YÜKSEKLİK ÖLÇMELERİ(NİVELMAN) Öğr. Grv. Çağrı URFALI

Benzer belgeler
YÜKSEKLİK ÖLÇMELERİ 2016-KTU

YÜKSEKLİK ÖLÇMELERİ 2017-KTU

Yükseklik Ölçme (Nivelman) Prof.Dr.Mustafa KARAŞAHİN

TOPOĞRAFYA Yüksekliklerin Ölçülmesi Nivelman Yöntemleri

TOPOĞRAFYA Yüksekliklerin Ölçülmesi Nivelman Yöntemleri

Açı Ölçümü. Prof.Dr.Mustafa KARAŞAHİN

1. Nivelman Ölçü Aletlerinin Kısımları Düzeçler Dürbünler Sehpalar 2. Yükseklik Farkı Ölçme Aletleri Nivolar Hortum Teraziler

YÜKSEKLİK ÖLÇÜMÜ. Ölçme Bilgisi Ders Notları

ÖLÇME BİLGİSİ DÜŞEY MESAFELERİN (YÜKSEKLİKLERİN) ÖLÇÜLMESİ NİVELMAN ALETLERİ. Doç. Dr. Alper Serdar ANLI. 8. Hafta

ORMANCILIKTA ÖLÇME, HARİTA VE KADASTRO DERSİ UYGULAMA FÖYÜ. HAZIRLAYANLAR Yrd. Doç. Dr. Saliha ÜNVER OKAN Arş. Gör.

1.Geometrik Nivelman

Yıldız Teknik Üniversitesi İnşaat Fakültesi Harita Mühendisliği Bölümü TOPOGRAFYA (HRT3351) Yrd. Doç. Dr. Ercenk ATA

TOPOĞRAFYA Topoğrafya Aletleri ve Parçaları (Teodolit)

Düşey mesafelerin (Yüksekliklerin) Ölçülmesi. Düşey Mesafelerin (Yüksekliklerin) Ölçülmesi. Düşey Mesafelerin (Yüksekliklerin) Ölçülmesi

YÜKSEKLİKLERİN ÖLÇÜLMESİ - NİVELMAN GENEL

Şekil 3.1 Yatay doğrultu ve düşey açı

Ölçme Bilgisi Jeofizik Mühendisliği Bölümü

ARAZİ ÇALIŞMASI -1 DERSİ ELEKTRONİK ALETLERİN KONTROL VE KALİBRASYONU UYGULAMALARI

PDF created with FinePrint pdffactory trial version Düşey mesafelerin (Yüksekliklerin) Ölçülmesi

ARAZİ ÇALIŞMASI -1 DERSİ ELEKTRONİK ALETLERİN KONTROL VE KALİBRASYONU UYGULAMALARI

KESİTLERİN ÇIKARILMASI

Ölçme Bilgisi DERS 7-8. Yatay Kontrol Noktaları Ve Yükseklik ölçmeleri. Kaynak: İ.ASRİ (Gümüşhane Ü) T. FİKRET HORZUM( AÜ )

Yatay Eksen: Dürbünün etrafında döndüğü eksendir. Asal Eksen: Çekül doğrultusundaki eksen Düzeç Ekseni: Düzecin üzerinde bulunduğueksen Yöneltme

YÜKSEKLİK ÖLÇMELERİ DERSİ GEOMETRİK NİVELMAN

TEODOLIT. Açiklanan yatay ve düsey açilari ölçmek için kullanilan optik mekanik topografya aleti, teodolit olarak adlandirilir.

Şekil. Yatay doğrultu ve düşey açı

Sayısal Nivolar. Turgut UZEL* - Engin GÜLAL**


BAĞLI POLİGON BAĞLI POLİGON

TOPOĞRAFYA Kesitlerin Çıkarılması, Alan Hesapları, Hacim Hesapları

ORMANCILIKTA ÖLÇME, HARİTA VE KADASTRO DERSİ UYGULAMA FÖYÜ. HAZIRLAYANLAR Yrd. Doç. Dr. Saliha ÜNVER OKAN Arş. Gör.

Uzunluk Ölçümü (Şenaj) Prof.Dr.Mustafa KARAŞAHİN

MÜHENDİSLİK ÖLÇMELERİ UYGULAMASI (HRT4362) 8. Yarıyıl

Kabarcıklı Düzeç ÖLÇME ALETLERİNİN ORTAK PARÇALARI. Küresel Düzeç. Küresel Düzeç 3/8/2010

2 Hata Hesabı. Hata Nedir? Mutlak Hata. Bağıl Hata

Laser LAX 300 G. Kullanma kılavuzu

Görev çubuğu. Ana ölçek. Şekil 1.1: Verniyeli kumpas

5 İki Boyutlu Algılayıcılar

ÖLÇME BİLGİSİ UZUNLUKLARIN ÖLÇÜLMESİ DİK İNME VE ÇIKMA İŞLEMLERİ VE ARAÇLARI

APLİKASYON VE İP İSKELESİ

İNŞAAT MÜHENDİSLİĞİ TEKNİK RESİM DERSİ ÖĞR. GÖR. BERIVAN POLAT

TAKEOMETRİ GENEL BİLGİLER

İnşaat Mühendisliğine Giriş İNŞ-101. Yrd.Doç.Dr. Özgür Lütfi Ertuğrul

GENEL TANIMLAR. 1-Düşey doğrultu : Yeryüzünün herhangi bir O noktasındaki yerçekimi doğrultusudur (ZN doğrultusu).

MÜHENDİSLİK ÖLÇMELERİ UYGULAMASI (HRT4362) 8. Yarıyıl

TOPOĞRAFYA Takeometri

elektromagnetik uzunluk ölçerlerin Iaboratu ar koşullarında kaiibrasyonu

TEMEL İŞLEMLER VE UYGULAMALARI Prof.Dr. Salim ASLANLAR

Yıldız Teknik Üniversitesi İnşaat Fakültesi Harita Mühendisliği Bölümü TOPOGRAFYA (HRT3350)

Yıldız Teknik Üniversitesi İnşaat Fakültesi Harita Mühendisliği Bölümü TOPOGRAFYA (HRT3351) Yrd. Doç. Dr. Ercenk ATA

DİK KOORDİNAT SİSTEMİ VE

FOTOYORUMLAMA UZAKTAN ALGILAMA

1.Büyük Binaların aplikasyonu

ULAŞIM YOLLARINA İLİŞKİN TANIMLAR 1. GEÇKİ( GÜZERGAH) Karayolu, demiryolu gibi ulaşım yollarının yuvarlanma yüzeylerinin ortasından geçtiği

Galerilerde Enkesit - Boykesit Ölçmeleri

ARAZİ ÖLÇMELERİ. Koordinat sistemleri. Kartezyen koordinat sistemi

Bu proje Avrupa Birliği ve Türkiye Cumhuriyeti tarafından finanse edilmektedir. İLERİ ÖLÇME TEKNİKLERİ (CMM) EĞİTİMİ DERS NOTU

KALINLIK VE DERİNLİK HESAPLAMALARI

TUĞLA DUVAR ÖRME ARAÇLARI VE KURALLARI

T.C AHİ EVRAN ÜNİVERSİTESİ KAMAN MESLEK YÜKSEK OKULU ÖĞRENCİ NO: , ADI SOYADI: CELAL TUĞRUL, KADİR TUNCEL

3. Alım için sıklaştırma noktaları (tamamlayıcı nokta, ara ve dizi nirengi),

Trimble DiNi Kullanım Kılavuzu Hakkında. Trimble DiNi Kullanım Kılavuzu. Cihazın Yapısı. 1 Trimble DiNi Kullanım Kılavuzu Hakkında

ELEKTRİK-ELEKTRONİK ÖLÇME TESİSAT GRUBU TEMRİN-1-Mikrometre ve Kumpas Kullanarak Kesit ve Çap Ölçmek

İÇİNDEKİLER BÖLÜM 1 ÖLÇME TEKNİĞİ VE HARİTA ALMA YÖNTEMLERİ

M. MARANGOZ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ

DERS 3 ÖLÇÜ HATALARI Kaynak: İ.ASRİ

ÖLÇÜLENDİRME. Ölçülendirme

ARAZIDE NOKTALARIN ISARETLENMESI- ARAZI ISLERI

ÖLÇME BİLGİSİ TANIM KAPSAM ÖLÇME ÇEŞİTLERİ BASİT ÖLÇME ALETLERİ

YÜKSEKLİKLERİN ÖLÇÜLMESİ NİVELMAN

Topografya (Ölçme Bilgisi) Prof.Dr.Mustafa KARAŞAHİN

Şekil-1: Teodolit ve Kutusu

PARÇA MEKANİĞİ UYGULAMA 1 ŞEKİL FAKTÖRÜ TAYİNİ

mercek ince kenarlı (yakınsak) mercekler kalın kenarlı (ıraksak) mercekle odak noktası odak uzaklığı

Leica DISTO D3a / BT Çok fonksiyonel, hassas ölçüm imkanı

ULAŞIM YOLLARINA AİT TANIMLAR

Jeodezi

SÜLEYMAN DEMİ REL ÜNİ VERSİ TESİ MÜHENDİ SLİ K-Mİ MARLIK FAKÜLTESİ MAKİ NA MÜHENDİ SLİĞİ BÖLÜMÜ MEKANİK LABORATUARI DENEY RAPORU

MAK 401. Konu 3 : Boyut, Açı ve Alan Ölçümleri

Alan Hesapları. Şekil 14. Üç kenarı belli üçgen alanı

4. Hafta. Y. Doç. Dr. Himmet KARAMAN

ARAZİ ÖLÇMELERİ. Koordinat sistemleri. Kartezyen koordinat sistemi

MALZEME ANA BİLİM DALI Malzeme Laboratuvarı Deney Föyü. Deneyin Adı: Malzemelerde Sertlik Deneyi. Deneyin Tarihi:

Fotogrametride işlem adımları

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4

İMM-123 ÖLÇME VE KONTROL

TOPOĞRAFYA Temel Ödevler / Poligonasyon

1- AYNALI STEREOSKOP UYGULAMASI. X (Uçuş Doğrultusu) H1 H1. 1. resim (sol) 2. resim (sağ) KARTON ÜZERİNDEKİ İŞLEMLER D 1 D 2

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI. ( Bahar Dönemi) BÖHME AŞINMA DENEYİ

TEMEL İŞLEMLER TEKNOLOJİSİ VE UYGULAMALARI Prof.Dr. İng. Salim ASLANLAR

GROBETON - LENTO VE TEMEL KALIBI

Mikrometrelerle ölçüm yaparken 250 gramdan fazla kuvvet uygulanmamalıdır. Fazla uygulanıp uygulanmadığı cırcırla anlaşılır.

İSKELELER. Celal Bayar Üniversitesi Turgutlu Meslek Yüksekokulu İnşaat Bölümü. Öğretim Görevlisi Tekin TEZCAN İnşaat Yüksek Mühendisi

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

Akreditasyon Sertifikası Eki (Sayfa 1/6) Akreditasyon Kapsamı

Dr. Öğr. Üyesi Sercan SERİN

ANKARA ÜNİVERSİTESİ ZİRAAT FAKÜLTESİ PEYZAJ MİMARLIĞI BÖLÜMÜ ANKARA 2015 PROJE APLİKASYONU

DENEYİN YAPILIŞI: cm lik küp kalıbın ölçüleri mm doğrulukta alınır. Etiket yazılarak içine konulur.

Transkript:

YÜKSEKLİK ÖLÇMELERİ(NİVELMAN) Öğr. Grv. Çağrı URFALI

Geometrik nivelmanda noktalar arasındaki yükseklik farkları, bu noktaların yatay bir düzleme olan düşey uzaklıkları ölçülerek, bunların farkı alınmak suretiyle bulunur. Noktaların yatay düzlemden düşey doğrultudaki uzaklıklarını ölçmek için, noktalar üzerine düşey olarak mira tutulur ve nivelman düzleminin bu miraları kestiği yerde mira okumaları yapılır Mira g Nivelman düzlemi Mira i Δh= H B - H A = geri-ileri= g-i Δh= g - i Δh B A Şekil 1.1 Geometrik nivelman

Nivelmanla noktalar arasındaki yükseklik farkları ölçülür. Ölçülen yükseklik farkları, yüksekliği önceden belli olan noktaların yüksekliklerine eklenerek yeni noktaların yükseklikleri bulunur. Yöntemine uygun olarak tesis edilmiş, yapılan ölçme ve hesaplamalarla, yükseklikleri belirlenmiş olan noktalara nivelman noktası denilir. 2.1. Nivolar Nivelman aletlerinin esası, yatay bir gözlem düzlemini gerçekleştirecek bir düzenden ibarettir. Geometrik nivelmanda yatay bir gözlem düzlemi oluşturmak amacıyla genellikle nivo; noktaların yatay gözlem düzleminden olan uzaklığını ölçmek için de mira kullanılır.

Nivoda yataylığı sağlamak için düzeç ve miradaki okumaları kolaylaştırmak için de dürbün kullanılır. Aleti istenilen yöne çevirmeye yarayan bir düşey ekseni ve yataylanması için de üçayak ile donatılmıştır. Nivolarda yatay düzlem, dürbünün optik ekseninin yataylanması ile sağlanır. Bir de aleti taşımaya yarayan sehpası vardır. Nivolar alt ve üst yapı olmak üzere iki kısımdan oluşur. Alt yapıda düşey eksen ile üçayak bulunur. Ayrıca yatay az hareket ve yatay genel hareket vidaları vardır. Bazı nivolarda yatay hareket sürtünme esasına göre olduğundan yatay genel hareket vidaları yoktur. Üst yapı ise dürbün ve silindirsel (boru) düzeçten oluşur.

Dürbün: Basit bir dürbünün şematik kesiti Şekil 2.1 de görülmektedir. 1 objektifine giren ışınlar, görüntü düzleminde miranın ters bir görüntüsünü verir. Görüntü 4 oküleri yardımıyla önemli ölçüde büyütülür. Aynı görüntü düzleminde bir cam plaka üzerine kazınmış gözlem çizgileri vardır (Şekil 2.2). Dürbün oküleri, gözlem çizgileri net ve keskin görününceye kadar hareket ettirilir. Yatay ve düşey çizgilerin kesim noktası ile objektif merkezi dürbünün gözlem doğrultusunu oluşturur. Bazı nivolarda ters görüntüyü düz görüntü haline getirmek için 2 ile 3 arasına bir prizma sistemi yerleştirilir. 1 2 3 4 Objektif Görüntü netleştirme merceği Oküler Gözlem çizgileri Şekil 2.1 Basit bir dürbünün şematik kesiti

Mira üzerinde yapılacak okuma ve tahmin etme inceliği, dürbünün büyütme gücüne bağlıdır. Nivelman miraları genellikle santimetre bölümlü olduklarından milimetre bölümlerinin tahmin edilmesi gerekir. Bir A dürbünü, B dürbününün iki katı büyütüyorsa, A dürbünü ile milimetreler iki kat daha incelikli tahmin edilir. Bir dürbünün büyütmesi yaklaşık olarak objektif ve oküler odak uzaklıklarının oranına eşittir. a) Normal nivolarda b) Hassas nivolarda (kama şeklinde) Şekil 2.2 Nivolarda kullanılan gözlem çizgileri

Düzeçler:Nivoların kaba yataylanmasında küresel düzeç, hassas yataylanmasında da silindirsel (boru) düzeç kullanılır. Bir nivonun inceliği, silindirsel düzecin duyarlığı ve dürbünün büyütme gücüne bağlıdır. Düzeç duyarlığı ise silindirsel düzecin eğrilik yarıçapına bağlıdır. Şekilde değişik eğrilik yarıçaplı iki düzeç görülmektedir. Her iki düzecin bir uçlarının yataydan miktarı kadar kaldırılması durumunda A düzecinin kabarcığı, eğrilik yarıçapının B den büyük olması nedeniyle, B düzecinin kabarcığından daha fazla miktarda hareket eder. Bu şekilde kabarcığın ortadan ayrılması daha iyi 2a saptanır. a α 2R α α R α A B

Nivelman aletlerinde düzeç duyarlıkları, kabarcığın 2 milimetrelik bölümü kadar yer değiştirmesine karşılık olan açı büyüklüğü ile verilmektedir. Çakıştırma prizma sistemli düzeçler, bir koruyucu içinde olup dış etkenlerden ve güneş ışınlarından korunmaktadır. Açık bir skalada düzeç kabarcığının ortalanma inceliği Çakıştırma prizma sisteminde, kabarcığının ortalanma inceliği 2 mm 5 2 0.4 mm mm 0.05 40 mm Kabarcığı ortalanmış açık skalalı düzeç Ayarlanmamış Ayarlanmış Düzeç kabarcığının prizma ile yansıtılması (çakıştırma prizma sistemli)

Nivoların Kurulması ve Düzeçlenmesi: Işınsal (kutupsal) nivelman işlemi dışında nivoların belirli bir nokta üzerine merkezlendirilerek kurulması zorunluluğu olmadığından, nivolar kurulurken genellikle nokta üzerine merkezlendirme işlemi yapılmaz. Öncelikle nivoyu kullanan kişi (operatör), alet sehpasını boyuna göre açar ve sehpa tablası yaklaşık yatay olacak şekilde sehpayı kurar. Nivo kutusundan çıkartılır ve sehpanın üzerine yerleştirilerek alttan sehpaya vidalanır. Sehpa ayaklarına el ile (ayakla değil) bastırılarak sehpanın zemine iyice yerleşmesi sağlanır.

Her iki yöndeki hareket alanını geniş tutabilmek için, düzeç ayak vidalarının yaklaşık olarak ortada olmasına dikkat edilir (düzeç ayak vidalarının bazıları çok aşağıda, bazıları da çok yukarıda olmamalıdır). Küresel düzeç, sehpa ayaklarıyla yaklaşık olarak; düzeç ayak vidalarıyla da tam olarak ortalanır. Silindirsel düzeç, önce iki düzeç ayağına paralel hale getirilir ve düzeç ayaklarının ikisi de içe veya dışa çevrilerek kabarcık ortalanır. Düzeç 90 o döndürülerek kullanılmayan üçüncü ayak vidası ile kabarcık yine ortalanır. Kontrol amacıyla işlem tekrarlanır. Düzeçleme işlemi tamamlandıktan sonra, düzeç hatası yoksa alet ne tarafa çevrilirse çevrilsin kabarcık ortada kalır. Düzecin hatalı olup olmadığı düzeç kontrolüyle belirlenir.

Düzeç Kontrolü: Nivo kurulup düzeçlendikten sonra silindirsel düzeç, iki düzeç ayağına paralel hale getirilir. Düzeç kabarcığı tam ortada olmalıdır. Düzeç 200g döndürülür; kabarcık ortada ise düzeçte hata yoktur; kabarcık ortadan kaymışsa, kayma miktarı hatanın iki katıdır. Bu kayma miktarının yarısı düzeç ayak vidaları yardımıyla, diğer yarısı da düzeç ayar vidası yardımıyla giderilir. Kontrol için işlem yinelenir.

2.1.1 İncelikleri Yönünden Nivelman Aletleri Nivelman aletleri, sağladıkları incelik bakımından birbirlerinden farklıdırlar. Bu nedenle belirli işlerde istenilen inceliği sağlayacak olan çeşitli aletlere ihtiyaç duyulur. Nivelmanda incelik, 1 kilometrelik nivelman yolunda gidiş-dönüş ölçü farklarından hesaplanan standart sapma (karesel ortalama hata) ile ifade edilmektedir. Nivelmanda incelik aşağıdaki koşullara bağlıdır (Möser, Müler, Schlemmer, Verner, 2000): Alet ve sehpasına, Mira bölümlendirmelerinin doğruluğuna ve mira altlığına, Ölçme yöntemi ve ölçme sürecindeki sistematik hataların elimine edilmesine, Çevre koşullarına (atmosferik, aydınlık, yeraltı).

Nivelman aletleri incelik yönünden 4 grupta ele alınabilir. 2.1.1.1 Düşük İncelikli Nivolar (İnşaat Nivoları) Bu nivolar genel olarak inşaat alanlarında, inşaat noktalarına kot verilmesinde, kısa bağlantı nivelmanında, basit enine ve boyuna kesit çıkarma işlerinde kullanılır. İnceliği 10 20 mm, dürbün büyütmeleri 15 20 ve düzeç duyarlıkları 30-60 dir. Yüzey nivelmanında kullanılabilmeleri için yatay açı bölüm daireleri vardır. 2.1.1.2 Orta İncelikli Nivolar Bu tür nivelman aletleri de genel olarak inşaat işleri ve yakın yerler arasında yeni nivelman noktalarının tesisi işlerinde kullanılır. Dürbün büyütmeleri 20-25, düzeç duyarlıkları 20-30, inceliği 5-10 mm arasındadır.

2.1.1.3 Yüksek İncelikli Nivolar Bu tür nivolar, III. Derece nivelman ölçümlerinde, yüzey nivelmanında, hacim hesapları için yapılan enine ve boyuna kesitlerin çıkarılmasında kullanılır. İnceliği 1 2 mm, dürbün büyütmeleri 25-30 ve düzeç duyarlıkları 10-30 arasındadır. Düzeçleri genellikle çakıştırma prizma sistemlidir. Kompensatörlü nivolarda küresel düzeç duyarlığı 10 civarındadır. Kompensatörün ortalama yataylama hatası 0,5 kadardır. Bu gruptaki nivolar, eğim vidalı, kompensatörlü veya elektronik (sayısal) olabilir. Uygulamada, genellikle kompensatörlü ve elektronik nivolar kullanılır. Eğim vidalı nivoların kullanımı ise oldukça azalmıştır.

2.1.1.4 Çok Yüksek incelikli Nivolar Bu aletler I.ve II. derece nivelman ağlarının ölçümünde, köprü, baraj, vb. yapılardaki deformasyon ölçmelerinde kullanılır. İnceliği 0.5 mm, dürbün büyütmeleri 35 50 ve düzeç duyarlıkları 5-10 arasındadır. Düzeçleri, çakıştırma prizma sistemli olup görüntüleri, genellikle okülere yansıtılır. Bu tip aletlerde yatay açı bölüm dairesi yoktur. Ölçmelerde çift bölümlü ve payandalı invar miralar kullanılır. Gözlem çizgileri kama şeklindedir. Düzlem paralel camlı mikrometre düzenleri vardır. Kompensatörlü olanlarda Kompensatörün hassasiyeti 0.2 dir.

2.1.2. Yapıları Bakımından Nivelman Aletleri Nivelman aletleri, yatay bir ölçme düzlemi oluşturmak için geliştirilmiş aletlerdir. Bu yatay düzlem, her tarafa dönebilen dürbünün yatay duruma getirilmiş optik ekseni (gözlem ekseni) yardımıyla sağlanır. Dürbünün her yöne döndürülebilmesi bir düşey eksen yardımıyla, optik eksenin yatay duruma getirilmesi ise bir silindirsel düzeç yardımıyla ya da kompensatör sistemiyle olmaktadır. Günümüzde kullanılan nivolar, yapıları ve çalışma sistemleri açısından 4 grupta ele alınabilir*: 1.Eğim vidalı nivolar 2.Kompensatörlü (otomatik) nivolar 3.Sayısal (elektronik sayısal) nivolar 4.Lazer nivoları * Günümüzde artık pek kullanılmayan sabit dürbünlü nivolarla, tersinir nivolar gruplandırmaya dahil edilmemiştir.

2.1.2.1. Eğim Vidalı Nivolar Eğim Vidalı Nivolarda Eksenler NN : Gözlem ekseni DD : Düzeç ekseni VV : Düşey ekseni KK : Küresel düzeç ekseni

2.1.2.2. Kompensatörlü (Otomatik) Nivolar Kompensatörlü nivoların dürbünlerinde gözlem doğrultusunu otomatik olarak yatay duruma getiren düzenler bulunmaktadır. Bu aletlerde gözlem ekseninin otomatik olarak yataylanmasını sağlayan düzen; düzeç ve kompensatör sisteminden oluşmaktadır. Küresel düzeç değişik tip aletlerde 8-15 arasında bir yataylama inceliğine sahipse kompensatör otomatik olarak faaliyete geçer. Kompensatör yatay doğrultuyu sağlayan mekanik bir düzendir. Zeiss Ni 2 de kompensatör, sarkaç, prizma, salınım yapan bir ayna ve bir optik kamadan oluşur.

2.1.2.3. Sayısal (Elektronik Sayısal) Nivolar İlk sayısal nivo olan WILD NA2000, 1990 yılında Leica Firması tarafından üretilmiştir. Bu aletle, özel olarak yapılmış barkotlu bir miranın görüntüsü, sayısal görüntü işleme ve korelasyon yöntemine göre değerlendirilmektedir. Burada insan gözünün görevini, sıralı dedektörler üstlenmişti (Uzel, Gülal 1997). Sayısal nivo ile yapılan nivelman, verileri işleyen ve depolayan programlar ve kontrol hesaplamaları ile desteklenmiştir. Netleştirme Konumu Netleştirme Çözümü Kayıt Birimi Kompensatör Kontrolü A S Ekran Barkot Görüntüsü Sıralı Dedektör Elektronik Okuyucu Akü 500 mah Mikro İşlemci Klavye

2.1.2.4. Lazer Nivoları Klasik jeodezik yöntemlere pasif gözlem ışınları egemendir. Yani gözlemci hedefi, dürbünün gözlem çizgileriyle çakıştırır. Lazer tekniği ile aktif hedef ışınlarının yararları ortaya çıkar. Özellikle üretim akışı içinde, yerinde doğrudan doğruya ölçmeyi sağlar. Mühendislik ölçmelerinde lazer ışınlarının yönlendirilmesi çok önemlidir. Görülebilir lazer ışınları bir doğrultu boyunca yayılır ve bunlar uygulamada nivelman için uygundur. Düşey yönlendirmede lazer çeküllemesi ele alınabilir. Lazer ışınları, silindirsel mercekler yardımıyla yelpazelenebilir ve böylece uzayda arzu edilen konumda düzlem oluşabilir. 1960 lı yılların sonlarına doğru, lazer ışınlarının özelliklerinden nivelmanda da yararlanmak üzere çalışmalar yoğunlaştırılmıştır.

Lazer nivoları, geometrik nivelmanda geri ve ileri okuma aralıklarını 50 metreden 100 metreye kadar çıkarmıştır (Uzel, 1984). Lazer nivolarının oluşturdukları doğrultu ve düzlemler. Günümüzde yararlanılan merkezleme dedektörleri, kısa mesafelerde lazer ışığının enerji merkezini büyük bir incelikle saptayabilmektedir. 100 metreden daha uzakta, merkezleme inceliği hızla düşmektedir. Dedektörler, bir referans çizgisi ile lazer ışık spotunun merkezi arasındaki aralığı 0.01 mm incelikle ölçebilir ve bunu sayısal olarak verir. Bunun için klasik nivelmanda kullanılan miraya benzer özel biçimli bir mira kullanılır ve buna bir dedektör bağlanır (Şekil 2.13).

Çekül Lazerleri, çekül hattı gerektiren işlerde örneğin, yüksek binalarda yüzey kaplamalarında, aks çıkılmasında, asansör boşluğu yapımında (ray aliymanında), kuyu açımında, yüksek baca yapımında vb. yerlerde büyük kolaylıklar sağlar. TOPCON PL-1 çekül lazeri ±3 o aralığında kendi kendini düzeçleme özelliği bulunan aletle yukarıya doğru 100m ve daha fazla (ortamın aydınlığına bağlı olarak), aşağıya doğru ise 5 metrelik çekül doğrultusu oluşturur. Şekil 2.13 Lazer nivosu ve mira üzerinde okuma

Dönen Lazerler, 360 o lik bir açıda devamlı gözle görülebilir lazer ışını yayan bu aletler, yatay ve düşey uygulamalarda hatasız bir referans yüzeyi oluştururlar. Bina içi ve bina dışı uygulamalarda düşük maliyetli gözle görülebilir lazer ışını kullanılır. Maksimum görünebilirlik sağlamak için tarama özelliklidir. Kendini otomatik olarak düzeçleyip gözle görülür lazer ışını yayan dönerli lazerler, devamlı rotasyon halindeki lazer ışını, bir ışık düzlemi oluşturup yatay ve düşey aliyman işlerinde referans sağlarlar. Bu lazerler aynı zamanda aşağı ve yukarı doğrultuda çekül hattı oluşturur. Opsiyonel sensörler ile basit eğim seviyeleme mekanizmaları bulunur. Kullanım alanları: Düşey aliyman olarak; Duvar yapımı, Hareketli bölme (sürgülü kapı) yapımı, Asansör rayı aliymanı, Çevre duvarı

Yatay seviyeleme; Asma tavan sistemleri ve asma giriş katı, Mutfak dolaplarının, pencerelerin, yangın söndürme fıskiyelerinin vb. montaj işleri, Eğimli tavan yapımında Dört köşe yapma, Kaplama; Bilgisayar döşeme montajı, Çeşitli çekül hattı uygulamaları, İlgili sensörlerin kullanımı ile 200m çaplı bir alanda eğim seviyeleme ve beton dökme işi, eğimli çatı ve eğimli duvar yapımı.

2.2. Nivelman Miraları Mira, noktaların nivelman düzleminden olan uzaklığını ölçmek için kullanılan, fırınlanmış ahşaptan ya da metalden yapılmış cetvellerdir. Bazı ahşap miralarda, eğilmeyi önlemek için miranın arka tarafına veya yan taraflarına destek parçaları eklenir. Miranın alt uç kısmına çelikten yapılmış bir parça eklenir. Miranın bölümlemesi bu levhanın alt kısmından başlar. Nivelman miraları tek parçalı, katlanabilir ya da sürgülü olabilirler. Uzaktan iyi seçilebilmeleri için 1 metrelik ara ile siyahbeyaz ve kırmızı-beyaz şeklinde bölümlendirilmiştir. Miralar, genellikle 4 m uzunluğunda ve cm bölümlüdür. 2 adet tutamağı olan miraların düşeyliğini sağlayabilmek için, bir küresel düzeçle donatılmışlardır. Hassas nivelmanda kullanılan miralar ise, 3 m boyunda tek parçalı olup 1 cm ya da yarım cm aralıklarla bölümlendirilmiştir. Bu miralar ahşaptan olup, bölümlendirmeler ahşap üzerine yerleştirilen invar şerit üzerine yapılmıştır ve tam düşey tutulabilmeleri için de payandalarla desteklenmiştir. Kullanılmadıkları zaman bir kutu içinde korunurlar.

a) Normal mira b) Hassas nivelman mirası ve payandası

Nivelman miralarının boyları, sıcaklık ve nemin etkisiyle zamanla değişebilir. Bu nedenle miraların boyları sık sık bir normal metre ile ya da komparator aletiyle karşılaştırılarak kontrol edilmelidir. Ahşap miralar yaklaşık 10 o C lik bir sıcaklık değişiminde boyları 0.1-0.2 mm kadar değişebildiği halde invar miralarda bu değişim ancak 0.04 mm kadardır. İnvar miraların bölümleri çizgi şeklindedir. Çizgi aralıkları 1 cm veya 0.5 cm olabilir. 2.2.1. Miralardaki Hatalar Miralarda şu hatalar olabilir: 1. Düzeç Hatası: Düşey olarak duran miranın yanına bir çekül asılır ve mira çekülün ipine paralel olarak tutulur. Mira düzecinin kabarcığı ortada değilse düzeç hatası vardır. Bu hata düzeç ayar vidalarıyla giderilir. 2. Bölümleme Hatası: Basit miralarda iyi bir cetvel ile, invar miralarda komparatorlar yardımıyla mira bölümleri kontrol edilebilir. Özenle yapılmış basit miralarda bölüm hatası 0.1 mm den, invar miralarda ise 0.03 mm den fazla olmamalıdır.

3. Bölüm Başlangıç Hatası: Bu hata bölümlemenin, miranın tam yere konulan ucundan başlamamasından ileri gelir. Bu hata geri ve ileri okumalarda etkisiz hale gelir. Ancak geri ve ileri okumalarda değişik miralar kullanılıyorsa bölüm başlangıç hatası, yükseklik farkına etki eder. Hatanın saptanması için farklı yükseklikte birkaç noktaya, örneğin bir merdivenin basamaklarına mira altlıkları konur ve iki mira ayrı ayrı tutularak nivo ile okumalar yapılır. Aynı noktalara ait okumalar arasındaki fark bölüm başlangıç hatasıdır. Çeşitli noktalar için bulunan hataların ortalaması alınarak hata miktarı belirlenir. Bu hatanın etkisini ortadan kaldırmak için, ölçmelere hangi mira ile başlanmışsa, ölçümler yine aynı mira ile bitirilmelidir. 4. Mira Tabanının Eğiklik Hatası: Mira tabanındaki çelik levhanın alt yüzeyinin mira bölüm çizgisine tam paralel olmamasından ileri gelir. Bu hatanın belirlenmesi için mira ucundaki çelik levha ortadan itibaren sağa ve sola doğru eşit parçalara bölünüp işaretlenir. Bir mira altlığına, işaretlenen noktalar ayrı ayrı tutularak nivo ile okumalar yapılır. Okumalar arasında fark varsa hata var demektir. Hatanın etkisiz duruma getirilmesi için mira altlığı üzerine daima miranın ortası tutulmalıdır.

5. Katlanma Yeri Hatası: Kalitesiz miralarda görülen bir hatadır. Mira açıldığı zaman katlanan parçalar arasında hiç boşluk kalmamalıdır. Ayrıca katlanma noktasından ön ya da arkaya doğru kırılmamalıdır. Mira Altlıkları (Mira Pabucu, Mira Çarığı) Sağlam olmayan zeminlerde ve hassasiyet aranan nivelman işlerinde, miraların çökmesini önlemek, geri ve ileri okumalarda mira döndürülürken yüksekliğin değişmemesi için kullanılan pik demirden yapılmış bir alettir. Ortasında küresel başlı bir çıkıntı vardır. Mira bu çıkıntıya tutulur. Ayrıca toprağa iyi gömülebilmesi için üç sivri ayağı vardır. Yumuşak zeminde üzerine basılarak toprağa sağlamca oturması sağlanır. Taşınmasını kolaylaştırmak amacıyla bir kulpu vardır.

2.3. Nivoların Kontrolü ve Eksen Koşulları Nivolarla ölçmelere başlamadan önce nivoların, kontrol edilmeleri gerekir. Hatalı bir aletle yapılan ölçmelerin hiçbir işe yaramayacağı açıktır. Böyle bir durumla karşılaşmamak için nivoların belli aralıklarla kontrol edilmeleri gerekir. Aynı şekilde ilk defa kullanılacak aletlerin eski veya yeni olmasına bakılmaksızın kontrol edilmeleri gerekir. Eksen koşullarına geçmeden önce nivoların yatay gözlem çizgisinin yatay olup olmadığının kontrolünü ele alalım. 2.3.1. Nivoların Yatay Gözlem Çizgisinin Yataylığının Kontrolü 1 2d d 3 2

2.3.2. Nivolarda Eksen Koşulları D N V V K K D N DD : Silindirsel düzeç ekseni NN : Gözlem(nişan, optik) ekseni VV : Düşey (asal) eksen KK : Küresel düzeç ekseni KK // VV Gözlem ekseni yatay olmalı NN // DD Genel olarak bir nivoda bu eksenler arasında şu koşullar sağlanmalıdır: 2.3.2.1. Küresel düzeç ekseni, düşey eksene paralel olmalıdır ( KK // VV ). Küresel düzeç, üçayak vidası ile ortalanır ve sonra nivo 200 g döndürülür. Eğer kabarcık ortada ise küresel düzeç ekseninin düşey eksene paralel olduğu anlaşılır. Kabarcık kaymışsa, kayma miktarı hatanın iki katıdır. Hatanın yarısı üçayak vidaları yardımıyla, diğer yarısı da küresel düzecin ayar vidaları yardımıyla giderilir.

2.3.2.2. Nivolarda temel koşul, gözlem ekseninin yatay olmasıdır. Bu koşul, eğim vidalı nivolarda; gözlem ekseni, düzeç eksenine paralel olmalıdır (NN // DD) biçiminde ifade edilirken otomatik (kompensatörlü) nivolarda; gözlem ekseni, kompensatörün çalışma alanı içinde yatay olmalıdır biçiminde ifade edilir.

2.4. Nivelman Noktalarının Tesisi Yerleşim alanları dışında (kırsal kesimde) ve sağlam bina, köprü gibi yapıların bulunmadığı durumlarda nivelman noktaları, zemin tesisi olarak yapılır. Yerleşim alanlarında ise, binaların sağlam temel duvarlarına ya da kolonlarına, sağlam duvar ve yapıların uygun yerlerine duvar tesisi olarak yapılır.

2.5. Doğrultu (Hat) Nivelmanı Bir geçki boyunca iki ya da daha fazla nokta arasındaki yükseklik farklarını belirlemeye yönelik olarak yapılan nivelmana doğrultu (hat) nivelmanı denilir. Yükseklik farkı belirlenecek A ve B noktaları birbirlerine yakın ve aralarında fazla yükseklik farkı yoksa yaklaşık her iki noktaya da eşit uzaklıkta ortada bir yere, alet bir kere kurularak bu iki nokta arasındaki yükseklik farkı belirlenir. A ve B noktalarında düşey olarak tutulan miralara bakılarak, nivonun gözlem çizgilerinden ortadaki yatay çizgiye rastlayan mira bölüm değerleri okunur. İşlem yönüne göre gerideki mirada yapılan okuma değerine, geri okuma (g), ilerideki mirada yapılan okuma değerine de ileri okuma (i) adı verilir. Bir noktada alet kaldırılmadan ikiden fazla mira okuması yapılmışsa, ilk okuma geri, son okuma ileri, aradaki tüm okumalar da orta okuma (o) olarak adlandırılır.

g A o 2 o 3 g 4 g 1 i 4 H A1 = g a - i 1 i 1 H 12 = g 1 - o 2 i B A 1 2 3 4 B H 23 = o 2 o 3 H 34 = o 3 i 4 H 4B = g 4 - i B [ H]=[g]+[o]-[i]-[o]=[g]-[i] Şekil 2.22 Orta okumalı doğrultu (hat) nivelmanı 2.5.1. Açık Nivelman Yüksekliği bilinen bir noktadan nivelman işlemine başlanır, fakat yüksekliği bilinen başka bir noktaya bağlanılmazsa bu tür nivelmana açık nivelman diyoruz. Açık nivelmanda yapılan ölçümün kontrolü olmadığı için nivelman ve poligon noktalarının yüksekliklerinin belirlenmesinde kullanılmaz.

Açık Nivelman Hesabı Örnek Uygulama

Açık Nivelman Hesabı Örnek Uygulama

α s Δh uzunluk yatay farkı yükseklik Eğim s h tan α m Δ %2.2 0.0216667 120.00 2.60 120.00 124.90 127.50 tan? m 127.50 124.90 120.00 : AB AB A B AB B A AB s H H α m m H m H m s Önek EĞİM HESABI