Elektro-Aktif Üç Katmanlı Konjuge Bir Polimer Eyleyicinin Hibrit Kontrolü Hybrid Control of A Conjugated Tri-Layer Electro-Active Polymer Actuator

Benzer belgeler
KonjugeTip Bir Elektro-Aktif Polimer Eyleyicinin Görüntü Tabanlı Kontrolü

KonjugeTip Bir Elektro-Aktif Polimer Eyleyicinin Görüntü Tabanlı Kontrolü

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences

Aktif Titreşim Kontrolü için Bir Yapının Sonlu Elemanlar Yöntemi ile Modelinin Elde Edilmesi ve PID, PPF Kontrolcü Tasarımları

Aktif Titreşim Kontrolü için Bir Yapının Sonlu Elemanlar Yöntemi ile Modelinin Elde Edilmesi ve PID, PPF Kontrolcü Tasarımları

PİEZOELEKTRİK YAMALARIN AKILLI BİR KİRİŞİN TİTREŞİM ÖZELLİKLERİNİN BULUNMASINDA ALGILAYICI OLARAK KULLANILMASI ABSTRACT

POSITION DETERMINATION BY USING IMAGE PROCESSING METHOD IN INVERTED PENDULUM

Ders İçerik Bilgisi. Dr. Hakan TERZİOĞLU Dr. Hakan TERZİOĞLU 1

MM 409 MatLAB-Simulink e GİRİŞ

MOD419 Görüntü İşleme

İRİSTEN KİMLİK TANIMA SİSTEMİ

Bölüm 7 Renkli Görüntü İşleme

LAZER SENSÖRLERLE BİR ROBOTUN DOĞAL FREKANSLARININ VE STATİK ÇÖKMELERİNİN ÖLÇÜMÜ

Dijital (Sayısal) Fotogrametri

KST Lab. Shake Table Deney Föyü

Bilgisayarla Görüye Giriş

RENK BİLEŞENLERİ YARDIMIYLA HAREKETLİ HEDEFLERİN GERÇEK ZAMANLI TESPİTİ

İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL oda no: 303 (T4 / EEM)

Sistem Dinamiği. Bölüm 9- Frekans Domeninde Sistem Analizi. Doç.Dr. Erhan AKDOĞAN

HARAKETLİ YÜK PROBLEMİNİN DENEYSEL OLARAK İNCELENMESİ

1. YARIYIL / SEMESTER 1

GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ

Plazma İletiminin Optimal Kontrolü Üzerine

TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon

DENEY 3 HAVALI KONUM KONTROL SİSTEMİ DENEY FÖYÜ

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS

MATLAB a GİRİŞ. Doç. Dr. Mehmet İTİK. Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü

CCD KAMERA KULLANARAK SAYISAL GÖRÜNTÜ İŞLEME YOLUYLA GERÇEK ZAMANLI GÜVENLİK UYGULAMASI

PROJEM İSTANBUL ARAŞTIRMA PROJESİ BİLGİSAYARLI GÖRÜ VE SINIFLANDIRMA TEKNİKLERİYLE ARAZİ KULLANIMININ OTOMATİK OLARAK BULUNMASI

AMAÇ Araçlardaki Kamera Sistemleri

PİEZOELEKTRİK YAMALARIN AKILLI BİR KİRİŞİN TİTREŞİM KONTROLÜNDE ALGILAYICI VE UYARICI OLARAK KULLANILMASI

Musa DEMİRCİ. KTO Karatay Üniversitesi. Konya

BLG325.1 SINYAL ISLEME DERSİ BİLGİ PAKETİ. Haftalık Ders Planı

Ölçme Kontrol ve Otomasyon Sistemleri 1

Hazırlayan. Bilge AKDO AN

Bölüm 4 Yoğunluk Dönüşümleri ve Histogram İşleme

SANDVİÇ KOMPOZİT PLAKA ÜZERİNDE AKTİF TİTREŞİM KONTROLÜ AMACIYLA KULLANILACAK PİEZOELEKTRİK YAMALARIN YERLERİNİN BELİRLENMESİ

MAK4061 BİLGİSAYAR DESTEKLİ TASARIM

Elena Battini SÖNMEZ Önder ÖZBEK N. Özge ÖZBEK. 2 Şubat 2007

(Mekanik Sistemlerde PID Kontrol Uygulaması - 1) SÜSPANSİYON SİSTEMLERİNİN PID İLE KONTROLÜ. DENEY SORUMLUSU Arş.Gör. Sertaç SAVAŞ

Hazırlayan: Tugay ARSLAN

Akıllı Ortamlarda Sensör Kontrolüne Etmen Tabanlı Bir Yaklaşım: Bir Jadex Uygulaması

Dijital Görüntü İşleme Teknikleri

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ 2018/2019 GYY BİTİRME ÇALIŞMASI ÖNERİ FORMU. (Doç.Dr. M.

Şekil 1. DEÜ Test Asansörü kuyusu.

Electronic Letters on Science & Engineering 3(1) (2007) Available online at

Bu makalede, rulman üretim hattının son

Cobra3 lü Akuple Sarkaçlar

Morfolojik Görüntü İşleme Yöntemleri ile Kayısılarda Yaprak Delen (Çil) Hastalığı Sonucu Oluşan Lekelerin Tespiti

Bulanık Mantık Tabanlı Uçak Modeli Tespiti

KESİKLİ İŞLETİLEN PİLOT ÖLÇEKLİ DOLGULU DAMITMA KOLONUNDA ÜST ÜRÜN SICAKLIĞININ SET NOKTASI DEĞİŞİMİNDE GERİ BESLEMELİ KONTROLU

OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ FORMU

AKILLI BİR PLAKANIN SERBEST VE ZORLANMIŞ TİTREŞİMLERİNİN KONTROLÜ

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ EĞİTİM ÖĞRETİM YILI DERS KATALOĞU

Dijital (Sayısal) Fotogrametri

KOMPOZĐT VE SANDVĐÇ KĐRĐŞLERDEKĐ HASAR ŞĐDDETĐNĐN TĐTREŞĐM BAZLI ANALĐZLER VE YAPAY SĐNĐR AĞLARI ĐLE TESPĐTĐ

BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BENZER SÜREÇLERDE ÜRETİLEN ÜRÜNLER İÇİN YAPAY ZEKA İLE ZAMAN TAHMİNİ SONER ŞÜKRÜ ALTIN

YENİ BİR İLETKEN POLİMER: POLİ(3,8 DİAMİNOBENZO[c]SİNNOLİN) ELEKTROKİMYASAL ÜRETİMİ VE ELEKTROKROMİK ÖZELLİKLERİNİN İNCELENMESİ

Dijital (Sayısal) Fotogrametri

Şifrebilimde Yapay Sinir Ağları

EEM 452 Sayısal Kontrol Sistemleri /

TEK BÖLGELİ GÜÇ SİSTEMLERİNDE BULANIK MANTIK İLE YÜK FREKANS KONTRÜLÜ

Zaman Ortamı Yapay Uçlaşma (Time Domain Induced Polarization) Yöntemi

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DOKTORA YETERLİK SINAVI YÖNETMELİĞİ

Hareketli. Sistem. Sistemleri. Hareketli. Sistemi

SAYISAL KONTROL 2 PROJESİ

Dairesel Dalga Kılavuzlarının 2 Boyutlu FDTD Yöntemi le Modellenmesi

Mekanik İp dalgalarının faz hızı. Dinamik. İhtiyacınız Olanlar:

PROSES KONTROL DENEY FÖYÜ

TEMEL GÖRÜNTÜ BİLGİSİ

Bilgisayarla Fotogrametrik Görme

BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK. İlhan AYDIN

Optik Filtrelerde Performans Analizi Performance Analysis of the Optical Filters

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

MEMS Malzeme Karakterizasyonu için Bütünleşik bir Elektrostatik Mikro Bükülme Test

6. DENEY Alternatif Akım Kaynağı ve Osiloskop Cihazlarının Kullanımı

DC Beslemeli Raylı Ulaşım Sistemlerinin Simülasyonu

Nanolif Üretimi ve Uygulamaları

(Mekanik Sistemlerde PID Kontrol Uygulaması - 2) DENEYSEL KARIŞTIRMA İSTASYONUNUN PID İLE DEBİ KONTROLÜ. DENEY SORUMLUSU Arş.Gör.

İşaret ve Sistemler. Ders 1: Giriş

Üç Fazlı Sincap Kafesli bir Asenkron Motorun Matlab/Simulink Ortamında Dolaylı Vektör Kontrol Benzetimi

Deney 10: Analog - Dijital Dönüştürücüler (Analog to Digital Converters - ADC) Giriş

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

FOTOGRAMETRİ DAİRESİ BAŞKANLIĞI FAALIYETLERI

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA

TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER

Bilgisayar Grafiği. Volkan KAVADARLI

Otomatik Kontrol. Kontrol Sistemlerin Temel Özellikleri

Yapay Sinir Ağları. (Artificial Neural Networks) DOÇ. DR. ERSAN KABALCI

İkili (Binary) Görüntü Analizi

TURBOCHARGER REZONATÖRÜ TASARIMINDA AKUSTİK ANALİZ VE SES İLETİM KAYBI ÖLÇÜMLERİNİN KULLANIMI

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Final

Elementlerin büyük bir kısmı tabiatta saf hâlde bulunmaz. Çoğunlukla başka elementlerle bileşikler oluşturmuş şekilde bulunurlar.

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ MALZEME LABORATUARI II DERSİ AKIMLI VE AKIMSIZ KAPLAMALAR DENEY FÖYÜ

CETP KOMPOZİTLERİN DELİNMELERİNDEKİ İTME KUVVETİNİN ANFIS İLE MODELLENMESİ MURAT KOYUNBAKAN ALİ ÜNÜVAR OKAN DEMİR

Gama ışını görüntüleme: X ışını görüntüleme:

Hafta 5 Uzamsal Filtreleme

Transkript:

Elektro-Aktif Üç Katmanlı Konjuge Bir Polimer Eyleyicinin Hibrit Kontrolü Hybrid Control of A Conjugated Tri-Layer Electro-Active Polymer Actuator Caner Sancak 1, Mustafa Yavuz Coşkun 2, Mehmet İtik 3 1 Makine Mühendisliği Bölümü Karadeniz Teknik Üniversitesi, Trabzon csancak@ktu.edu.tr 2 Makine Mühendisliği Bölümü Karadeniz Teknik Üniversitesi, Trabzon mycoskun@ktu.edu.tr 3 Makine Mühendisliği Bölümü Karadeniz Teknik Üniversitesi, Trabzon mitik@ktu.edu.tr Özetçe Bu çalışmada, konjuge tip bir elektro-aktif polimer (EAP) eyleyicinin belirlenen bir senaryoya uygun olarak bir dizi konum takibi ve kuvvet uygulama işlemlerinin gerçekleştirilmesi ayrık zamanlı olarak tasarlanan klasik PI kontrolcüler ile yapılmıştır. Belirlenen senaryo hücre enjeksiyon sistemlerinde uygulanan işlemlerin hücreye yaklaşma, hücre zarıyla etkileşime girme ve hücreden uzaklaşma kısımlarının basitleştirilmiş halini içermektedir. Ayrık zamanlı PI kontrolcülerin tasarımında kullanılmak üzere konum ve kuvvet bilgisini veren ayrık zamanlı transfer fonksiyonları bir ucu sabit tutulan eyleyicinin serbest ucunun konumu ve uyguladığı kuvvet referans alınarak sistem tanılama yöntemiyle elde edilmiştir. Konumu veren transfer fonksiyonunun eldesi ve konum kontrolü için görüntü tabanlı takip sistemi kullanılmıştır. Deney sonuçları eyleyicinin verilen senaryoyu başarıyla uygulayabileceğini ortaya koymaktadır. Dolayısı ile çalışmanın sonuçları, konjuge EAP eyleyicilerin hücre enjeksiyonlama sistemlerinde kullanılabilmesi açısından umut vericidir. Abstract In this study, displacement and blocking force of the tip point of a cantilevered conjugated electro-active polymer (EAP) actuator have been controlled by using discrete time PI controllers in accordance with a determined scenario. The scenario includes the simplified steps of a cell injection process, which are approaching the cell, interaction with the cell membrane and leaving from the cell. Two discrete time transfer functions which are used to design the discrete time PI controllers, are obtained from position and force response of the free tip point of the cantilevered actuator by using system identification. Vision based system is used to acquire for the tip displacement data both in system identification and control processes. Experimental results show that, the actuator is capable of performing given scenario which also indicated that the actuator is promising for cell injection systems. 1. Giriş Elektro-aktif polimer (EAP) eyleyiciler elektriksel gerilim altında şekil değişikliği gösterebilen akıllı malzemelerdir. Uygulanan düşük elektrik gerilimi karşısında yüksek gerinim ( < % 30) değişimleri verirler [1]. EAP ler yaygın olarak algılayıcı ve eyleyici olarak kullanılırlar [2, 3]. Elektriksel gerilim altındaki şekil değişimleri mikro mekanizmalara tahrik verilmesi, yapay kas ve aktif titreşim kontrolü gibi alanlarda kullanılabilmelerine olanak sağlar [2 4]. Eyleyici olarak kullanıldıkları alanlara örnek olarak mikro-nano manipülasyon [5], ilaç iletim sistemleri [6] ve mikro akış kontrolü [7] verilebilir. Genel olarak kullanılan ve geleneksel olarak adlandırılan tahrik mekanizmalarına kıyasla hafiflik, esneyebilme kabiliyeti, yüksek kırılma toleransı, düşük maliyetli ve biyo-uyumlu olmaları EAP lerin kullanım alanını artıran unsurlardır [2 4, 8 13]. EAP eyleyiciler hareket mekanizmalarına bağlı olarak ikiye ayrılırlar: İyonik ve elektronik EAP eyleyiciler. Çalışmada konjuge tip bir iyonik EAP eyleyici kullanılmıştır. İyonik eyleyicilerin tahriki iyonların belirli bir elektrik alanı altında yer değiştirmesi ile meydana gelir. Düşük voltajlarda (< 5V ) aktive edilebilmeleri iyonik EAP eyleyicilerin en önemli avantajlarından biridir. Konjuge EAP eyleyiciler, iyonik EAP eyleyicilerin bir türüdür. Bahsedilen avantajlarının yanında biyo-uyumlu olmaları, bu tip eyleyicileri biyomedikal uygulamalar için öncelikli tercih haline getirmektedir. Bu çalışmada, bir ucu sabitlenen konjuge tip bir iyonik poli- 15

mer eyleyici (İPE) kullanılarak belirlenen bir senaryo dahilinde serbest ucunun konum ve kuvvet kontrolü yapılmıştır. Belirlenen senaryo hücre enjeksiyon sistemlerinde uygulanan adımların [14] bir kısmının basitleştirilmiş halini içermektedir: Hücreye yaklaşma, Hücre zarı ile etkileşime geçme, Hücreden uzaklaşma. Senaryo makro ölçekte deneysel olarak gerçekleştirilmiştir. Serbest ucundaki konum değişikliği kontrol edilmek istenen konjuge İPE ve eyleyicinin serbest ucunun konum bilgisini almak için kullanılan görüntü işleme teknikleri sırasıyla 2. ve 3. bölümde anlatılmıştır. 4. ve 5. bölümlerde deneysel kurulum ve sistem tanılama ile deneysel çalışmalardan bahsedilerek elde edilen sonuçlar paylaşılmıştır. Son bölümde ise sonuçlar değerlendirilmiştir. 2. Üç Katmanlı Konjuge Iyonik Elektro-Aktif Polimer Eyleyici Bu çalışmada kullanılan konjuge İPE üç katmanlı bir yapıya sahip olup, boyutları 20x5x0.17 mm dir. Dış yüzeylerinde her biri 30 µm kalınlığında polipirol (PPy) katman vardır. Bu katmanlar eyleyicinin elektro-aktif kısımlarını teşkil etmektedir. Elektroaktif kısımların arasında ise 110 µm kalınlığında polyvinylidene fluoride (PVDF) katman bulunmaktadır (Şekil 1). PVDF gözenekli yapısı sayesinde eyleyicinin hareket etmesi için gerekli olan iyonik sıvıyı içerisinde barındırır, böylelikle eyleyicinin kuru ortamlarda çalışabilmesi sağlanmış olur [11, 12]. İyon kaynağı olarak lityum triflouromethanesulfonimide (Li + TFSI - ) elektrolit sıvı kullanılmıştır. PVDF katmanın her iki yüzeyi 0.2 µm kalınlığında altın tabaka ile kaplanarak eyleyicinin iletkenliği arttırılmıştır. PVDF Pol p rol İletkenPol mer Şekil 1: Üç katmanlı konjuge iyonik EAP ın yapısı. Katyon Anyon Elektron Konjuge iyonik EAP eyleyicilerde üzerlerine uygulanan yeterli elektrik gerilimi veya akımı sonrasında indirgenmeyükseltgenme (redoks) tepkimesi meydana gelir, bunun sonucunda şekil değişimi meydana gelir [11,12]. Eyleyicinin dış yüzeylerine gerilim farkı uygulandığında pozitif gerilim farkı uygulanan PPy katmandan diğer PPy katmana elektron geçişi olur. Elektronların ayrıldığı katmandaki yük dengesini nötr hale getirebilmek için iyonik sıvıdaki negatif yüklü anyonlar oksitlenmiş katmana geçerek bu katmanın genişlemesine sebep olurlar (Şekil 2). Ayrıca elektronların geçişinden dolayı diğer katmandan anyon çıkışı olur ve bu katman küçülür (daralır). Genişleme ve daralmayı sağlayan redoks tepkimesi denklem (1) de verilmiştir. İnd rgenen katman Katyon Anyon Elektron Yükseltgenen katman Şekil 2: Şekil değişikliği gösteren üç katmanlı konjuge iyonik EAP. P P y + T F SI Yükseltgenme ====== P P y + T F SI + e (1) İndirgenme Redoks tepkimesi sonucunda eyleyici daralma olan tarafa doğru bükülür (Şekil 2). Bükülme sonucu eyleyicinin serbest ucunda büyük miktarda yer değişimi olur. Gerilim farkı uygulanan eyleyicinin uç kısmının hareketi engellendiğinde ise eyleyici hareketin engellendiği yöne doğru kuvvet uygular. Bu kuvvet de eyleyicinin uç noktasının yer değiştirmesi genel olarak lineer bir dinamik ile ifade edilebilir. 3. Görüntü İşleme Görüntü işleme için kullanılan bilgisayarlı süreçler alçak, orta ve yüksek seviye süreçler olmak üzere üçe ayrılabilirler. Alçak seviye süreçler, görüntüyü zenginleştimek amacıyla kullanılan gürültü azaltma, görüntü keskinleştirme gibi basit işlemleri içerir. Alçak seviye süreç, hem girdisinin hem çıktısının görüntü olduğu bir süreç olarak da adlandırılabilir Orta seviye süreçler, bir görüntü içerisinde bulunan alanları belirlemek için ele alan ve bu işlem sonucunda bilgisayarla işlemeye uygun hale getiren işlemleri içerir. Orta seviye işlemlerin girdisi genellikle görüntüdür, buna karşın çıktı olarak görüntünün kenar, bölge, nesne gibi özniteliklerinin bilgisi elde edilir. Yüksek seviye süreçler ise, tanımlanan nesnelere bilişsel görme fonksiyonlarını uygulayarak anlamlandırmak ile ilgilenirler [15]. Eyleyicinin uç noktasının takibi için giriş ve orta seviye süreçlerin uygulanması yeterli olmuştur. Uygulanan işlemler şekil 3 te uygulama sırasına göre verilmiştir. Griye dönüştürme, eşikleme ve kapama işlemleri giriş seviyesi süreçler olarak görüntüyü orta seviye süreçlere hazırlar. Belirleme ve koordinat çıkarımı işlemleri ise orta seviye süreçlerdir ve giriş seviyesi süreçlerin çıktılarını girdi olarak kullanarak istenen öznitelikleri çıktı olarak verirler. 16

Renkli (RGB) Görüntü Griye Dönüştürme Gri Görüntü Eşikleme Siyah-Beyaz Görüntü A B = (A B) B (3) Takip Edilecek Bölgenin Koordinatları Koordinat Çıkarımı Takip Edilecek Bölge Belirleme Kapama İç Boşlukları Giderilmiş Bölgeler Şekil 3: Koordinat eldesi için görüntüye uygulanan işlemler. 3.1. Griye dönüştürme Kameradan alınan görüntü 3 kanallı (RGB) bir görüntüdür ve kanallar sırasıyla kırmızı (R), yeşil (G) ve mavi (B) renklerdeki pikselleri barındırmaktadır. Elde edilen görüntüde 3 farklı renk grubunun bulunması üzerinde işlem yapılması gereken piksel sayısının fazla olması demektir. Senaryonun deneysel olarak uygulanabilmesi için eyleyicinin serbest ucunun konum ve kuvvet kontrolü gerçek zamanlı olarak yapılmalıdır. Üzerinde işlem yapılacak piksel sayısının artması, konum kontrolü için gereken koordinat çıkarım işleminin süresini uzatacaktır. İşlem süresinin kısa tutulması amacıyla 3 kanallı görüntü griye dönüştürülerek tek kanal üzerinde işlem yapılması sağlanmıştır [16]. Griye dönüştürme için kullanılan eşitlik denklem (2) de verilmiştir [17]. 3.2. Eşikleme Gri = 0.2989R + 0.5870G + 0.1140B (2) Griye dönüştürme işlemi bir önceki kısımda belirtildiği üzere kameredan alınan görüntüye uygulanan işlemlerin süresini kısaltılmasını sağlarken diğer taraftan ilgilenilen bölgeyi görüntüdeki diğer alanlardan ayırmak için gerekli olan eşikleme işleminin ön safhasını oluşturmaktadır [16]. Eşikleme, gri seviyeleriyle ifade edilen görüntünün siyah-beyaz olarak ifadesi için yapılması gereken işlemleri kapsar. İlk olarak, arka plan ile nesneyi birbirinden ayırmak için gerekli olan gri seviyesi (eşik) değeri seçilir. Uygun değer seçimi gri seviyesi histogramına bakılarak elle yapılabilir ya da Otsu eşikleme yöntemi [18] ile otomatik olarak yapılabilir. Otsu eşikleme yöntemi görüntünün her bir karesi için eşik değerini tekrar hesaplar. Bu çalışmada deneyin yapıldığı ortamın ışıklandırması uygun olarak ayarlandığı için eşik değeri seçimi elle yapılmıştır. Eşik değerinin elle seçilmesi sistemi ilave işlem yükünden kurtararak işlem süresinin kısa tutulmasına da yardımcı olur. Seçilen eşik değerinin altında kalan piksellere 0, üstünde kalanlara ise 1 değeri atanır. Siyahbeyaz gösterimde siyah 0, beyaz 1 ile gösterilmektedir. Ortam şartlarına bağlı oalrak hangi piksel grubunun 0 ve 1 değeri alacağı değiştirilebilir. 3.3. Kapama Kapama, matematiksel morfolojik işlemlerden genleşme (dilation) ve aşınma (erosion) adımlarının sırayla uygulanması sonucu elde edilen bir işlemdir. Kapama işlemi vasıtasıyla görüntü içindeki bölgelerde bulunan boşluklar kapatılır. Böylelikle her bir bölge tam kapalı alan haline gelir. Kapama işlemi denklem (3) ile ifade edilir. terimi kapama işlemini, terimi genleşmeyi ve terimi ise aşınmayı ifade etmektedir. A, üzerinde işlem yapılacak olan siyah-beyaz görüntüyü; B, siyah-beyaz görüntü üzerinde yer alan piksellerin nasıl değerlendirileceğini belirleyen yapısal elemanı simgelemektedir. Bahsedilen genleşme ve kapama işlemleri ile yapısal eleman terimi alt başlıklarda açıklanmıştır. 3.3.1. Yapısal eleman Yapısal eleman, bu çalışmada genleşme ve aşınma işlemlerinin siyah-beyaz görüntüye uygulanması amacıyla kullanılan 0 ve 1 değerlerinden oluşan maskedir. Maske içerisindeki değerler görüntüdeki piksellerin nasıl değerlendirileceğini belirler [18]. Yapılan çalışmada kullanılan yapısal eleman 3 3 boyutlarında olup içerisinde barındırdığı değerler, olarak belirlenmiştir. 3.3.2. Genleşme 0 1 0 B = 1 1 1 0 1 0 Siyah-beyaz görüntüdeki bölgelerin hatlarını genişletmek için kullanılan morfolojik bir işlemdir. Genleşme işlemi için uygun bir yapısal elemana ihtiyaç duyulur. Yapısal elemanın merkezi, siyah-beyaz görüntüdeki 1 değerli piksellerin üzerinde gezdirilir ve yapısal eleman matrisinde 1 değerine sahip olan alanlara denk gelen piksellerin değerleri 1 olarak değiştirilir [15]. Genleşme işlemi sonucunda görüntüdeki boşlukların dolduğu ve koşelerin yumuşadığı gözlenir. Genleşme işleminin matematiksel ifadesi (4) numaralı denklem ile ifade edilebilir. A B = {z Z 2 z = a + b, a A, b B} (4) Denklem (4) e göre Z 2 iki boyutlu uzayı z yi içinde barındırmaktadır. z, B yapısal elemanının içerisinde bulunan b değerine ve A siyah-beyaz görüntüsünde bulunan a pikseline göre değer alan genleşme işleminin sonucudur. 3.3.3. Aşınma Siyah-beyaz görüntüdeki bölgelerin hatlarını daraltmak için kullanılan morfolojik işlemdir. Aşınma işlemi de genleşme işleminde olduğu gibi yapısal eleman siyah-beyaz görüntü üzerinde gezdirilir. Eğer yapısal eleman matrisinde 1 değerine sahip kısımlardan herhangi birisi 0 değerine sahip pikselin üzerine gelirse yapısal elemanın merkez noktasının geldiği pikselin değeri 0 olarak değiştirilir [18]. Aşınma işlemi sonucunda bölgeler arasındaki boşluklar daha belirgin hale gelirken bölgelerin sınırları belirginleşir. Aşınma işlemi (5) nolu denklem ile ifade edilebilir. A B = {z z + b A, b B} (5) 17

Otomatik Kontrol Ulusal Toplantısı, TOK'2015, 10-12 Eylül 2015, Denizli 4. Deneysel Kurulum ve Sistem Tanılama sında PRBS (Pseudo-Random Binary Sequence) sinyali gönderilmis ve elektriksel gerilim altında eyleyicinin serbest ucunun yer deg is tirmesi kamera ile iki eksende takip edilerek Öklid uzaklıg ı konum verisi olarak kaydedilmis tir. Kaydedilen bu veriler kullanılarak, MATLAB, System Identification Toolbox yardımıyla, eyleyicinin giris -çıkıs ilis kisini veren transfer fonksiyonu (6) elde edilmis tir. Elde edilen modelin frekans cevabı ile deneysel verilerden elde edilen frekans cevabı s ekil 5 de kars ılas tırılmıs tır. Zaman cevabı ise s ekil 6 da kars ılas tırılmıs tır. Deneysel cevaplar ile modelin cevabı büyük oranda örtüs mektedir. Elde edilen transfer fonksiyonu (6) kullanılarak tasarlanan PI kontrolcünün katsayıları MATLAB Simulink PID Tuner arayüzü kullanılarak belirlenmis ve bu yöntem ile bulunan deg erlerde daha iyi sonuç alınması için tekrar deneme yanılma yöntemi ile küçük deg is iklikler yapılmıs tır. Bu yöntem kullanılarak bulunan PI deg erleri Kp = 0.6, Ki = 1.6 olarak belirlenmis tir. Bu çalıs mada kullanılan I PE dikdörtgen kesitlidir ve bir ucu sabitlenmis dig er ucu ise serbesttir. Sabit uçtan I PE ye uygulanan elektriksel gerilim farkı deney sisteminde giris deg is keni olarak ve serbest ucun bu elektriksel gerilim yükü altındaki yer deg is imi ve kuvvet algılayıcısına uyguladıg ı kuvvet, çıkıs deg is kenleri olarak kullanılmıs tır. Çalıs mada kullanılan I PE deney düzeneg i s ekil 4 de verilmis tir. Deney düzeneg inde biri hedef dig eri sunucu bilgisayar olmak üzere iki adet bilgisayar mevcuttur. Hedef bilgisayarda NI-6221 PCI veri toplama kartı bulunmaktadır ve algılayıcılardan gelen veriler hedef bilgisayar üzerinden xpc Target platformu kullanılarak MATLAB/Simulink yazılımının bulundug u sunucu bilgisayara aktarılmıs tır. I ki bilgisayar arası bag lantı TCP/IP ag bag lantısıyla sag lanmıs tır. Görüntü almak için Logitech firmasına ait C310 web kamerası kullanılmıs tır. Kamera USB kablo yardımı ile hedef bilgisayara bag lıdır ve deney sırasında ıs ık olaylarından olabildig ince az etkilenmesi için deney düzeneg i beyaz LED ıs ıklarla aydınlatılmıs tır. Görüntü kontrolünde polimerin serbest ucunun rahatlıkla ayırt edilebilmesi için serbest ucun üst kısmı beyaz boya ile boyalıdır. Kuvvet algılayıcısı olarak Millinewton (IPR EPFL, Switzerland) kullanılmıs tır. 0-3 V aralıg ında analog sinyal üreten bu kuvvet algılayıcısı konektör yardımıyla hedef bilgisayar üzerindeki veri toplama kartına bag lıdır. Kurulan deney düzeneg inde, I PE tarafından gerçekles tirilmesi amaçlanan konum ve kuvvet senaryosunun kontrolünde geleneksel bir kontrol yöntemi olan PI kontrolcü kullanılmıs tır. Her bir senaryonun kontrolü için örnekleme zamanı 0.05 s olan ayrık zamanlı PI kontrolcüler olus turulmus tur. PI kontrolcüler olus turulurken ilk olarak I PE nin elektriksel gerilim yükü altında konum ilis kisini ve kuvvet ilis kisini veren ayrık zamanlı dog rusal matematiksel modelleri sistem tanılama yöntemi kullanılarak elde edilmis tir. Daha sonra elde edilen modeller kullanılarak PI kontrolcünün parametreleri MATLAB Simulink PID Tuner arayüzü yardımıyla belirlenmis tir. S ekil 5: Konum modeli ve deneysel veri frekans cevabı. S ekil 4: Deney düzeneg i. 4.1. Konjuge I PE nin dog rusal konum ve kuvvet modellerinin belirlenmesi I PE nin elektriksel gerilim ile serbest ucun yer deg is tirmesi arasındaki ilis kisini veren dog rusal modeli elde etmek amacıyla eyleyiciye, deg eri 0 V ile 0.5 V arasında deg is en 0.1 Hz frekan- S ekil 6: Konum modeli ve deneysel veri basamak cevabı. 18

G(z) p = 0.0129z 1 + 0.0962z 2 + 0.4698z 3 0.3255z 4 1.008z 5 + 0.7798z 6 1 2.338z 1 + 1.274z 2 + 0.5347z 3 0.5734z 4 + 0.1418z 5 0.0394z 6 (6) Eyleyicinin, elektriksel gerilim-kuvvet ilişkisini veren ayrık zamanlı matematiksel modelini elde etmek için giriş sinyali olarak değeri 0 V ile 0.5 V arasında değişen ve frekansı 2 Hz olan bir PRBS sinyali uygulanmış ve KPE nin uyguladığı kuvvet kaydedilmiştir. Kaydedilen bu kuvvet verisi kullanılarak, MATLAB, System Identification Toolbox yardımıyla, eyleyicinin giriş-çıkış ilişkisini veren transfer fonksiyonu (7) elde edilmiştir. Şekil 8: Kuvvet modeli ve deneysel veri basamak cevabı. Şekil 7: Kuvvet modeli ve deneysel veri frekans cevabı. Elde edilen modelin frekans cevabı ile deneysel frekans cevabı şekil 7 de karşılaştırılmıştır. Zaman cevabını karşılaştırmak için ise 0,5 V büyüklüğünde basamak referans girişi uygulanmış ve modelin basamak cevabı ile deneysel basamak cevabı karşılaştırılmıştır (Şekil 8). Deneysel cevaplar ile modelin cevabı büyük oranda örtüşmektedir. Elde edilen transfer fonksiyonu (7) kullanılarak tasarlanan PI kontrolcünün katsayıları kp= 10, ki= 100 olarak belirlenmiştir. G(z) k = 0.0063z7 + 0.0237z 6 + 0.0265z 5 + 0.0058z 4 0.0338z 3 + 0.0245z 2 0.00536z 0.0003 z 8 5.877z 7 + 14.62z 6 19.82z 5 + 15.64z 4 7.05z 3 + 1.618z 2 0.1354z + 0.002 (7) 5. Deneysel Çalışmalar Yapılan çalışmada İPE, yukarıdaki kısımlarda belirtildiği gibi deney düzeneğine bağlanmıştır. Eyleyicinin hareketi için hücre enjeksiyon sistemlerine benzer bir senaryo oluşturulmuştur. Konum ve kuvvet kontrolünün belirlenmiş olan senaryoyu takip etmesi amacıyla MATLAB/Simulink ortamında bir model oluşturulmuş ve bu model belirlenen senaryo gereği konum ve kuvvet PI kontrolcüleri arasında geçiş yapılabilmesini sağlamıştır. Bu senaryoda ilk olarak eyleyicinin serbest ucu kuvvet algılayıcısının koluna belirli bir mesafede konuşlandırılmış ve bir süre bu mesafede kaldıktan sonra eyleyiciye elektriksel gerilim uygulanarak serbest uç kuvvet algılayıcısına doğru yaklaştırılmaya başlanmıştır. Kuvvet algılayıcısına yaklaştıkça aradaki mesafe küçülmüş ve mesafe sıfır olduğu zaman eyleyici bir süre bu konumda tutulmuştur. Tüm bu aşamalar konum kontrolü esas alınarak yapılmıştır ve kontrolde kameradan alınan konum verileri kullanılmıştır. Serbest uç belirli bir süre kuvvet algılayıcısının koluna sıfır mesafede bekletildikten sonra kuvvet kontrolü aşamasına geçilmiştir. Bu aşamada eyleyicinin serbest ucunun kuvvet algılayıcısına uyguladığı kuvvet belirli bir değere ulaştırılmış ve bu değerde bir süre bekletildikten sonra uygulanan kuvvet tekrar sıfır değerine çekilmiştir. Kuvvet uygulama aşamasında eyleyicinin gerilim-kuvvet ilişkisini veren model için hazırlanmış olan PI kontrolcü kullanılmıştır. Kuvvet aşaması tamamlandıktan sonra tekrar kamera ile konum kontrolüne geçilmiş ve eyleyicinin serbest ucu başlangıç konumuna geri getirilmiştir. Tüm bu oluşturulan senaryo ve deney verileri Şekil 9 da verilmiştir. Şekil 9 da da görüleceği üzere belirlenen senaryo hem konum kontrolünde hem de kuvvet kontrolünde iyi bir şekilde takip edilmiştir. Kameradan alınan veriler doğrultusunda yapılan konum kontrolü kuvvet kontrolüne göre daha iyi olduğu gözlemlenmektedir. Bunun nedeni kuvvet algılayıcısından dolayı meydana gelen gürültünün çok olmasıdır. 19

Şekil 9: Konum ve kuvvet senaryosu takip verileri. 6. Sonuçlar Biyo-uyumluluğa ve geleneksel tahrik mekanizmalarından farklı özelliklere sahip olan İPE lerin ilerleyen süreçte biyolojik uygulamalarda kullanılması kaçınılmazdır. Literatüre bakıldığında bilimsel çalışmaların da bu yönde ilerlediği ve biyolojik yapılarla ilgili alanlarda polimer eyleyicilerin farklı türevlerinin kullanılmaya başlandığı görülmektedir. Yapılan bu çalışmayla ortaya konan sonuçlar da konjuge İPE lerin hibrit kontrol ile mikro manipulasyon alanında kendilerine yer bulabileceği görüşünü desteklemektedir. 7. Teşekkür Bu çalışma 114M781 nolu TÜBİTAK proje tarafından desteklenmiştir. Çalışmada kullanılan konjuge İPE lerin temin edilmesindeki yardımlarından dolayı Wollongong Üniversitesi öğretim üyesi Prof. Dr. Gürsel Alıcı ya teşekkür ederiz. 8. Kaynakça [1] Elisabeth Smela, Conjugated polymer actuators for biomedical applications, Advanced Materials, vol. 15, no. 6, pp. 481 494, 2003. [2] Federico Carpi, Roy Kornbluh, Peter Sommer-Larsen, and Gursel Alici, Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications?, Bioinspir. Biomim., vol. 6, no. 4, pp. 045006, nov 2011. [3] Gursel Alici, Geoffrey M Spinks, John D Madden, Yanzhe Wu, and Gordon G Wallace, Response characterization of electroactive polymers as mechanical sensors, Mechatronics, IEEE/ASME Transactions on, vol. 13, no. 2, pp. 187 196, 2008. [4] Rahimullah SARBAN, Richard W. JONES, Emiliano RUSTIGHI, and Brian R. MACE, Active vibration isolation using a dielectric electro-active polymer actuator, JSDD, vol. 5, no. 5, pp. 643 652, 2011. [5] Kenneth K.C. Lee, Nigel R. Munce, Tina Shoa, Luc G. Charron, Graham A. Wright, John D. Madden, and Victor X.D. Yang, Fabrication and characterization of lasermicromachined polypyrrole-based artificial muscle actuated catheters, Sensors and Actuators A: Physical, vol. 153, no. 2, pp. 230 236, aug 2009. [6] Lei-Mei Low, Sukeerthi Seetharaman, Ke-Qin He, and Marc J Madou, Microactuators toward microvalves for responsive controlled drug delivery, Sensors and Actuators B: Chemical, vol. 67, no. 1-2, pp. 149 160, aug 2000. [7] Yevgeny Berdichevsky and Y.-H. Lo, Polymer microvalve based on anisotropic expansion of polypyrrole, MRS Proc., vol. 782, jan 2003. [8] Gursel Alici and Nam N. Huynh, Performance quantification of conducting polymer actuators for real applications: A microgripping system, IEEE/ASME Transactions on Mechatronics, vol. 12, no. 1, pp. 73 84, Feb 2007. [9] V. Vunder, M. Itik, A. Punning, and A. Aabloo, Force control of ionic polymer-metal composite actuators with carbon-based electrodes, Electroactive Polymer Actuators and Devices (EAPAD) 2014, Mar 2014. [10] Mehmet Itik, Mohammadreza Sabetghadam, and Gursel Alici, Force control of a tri-layer conducting polymer actuator using optimized fuzzy logic control, Smart Materials and Structures, vol. 23, no. 12, pp. 125024, Nov 2014. [11] F. Carpi and D. DeRossi, Electroactive polymer-based devices for e-textiles in biomedicine, IEEE Trans. Inform. Technol. Biomed., vol. 9, no. 3, pp. 295 318, Sep 2005. [12] Yoseph Bar-Cohen, Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, Bellingham, WA: SPIE-The International Society for optical Engineering, 2001. [13] Xioadong Wang, Xioasong Gu, Chunwai Yuan, Shujian Chen, Peiyun Zhang, Tianyi Zhang, Jian Yao, Fen Chen, and Gang Chen, Evaluation of biocompatibility of polypyrrolein vitro and in vivo, J. Biomed. Mater. Res., vol. 68A, no. 3, pp. 411 422, 2003. [14] Y. Xie, D. Sun, C. Liu, H. Y. Tse, and S. H. Cheng, A force control approach to a robot-assisted cell microinjection system, The International Journal of Robotics Research, vol. 29, no. 9, pp. 1222 1232, Nov 2009. [15] Rafael C. Gonzalez ve Richard E. Woods, Sayısal Görüntü İşleme (3. Baskı), Palme Yayıncılık, 2014. [16] de Souza I.L. ve Cataldo E. Leta R.F., Feliciano F.F., Discussing accuracy in an automatic measurement system using computer vision techniques, in Prooceedings of COBEM, 2005, vol. 2, pp. 645 652. [17] Christopher Kanan and Garrison W. Cottrell, Color-tograyscale: Does the method matter in image recognition?, PLoS ONE, vol. 7, no. 1, pp. e29740, Jan 2012. [18] N. Otsu, A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man and Cybernetics, vol. 9, no. 1, pp. 62 66, Jan. 1979. 20