TAŞLAMA VE DİĞER AŞINDIRMA YÖNTEMLERİ 1. Taşlama 2. İlgili Aşındırma Yöntemleri Aşındırarak Talaş Kaldırma Genellikle yapıştırılmış bir disk şeklindeki sert, aşındırıcı parçacıkların hareketiyle talaş kaldırma Genellikle, geleneksel talaş kaldırma ile parça geometrisini oluşturduktan sonra sonlandırma (Finishing) işlemleri olarak uygulanır Taşlama en önemli aşındırma işlemidir Diğer aşındırma işlemleri, honlama, lepleme, hassas taşlama, parlatma ve polisaj dır 1
Aşındırma Yöntemleri Niçin Önemlidir Her türlü malzeme üzerinde kullanılabilir Bazıları 0.025 m ye kadar, son derece hassas yüzey sonlama oluşturabilir Bazıları son derece dar toleransları sağlayabilir Taşlama Aşındırıcı parçacıkların, çok yüksek yüzey hızlarında hareket eden yapıştırılmış bir taşlama tekerleği içinde yer aldığı talaş kaldırma yöntemi Taşlama tekerleği genellikle disk şeklindedir ve yüksek dönme hızları için hassas şekilde dengelenmiştir 2
Taşlama Diski Aşındırıcı parçacıklarından ve yapıştırma malzemesinden oluşur Aşındırıcı parçacıklar kesme görevi yapar Yapıştırıcı malzeme parçacıkları yerinde tutar ve diskin şeklini ve yapısını oluşturur Taşlama Diski Parametreleri Aşındırıcı malzeme Tane boyutu Yapıştırıcı malzeme Disk sınıfı Disk yapısı 3
Aşındırıcı Malzemenin Özellikleri Yüksek sertlik Aşınma direnci Tokluk Bilenebilirlik kesici kenarlar körleştiğinde kırılabilme ve böylece yeni keskin kenarlar oluşturabilme kapasitesi Geleneksel Aşındırıcı Malzemeler Alüminyum oksit (Al 2 O 3 ) - en yaygın aşındırıcı Çeliklerin ve diğer demir esaslı yüksek dayanımlı alaşımların taşlanmasında kullanılır Silisyum karbür (SiC) - Al 2 O 3 den daha serttir ancak daha az toktur Alüminyum, pirinç, paslanmaz çelik, bazı dökme demirler ve belirli seramiklerde kullanılır 4
Daha Yeni Aşındırıcı Malzemeler Kübik Bor Nitrür (cbn) çok sert, çok pahalı Çeliklere uygun Sertleştirilmiş çelikler ve havacılık-uzay alaşımları gibi sert malzemelerde kullanılır Elmas Çok daha sert, çok pahalı Doğal olarak oluşur; sentetik olarak da üretilebilir Çeliğin taşlanmasına uygun değil Seramik, semente karbür ve cam gibi sert, aşındırıcı malzemelere uygun Aşındırıcı Malzemelerin Sertlikleri Aşındırıcı malzeme Knoop sertliği Alüminyumoksit 2100 Silisyumkarbür 2500 Kübik Bor Nitrür 5000 Elmas (sentetik) 7000 5
Tane Boyutu Küçük tane boyutları daha iyi sonlama yapar Daha büyük taneler daha büyük malzeme kaldırma hızları sağlar Daha sert malzemelerin etkin şekilde kesilebilmesi için daha küçük tane boyutları gerekir Daha yumuşak malzemeler daha büyük tane boyutları gerektirir Tane Boyutunun Ölçümü Tane boyutu, bir ekran ızgara prosedürü kullanarak ölçülür Daha küçük ızgara boyutları ekran ızgara prosedüründe daha büyük numaralarla ve büyükleri ise daha küçüklerle gösterilir Taşlama disklerindeki tane boyutu tipik olarak 8 (çok iri) ile 250 (çok ince) arasındadır 6
Bağlama Malzemelerinin Özellikleri Merkezkaç kuvvetlere ve yüksek sıcaklıklara dayanmalıdır Diskin ani yüklenmelerinde tahrip edici kuvvetlere direnmelidir Yeni keskin taneleri oluşturmak üzere aşınmış tanelerin yerinden çıkmasına izin vermeli ve kesme için aşındırıcı taneleri yerinde tutmalıdır Diskin Yapısı Diskin içindeki aşındırıcı tanelerin izafi boşlukları anlamına gelir Aşındırıcı tanelerin ve yapıştırıcı malzemenin dışında, diskin içinde gözenekler ve hava boşlukları bulunur Tanelerin, yapıştırıcı malzemenin ve gözeneklerin hacimsel oranları aşağıdaki gibi açıklanabilir: P g P b P p 1.0 7
Diskin yapısı Şekil 23.1 Bir taşlama diskinin tipik yapısı. Diskin yapısı Aralıklı ve yoğun arasında sıralanan bir ölçekle ölçülür Aralıklı yapı, P p nin izafi olarak daha geniş ve P g nin daha küçük olması anlamına gelir talaşlar için boşluk sağlanması gerektiği durumlar için önerilir Yoğun yapı, P p nin izafi olarak daha küçük ve P g nin daha geniş olması anlamına gelir daha iyi yüzey kalitesi ve boyutsal kontrol elde etmek için önerilir 8
Disk Sınıfı Kesme sırasında aşındırıcı taneleri koruyan yapıştırıcının dayanımını gösterir Disk yapısındaki yapıştırıcı miktarına bağlıdır (P b ) Yumuşak ile Sert arasındaki bir ölçekte ölçülür Yumuşak diskler tanelerini kolay kaybeder düşük malzeme uzaklaştırma hızları ve sert parça malzemeleri için kullanılır Sert diskler taneleri daha sıkı bağlıdır yüksek malzeme uzaklaştırma hızları ve yumuşak parça malzemeleri için kullanılır Taşlama Diskinin Özellikleri Aşındırıcı türü, tane boyutu, sınıfı, yapısı ve yapıştırıcı malzemeyi göstermek için kullanılan standart taşlama diski gösterim sistemi Örnek: A-46-H-6-V Ayrıca, taşlama diski üreticileri tarafından kullanılması için ilave gösterimler içerir 9
Taşlama Diskinin Şekli Şekil 23.2 Bazı standart taşlama disk şekilleri: (a) düz, (b) iki taraftan girintili, (c) dış yüzeyine aşındırıcı yapıştırılmış metal disk çerçevesi, (d) aşındırarak ayırma diski. Yüzey Sonlandırma İyi yüzey sonlandırmaya ulaşmak için çoğunlukla taşlama yapılır En iyi yüzey sonlandırmasına aşağıdaki koşullarda ulaşılır: Küçük tane boyutları Daha büyük disk hızları Daha yoğun disk yapısı = birim disk alanı başına daha fazla parçacık 10
Taşlamada Özgül Enerji Niçin Yüksektir Boyut etkisi küçük talaş boyutu, her bir malzeme hacmi biriminin uzaklaştırılmasında önemli oranda daha büyük enerjiye neden olur Geleneksel talaş kaldırmayla kıyaslandığında, taşlamada kabaca 10 kat daha büyüktür Her bir tane, son derece büyük negatif talaş açısına sahiptir; bu durum daha küçük kesme düzlemi açılarına ve yüksek kesme gerilmelerine yol açar Gerçek kesme sırasında tanelerin tümü işleme katılmaz Şekil 23.3 (a) Kesme koşullarını gösteren yüzey taşlama geometrisi; (b) tek bir talaşın varsayılan boyuna ve (c) enine kesiti 11
Aşındırıcı Tanelerin Üç Etkisi Talaş kaldırma tane, bir talaş oluşturmak üzere yüzeye yeterli miktarda girer malzeme uzaklaştırılır Kazıma tane parçaya girer, ancak kesmeye yeterli olmaz; bunun yerine yüzey deforme olur ve enerji tüketilir; ancak malzeme uzaklaştırılmaz Sürtünme tane yüzeye temas eder ancak bu temas sadece sürtünme oluşturur; böylece enerji tüketilir ancak malzeme uzaklaştırılmaz Taşlamada Tane Hareketleri Şekil 23.4 Taşlamada üç tür tane hareketi: (a) kesme, (b) kazıma ve (c) sürtünme 12
Parça Yüzeyindeki Sıcaklıklar Taşlama, yüksek parça yüzey sıcaklıklarına yol açan, yüksek sıcaklıklar ve yüksek sürtünme ve enerjinin çoğunun işlenen yüzeyde kalması ile tarif edilir Hasara neden olan etkiler arasında: Yüzey yanıkları ve çatlakları Yüzeyin hemen altında metalürjik hasar Eğer ısıl işlem uygulanırsa parça yüzeyinin yumuşaması Parça yüzeyinde artık gerilmeler bulunur. Taşlama Sıcaklıkları Nasıl Düşürülür Besleme miktarı d yi (kesme derinliğini) azaltın Disk hızını v düşürün Taşlama diski üzerindeki birim alana düşen aktif tane sayısını C azaltın Parça hızını v w arttırın Bir taşlama sıvısı kullanın 13
Disk Aşınmasının Nedenleri 1. Tane kırılması tanenin bir parçası kırılırken diğer kısmı disk içinde yapışık kalması Kırılma yüzeyinin kenarları yeni kesici kenarlar haline gelir Kırılma eğilimi kırılabilirlik olarak adlandırılır Disk Aşınmasının Nedenleri 2. Körelme aşınması düz noktalara ve kütleşmiş kenarlara neden olacak şekilde, her bir tanenin keskinliğini kaybetmesi Geleneksel kesme takımlarında takım aşınmasının eşanlamlısı Sürtünme, difüzyon ve kimyasal reaksiyonlara benzer mekanizmalar tarafından oluşturulur 14
Disk Aşınmasının Nedenleri 3. Yapıştırıcı kırılması her bir tane, yapıştırıcı malzemesinden koparak ayrılır Diğer faktörlerin dışında diskin sınıfına bağlıdır Genellikle, körelme aşınması nedeniyle tanenin kütleşmesi ve bu nedenle kesme kuvvetinin aşırılaşması sonucu oluşur Taşlamada Tipik Aşınma Eğrisi Şekil 23.5 Bir taşlama diskinin tipik aşınma eğrisi. Aşınma, zamanın bir fonksiyonu olarak değil, uzaklaştırılan malzeme hacminin bir fonksiyonu olarak çizilir 15
Taşlama Oranı Disk aşınma eğrisinin eğimi V GR W V g burada GR = taşlama oranı; V w = kaldırılan malzeme miktarı hacmi ve V g = buna karşı gelen taşlama diski aşınan hacmi Taşlama Oranı Şekil 23.6 Taşlama oranı ve yüzey kalitesinin disk hızıyla değişimi 16
Diskin Temizlenmesi Onarım onarılacak disk dönerken ona karşı bir aşındırıcı çubuğun veya başka bir taşlama diskinin tutulmasıyla yapılır Fonksiyonları: Yeni keskin taneler oluşturmak için körelmiş tanelerin kırılması Taşı tıkayan talaşların uzaklaştırılması Diskin, aşınma eğrisinin üçüncü aşamasında olduğu durumda gerekir Diskin Bilenmesi Bileme disk dönerken elmas uçlu bir takımın ona karşı yavaşça ve hassas şekilde temas ettirilmesi Diske karşı çok sığ derinlikler oluşturulur (0.025 mm veya daha az) Sadece diski keskinleştirmekle kalmaz, aynı zamanda silindirik şeklini tekrar kazanmasını sağlar ve dış yüzeyine düzlük kazandırır Onarım da keskinleştirmesine rağmen, diskin şeklini garanti etmez 17
Uygulama Kılavuzları Yüzey sonlamayı en iyi yapmak için seçimler: Küçük tane boyutu ve yoğun disk yapısı Yüksek disk hızları (v) ve düşük parça hızları (v w ) kullanın Küçük kesme derinlikleri (d) ve büyük disk çapları (D) da yardımcı olur Malzeme uzaklaştırma hızını en yüksek değere çıkarmak için seçilmesi gerekenler: Büyük tane boyutları Daha aralıklı disk yapısı Cilalanmış yapıştırıcı Uygulama Kılavuzları Çelik ve çoğu dökme demirler için kullanılması gereken: Aşındırıcı olarak Alüminyumoksit Çoğu demirdışı metaller için kullanılması gereken: Aşındırıcı olarak Silisyumkarbür Sertleştirilmiş takım çelikleri ve belirli havacılık-uzay alaşımları için kullanılması gereken: Aşındırıcı olarak Kübik Bor Nitrür Sert aşındırıcı malzemeler için (örn.: seramikler, semente karbürler ve cam) kullanılması gereken: Aşındırıcı olarak Elmas 18
Uygulama Kılavuzları Yumuşak metaller için kullanılması gereken: Büyük tane boyutu ve sert sınıf disk Sert metaller için kullanılması gereken: Küçük tane boyutu ve daha yumuşak sınıf disk Yüzey (Satıh) Taşlamanın Dört Türü Şekil 23.7 (a) pistonlu parça tablalı yatay mil, (b) dönen parça tablalı yatay mil, (c) pistonlu parça tablalı dikey mil, (d) dönen parça tablalı dikey mil 19
Yüzey (Satıh) Taşlama Şekil 23.8 Yatay milli ve pistonlu parça tablalı yüzey taşlama tezgahı (en yaygın taşlama tezgahı türü). Silindirik Taşlama Şekil 23.9 İki silindirik taşlama türü: (a) dış ve (b) iç. 20
Eksantrik Taşlama Şekil 23.11 Dış eksantrik taşlama. Derin Taşlama Şekil 23.13 (a) Geleneksel yüzey taşlama ile (b) Derin taşlamanın karşılaştırılması 21
Derin Taşlama Geleneksel yüzey taşlamaya göre kesme derinliği 1000 ila 10.000 kat daha büyüktür Besleme hızının yaklaşık olarak aynı oranda azaltılması gerekir Disk sürekli kestiği için, derin taşlamada malzeme uzaklaştırma hızı ve verimlilik artar Geleneksel yüzey taşlamayla kesmede disk, strok boyunun sadece küçük bir kısmında hareket eder Diğer Aşındırma Yöntemleri Honlama Lepleme Hassas taşlama 22
Honlama Bir yapıştırılmış aşındırıcı çubuğu seti kullanarak, dönel ve titreşimli hareketlerin birleşimi şeklinde uygulanan aşındırma işlemi Yaygın uygulaması, içten yanmalı motorların deliklerinin sonlanması işlemidir Tane boyutları 30 ile 600 arasındadır Yüzey kalitesi 0.12 m lik veya daha iyi yüzey kalitelerine ulaşılır Yağ tutmayı sağlayan karakteristik bir çapraz çizikli yüzey oluşturur Honlama Şekil 23.16 Honlama işlemi: (a) iç delik yüzeyi için kullanılan honlama takımı ve (b) honlama işlemiyle oluşturulan çapraz çizik yüzey deseni 23
Lepleme Parça ile lep (takım) arasında, çok ince aşındırıcı taneciklerin sıvı süspansiyonunu kullanır Lepleme bileşiği kireçli pasta görünümünde aşındırıcılar içeren sıvı Tipik tane boyutları aralığı: 300 ila 600 arasındadır Uygulamaları: optik lensler (mercekler), metalsel yataklı yüzeyler, mastarlar Lepleme Şekil 23.17 Lens (mercek) yapımında lepleme işlemi 24
Hassas Taşlama Honlamaya benzer yüzeye bastırılan ve piston hareketi yapan yapıştırılmış aşındırıcı çubuk kullanır Honlamadan farkları: Daha kısa strok Daha yüksek frekanslar Takım ile yüzey arasında daha düşük basınçlar Daha küçük tane boyutları Hassas Taşlama Şekil 23.18 Bir dış silindir yüzeyinin hassas taşlanması 25