmaya paralel olarak motor efektif veriminin belirtilen çalışma aralıklarında düştüğü Şekil 9'da görülmektedir. Grafiklerden de görüleceği gibi yük arttıkça efektif verimdeki kötüleşme belirginleşmektedir. c) Şekil 7. (a) 8.0, (b) 9.60 sıkıştırma oranlarındaki performans haritaları (c) Karşılaştırmalı performans haritası be (g/kw.h) 460 440 40 400 380 360 340 P me =.7 bar 000 400 800 00 n (devir/dak) (a) =9.6 =8.0 Mühendislik Bilimleri Dergisi 003 9 () 7-77 75 Journal of Engineering Sciences 003 9 () 7-77

be (gr/kw.h) 300 90 80 70 60 50 40 30 P me = 6.8 bar 000 400 800 00 n (Devir/dak) =9.6 =8.0 (b) Şekil 8. Farklı sıkıştırma oranlarında a) Pme =.7 bar b) Pme = 6.80 bar da motor devrine bağlı olarak özgül yakıt sarfiyatındaki değişme P e P me : Efektif güç (kw) : Ortalama efektif basınç (bar) : Sıcaklık ( o K) S : Entropi (kj/kgk) V : Hacim (m 3 ) c p : Sabit basınçtaki özgül ısı (kj/kgk) c v : Sabit hacimdeki özgül ısı (kj/kgk) : Maksimum yanma sıcaklığı (K ) : Maksimum yanma sıcaklığının giriş sıcaklığına oranı W : Net güç (kw) W : Boyutsuz net güç ( W ) : Maksimum boyutsuz net güç : Sıkıştırma oranı * : Maksimum gücü veren sıkıştırma oranı : eorik Diesel çevrim verimi * : Maksimum boyutsuz net güce karşılık gelen verim e : Efektif verim (%) e (%) 35 30 5 0 5 0 5 0 000 devir/dak =9.60 =8.0.7 3.4 4.54 5.67 6.8 P me (bar) 6. KAYNAKLAR Bhattacharyya, S. 000. Optimizing an Irreversible Diesel Cycle-fine uning of Compression Ratio and Cut-off Ratio. Vol. 40, p. 847-854. Borat, O., Sürmen A., Balcı, M. 995. İçten Yanmalı Motorlar. Cilt I, G. Ü. eknik Eğitim Fakültesi Matbaası. e (%) 35 30 5 0 5 0 5 0 (a) 400 devir/dak..7 3.4 4.54 5.67 6.8 P me (bar) =9.60 =8.0 (b) Şekil 9. Ortalama efektif basınç değişimine bağlı olarak a) 000 devir/dak. b)400 devir/dak. da farklı sıkıştırma oranlarında efektif verimdeki değişme Junxing, L., Lingen, C., Chih W. and Fengriu S. 999. Finite-ime hermodynamic Performance of a Dual Cycle. International Journal of Energy Research. Vol. 3, p. 765-77. Öztürk A., Kılıç A. 993. Çözümlü Problemlerle ermodinamik, III. Baskı, Çağlayan Yayınevi, İstanbul. Parlak, A., Yaşar H. and Kusoglu, A. 00. An Experimenal study on NO x Emission of a Lower Compression Ratio LHR IDI Diesel Engine. IV. International hermal Energy Congress. Cesme- urkey. Parlak A., Yaşar, H. 00. Yanma Sıcaklığı- Sıkıştırma Oranı İlişkisinin Motor Performansına Etkisi Üzerine eorik Dizel Çevrim Analizi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, Cilt: 4, Sayı: 4. be n P 5. SİMGE VE KISALMALAR : Özgül yakıt sarfiyatı (g/kwh) : Motor devri (devir/dak.) : Basınç (bar) Parlak, A., Yasar, H. and Sahin, B. 00. Performance and Exhaust Emission Characteristics of a Lower Compression Ratio LHR Diesel Engine, Nergy Conversion & Management Volume : 44, Issue:, Page : 63-74, 003. Mühendislik Bilimleri Dergisi 003 9 () 7-77 76 Journal of Engineering Sciences 003 9 () 7-77

Safgönül B. 98. Pistonlu Motorlar Cilt I, eknik Üniversite Yayınları, İstanbul. Stone, R. 989. Motor Vehicle Fuel Economy. Macmilan Education Ltd., London, UK. Printed in Hong Kong. akeuchi, K., Kuboba,M., Konagai, M., Watanabe and Kihara, R. 985. he New Isuzu.5 lt. 4-Cylinder Direct Injection Diesel Engine, SAE 8506. Wang, W., Chen, L., Sun, F. and Wu, C. 00. he Effect of Friction on the Performance of an Air Standart Dual Cycle, Journal, p. 340-344. Mühendislik Bilimleri Dergisi 003 9 () 7-77 77 Journal of Engineering Sciences 003 9 () 7-77