Rayleigh Mavi gökyüzü, kırmızı günbatımı Kirleticiler Mie Kahverengimsi smog Bulut damlacıkları Geometrik Beyaz bulutlar

Benzer belgeler
ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 5 : IŞIK

MADDE VE IŞIK saydam maddeler yarı saydam maddeler saydam olmayan

3. K. Yanıt B dir. Nihat Bilgin Yayıncılık. v 1 5.

Gökyüzünde Işık Oyunları

Bir malzemenin kırılma indisi n, ışığın boşluktaki hızının (c) ışığın o malzemedeki

Gökyüzünde Işık. Oyunları. Atmosfer optiği, genel olarak havadaki su

Mercekler Testlerinin Çözümleri. Test 1 in Çözümleri

10. Sınıf. Soru Kitabı. Optik. Ünite. 5. Konu Mercekler. Test Çözümleri. Lazer Işınının Elde Edilmesi

Km/sn IŞIĞIN KIRILMASI. Gelen ışın. Kırılan ışın

Fotovoltaik Teknoloji

OPTİK. Işık Nedir? Işık Kaynakları

RENK İLE İLGİLİ KAVRAMLAR

METEOROLOJİ SICAKLIK. Havacılık Meteorolojisi Şube Müdürlüğü. İbrahim ÇAMALAN Meteoroloji Mühendisi

10. SINIF KONU ANLATIMLI

Işığın Kırılması Testlerinin Çözümleri. Test 1 in Çözümleri. 4. X ışını tam yansımaya uğradığına göre, n 1. dir. Y ışını n 3. yaklaştığına göre, n 2

OPTİK Işık Nedir? Işık Kaynakları Işık Nasıl Yayılır? Tam Gölge - Yarı Gölge güneş tutulması

FEN VE TEKNOLOJİ DERSİ 5.ÜNİTE :DÜNYA, GÜNEŞ VE AY KONU ÖZETİ

Renkler Test Çözümleri. Test 1'in Çözümleri. Kırmızı renkli kumaş parçası mavi ışığı yansıtmadığı. için siyah görünür.

Havacılık Meteorolojisi Ders Notları. 7. Yağış

32 Mercekler. Test 1 in Çözümleri

I Ş I ĞIN RENKLERE AYRILMASI

MADDENİN DEĞİŞİMİ VE TANINMASI

Uzaktan Algılama Teknolojileri

GÜNEŞ SİSTEMİ. SİBEL ÇALIK SEMRA SENEM Erciyes Üniversitesi İstanbul Üniversitesi

GDM 417 ASTRONOMİ. Gökyüzünde Hareketler

İKLİM ELEMANLARI SICAKLIK

Renkler Test Çözümleri. Test 1'in Çözümleri. Sarı renkli kumaş parçası mavi ışığı yansıtmadığı için siyah görünür.

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 5 : IŞIK (MEB)

Ünite 7. Doç. Dr. Hasan TATLI OPTİK

TEST 14-1 KONU IŞIK GÖLGE RENK. Çözümlerİ ÇÖZÜMLERİ

MEVSİMLER VE İKLİM A. MEVSİMLERİN OLUŞUMU

Su Dalgaları Testlerinin Çözümleri. Test 1 in Çözümleri

30 Mercekler. Test 1 in Çözümleri

DÜNYA NIN ŞEKLİ VE HAREKETLERİ

yansıyan ışık Gelen ışık

4. SINIF FEN VE TEKNOLOJİ DERSİ II. DÖNEM GEZEGENİMİZ DÜNYA ÜNİTESİ SORU CEVAP ÇALIŞMASI

Meteoroloji. IX. Hafta: Buharlaşma

ELK462 AYDINLATMA TEKNİĞİ

MEVSİMLERİN OLUŞUMU. Halil KOZANHAN EKSEN EĞİKLİĞİ DÜNYA NIN KENDİ EKSENİ ETRAFINDAKİ HAREKETİYLE GECE-GÜNDÜZ,

Işığın Kırılması. Test 1 in Çözümleri. 3. n 1. ortamına gelen Ι ışık ışını tam yansımaya uğramış. O hâlde n 1. ortamından n 2. > n 2. dir. 1.

SDÜ ZİRAAT FAKÜLTESİ METEOROLOJİ DERSİ

2- Bileşim 3- Güneş İç Yapısı a) Çekirdek

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU

SU, HALDEN HALE GİRER

Dünya ve Uzay Test Çözmüleri. Test 1'in Çözümleri. 5. Ay'ın atmosferi olmadığı için açık hava basıncı yoktur. Verilen diğer bilgiler doğrudur.

GÜNEŞİMİZ. Ankara Üniversitesi Kreiken Rasathanesi

Isı enerjisi iletim, konveksiyon (taşıma = sıvı ve hava akımı) ve ışıma (radyasyon) yolu ile yayılır.

Elektromanyetik Dalgalar. Test 1 in Çözümleri

RENK İLE İLGİLİ KAVRAMLAR

ÜNİTE 7 : GÜNEŞ SİSTEMİ VE ÖTESİ UZAY BİLMECESİ

4.SINIF KİMYA KONULARI

Amerikalı Öğrencilere Liselere Geçiş Sınavında 8. Sınıf 1. Üniteden Sorulan Sorular.

Prof. Dr. Ceyhun GÖL. Çankırı Karatekin Üniversitesi Orman Fakültesi Havza Yönetimi Anabilim Dalı

DÜNYA NIN ŞEKLİ ve BOYUTLARI

Test-1. Küresel Aynalar. 1. Bir tümsek ayna önüne konulan cismin aynadaki görüntüsü ile ilgili olarak;

SU HALDEN HALE GİRER. Nazife ALTIN. Fen ve Teknoloji

DUYUSAL ve MOTOR MEKANİZMALAR

Işığın izlediği yol : Işık bir doğru boyunca km/saniye lik bir hızla yol alır.

Meteor Yağmurları. Ankara Üniversitesi Kreiken Rasathanesi

1 SU HALDEN HALE GİRER

FİZ201 DALGALAR LABORATUVARI. Dr. F. Betül KAYNAK Dr. Akın BACIOĞLU

AYNALARDA YANSIMA ve IŞIĞIN SOĞRULMASI

Ay tutulması, Ay, dolunay evresinde

6.Sınıf FEN BİLİMLERİ KONU ANLATIMI. Testler. Konu Anlatımı. Uygulama

Yeryüzünde Sıcaklığın Dağılışını Etkileyen Etmenler

Küresel Aynalar. Test 1 in Çözümleri

PRİZMALAR VE RENKLER BÖLÜM 7. Test. Prizmalar ÇÖZÜMLER

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 5 : IŞIK

Bölüm 7. Mavi Bilye: YER

GÖK CİSİMLERİNİ TANIYALIM

1.ÜNİTE MODERN ATOM TEORİSİ -2.BÖLÜM- ATOMUN KUANTUM MODELİ

FOTOSENTETİK OLARAK AKTİF IŞIK

Işığın Kırılması. Test 1 in Çözümleri. 3. n 1. ortamına gelen Ι ışık ışını tam yansımaya uğramış. O hâlde n 1. ortamından n 2. > n 2. dir. 1.

MEVSİMLER VE OLUŞUMU

Bir Yıldız Sisteminde Canlılığın Oluşması İçin Gereken Etmenler

vor vsu n Sini 2 = n 12 = sabit ; Sinr n1 Sini n = Sinr Sinr = Sini

ASTRONOMİ VE UZAY BİLİMLERİ SINAVI SORULARI VE CEVAPLARI (Şıkkın sonunda nokta varsa doğru cevap o dur.)

I.10. KARBONDİOKSİT VE İKLİM Esas bileşimi CO2 olan fosil yakıtların kullanılması nedeniyle atmosferdeki karbondioksit konsantrasyonu artmaktadır.

Test. Yerküre nin Şekli ve Hareketleri BÖLÜM 4

B A S I N Ç ve RÜZGARLAR

Işık ve Aynalar 1- Yansıma SORU 2- Yansıma Kanunları Yansıma kanunları; NOT: 3- Yansıma Çeşitleri a) Düzgün Yansıma

32 Mercekler. Test 1 in Çözümleri

Mercekler Test Çözümleri. Test 1'in Çözümleri

FİZ209A OPTİK LABORATUVARI DENEY KILAVUZU

Işığın Kırılması. Test 1 in Çözümleri. 3. n 1. ortamına gelen Ι ışık ışını tam yansımaya uğramış. O hâlde n 1. ortamından n 2. > n 2. dir. 1.

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 5 : IŞIK (MEB)

Renk Anlatımı ve Uygulamalı Renk Çemberi

METEOROLOJİ. IV. HAFTA: Hava basıncı

DALGALAR. Su Dalgaları

Maddenin Isı Etkisi İle Değişimi a)isınma-soğuma

ELASTİK DALGA YAYINIMI

ERİME DONMA KAYNAMA YOĞUNLAŞMA SÜBLİNLEŞME

12. SINIF KONU ANLATIMLI

Galaksiler kütle çekimiyle birbirine bağlı yıldızlar ile yıldızlar arası gaz ve tozdan oluşan yapılardır.

Ağır Ama Hissedemediğimiz Yük: Basınç

Optik Mikroskop (OM) Ya Y pıs ı ı ı ve v M erc r e c kle l r

Bölüm 7. Mavi Bilye: YER

RÜZGARLAR. Birbirine yakın iki merkezde sıcaklık farkı oluşması durumunda görülecek ilk olay rüzgarın esmeye başlamasıdır.

İklim---S I C A K L I K

2016 Yılı Buharlaşma Değerlendirmesi

Transkript:

1

Atmosferde çok sayıda optik olay meydana gelir. Açık havada gökyüzü mavi ufuk ise süt beyazdır. Gündoğumu ve günbatımında gökyüzü pembe, kırmızı, turuncu ve morun parlak renklerini içeren bir görünüm kazanır. Gece, yıldızlardan, gezegenlerden ve aydan gelen ışık dışında gökyüzü karanlıktır. Gece boyunca ayın büyüklüğü ve renkleri değişir. Gece yıldızlar sürekli olarak göz kırpıyormuş gibi görünürler. Tüm bunları anlayabilmek için güneş ışığının atmosferle olan etkileşiminin yakından incelenmesi gerekmektedir. RENKLER Atmosfere ulaşan güneş radyasyonunun yaklaşık yarısı görünür ışık formundadır. Güneş ışığı atmosfere girdiğinde absorbsiyon, yansıma ve saçılmaya uğrar ya da her hangi bir engelle karşılaşmaksızın yoluna devam eder. Yeryüzündeki cisimlerin gelen güneş enerjisine karşı davranışları, gelen ışığın dalga boyuna ve bu cisimlerin renk, yoğunluk, bileşim vb özelliklerine bağlıdır. Görme olayı, elektromanyetik dalgaların gözümüzün retina tabakasındaki sinir uçlarını uyarması sonucu gerçekleşir. Çünkü retina gözün ışığa duyarlı tabakasıdır. Retina görme alıcılarına sahiptir. Bu alıcılar iki tip olup koni ve basil olarak adlandırılır. Basiller görünür ışığın tüm dalga boylarına duyarlıdırlar ve aydınlığı karanlıktan ayırmamızı sağlar. Eğer retina yalnızca basil tipi alıcılara sahip olsaydı doğayı yalnızca siyah ve beyaz olarak algılayacaktık. Koni tipi alıcılar da (basiller gibi) görünür ışığın tüm dalga boylarına karşı duyarlıdır. 0.4-0.7 μm arasındaki dalga boylarına karşı gelen güneş radyasyonu koni tipi alıcılar tarafından sinir sistemi yoluyla bir impuls şeklinde beyne iletilir. Bu impulsu renk duyusu olarak algılarız. 0.4 μm den daha kısa veya 0.7 μm den daha uzun dalga boyları insan gözü için renkli görme yetisini harekete geçiremez. Tüm görünür dalga boyları hemen hemen eşit şiddette koni tipi alıcılara ulaştığında bunu beyaz ışık olarak algılarız. Güneş, toplam enerjisinin yaklaşık 2

yarısını görünür ışık bandında yayınlar. Öğle vakti güneşin yayınlamış olduğu tüm görünür dalga boylarındaki ışık konilere ulaşır, bu durum güneşi beyaz olarak görmemize neden olur. Güneşten daha soğuk yıldızlar enerjilerinin çoğunu biraz daha büyük dalga boylarında yayınlarlar, bu nedenle daha kırmızı görünürler. Diğer taraftan güneşten daha sıcak olan yıldızlar enerjilerinin çoğunu daha kısa dalga boylarında yayınlar ve daha mavi görünürler. Güneş ile aynı sıcaklığa sahip yıldızlar ise beyaz olarak görünürler. Görünür dalga boylarında radyasyon üretecek kadar sıcak olmayan nesneler yine de bir renge sahip olabilirler. Çevremizde kırmızı olarak gördüğümüz çeşitli nesneler kırmızı ışık hariç tüm görünür radyasyonu absorblayan nesnelerdir. Çünkü kırmızı ışık söz konusu nesneden gözümüze yansıtılır. Benzer şekilde mavi olarak gördüğümüz nesneler, mavi ışık hariç, tüm görünür radyasyonu absorblayan nesnelerdir. Bazı yüzeyler üzerine gelen görünür dalga boylarının tümü absorblar ve bu nedenle siyah görünürler. Sonuç olarak, renkleri görebilmemiz için, nesnelerden yansıyor. BULUTLAR VE SAÇILMA Gelen güneş ışınlarının bir yüzeye çarptıktan sonra, geliş açısına eşit bir açıyla yüzeyden uzaklaşması yansıma olarak adlandırılır. Çeşitli atmosferik elemanlar (hava molekülleri, bulutlar vb) güneş radyasyonunu ilerleme doğrultusundan saptırır ve bütün yönlerde yansımasına neden olurlar. Bu olay saçılma olarak adlandırılır. Saçılma süreci, ortamda her hangi bir enerji kaybı ya da kazanımına neden olmaz. Dolayısı ile saçılma süreci esnasında sıcaklık değişmez. Saçılmaya genellikle hava molekülleri, küçük toz parçacıkları, su molekülleri ve çeşitli kirleticiler gibi çok küçük boyutlu maddeler neden olur. Çok küçük de olsalar bulutlar optik olarak kalındır. Bu, bulutların önemli miktarda güneş ışığını saçılmaya uğratacağı; diğer bir deyişle güneş ışınlarının saçılmaya uğramadan bulutu geçmesi olasılığının çok zayıf olduğu anlamındadır. Bulutlar aynı zamanda güneş ışığının zayıf absorblayıcısıdırlar. Dolayısı ile bir buluta 3

baktığımızda, sayısız bulut damlacıklarının görünür güneş ışığını bütün dalga boylarında her yönde saçılmaya uğratması nedeniyle beyaz olarak görünürler. PUS VE GÖKYÜZÜ 4

Mavi renk duyusunu yaratan ışığın retinaya ulaşması sonucu gökyüzünü mavi olarak görürüz. Bireysel hava moleküllerinin büyüklüğü, bulut damlacıklarından ve görünür ışığın dalga boyundan çok daha küçüktür. Her bir O 2 ve N 2 molekülü seçici saçıcıdırlar. Bu moleküller görünür ışığın kısa dalga boylarını, uzun dalga boylarına göre daha etkin olarak saçılmaya uğratırlar. Bu seçici saçılma olayı rayleigh saçılmasıdır.değişik saçılma tipleri verilmiştir Tablo 1: Saçılma tipleri Parçacık Parçacık Saçılmanın Gözlenen Olay Tipi Çapı (μm) Tipi Hava molekülleri 0.0001-0.001 Rayleigh Mavi gökyüzü, kırmızı günbatımı Kirleticiler 0.01-1.0 Mie Kahverengimsi smog Bulut damlacıkları 10-100 Geometrik Beyaz bulutlar Güneş ışığı atmosfere girdiğinde mor, mavi ve yeşil gibi görünür ışığın kısa dalga boyları, sarı, turuncu ve özellikle kırmızı gibi uzun dalga boyundaki ışığa göre daha fazla saçılmaya uğrarlar. Çünkü Rayleigh saçılmasının şiddeti, λ dalga boyu olmak üzere 1/ λ 4 şeklinde değişir. Dolayısı ile mor ışık kırmızı ışıktan 16 kat daha fazla saçılır. Gökyüzüne baktığımız zaman, görünür ışığın mor, mavi ve yeşil dalga boylarındaki saçılmış ışık bütün yönlerde gözümüze ulaşır. Bu dalga boylarındaki saçılmış ışığın birlikte oluşturduğu etki mavi ışık olarak algılanır. Bu nedenle gökyüzü mavi olarak görünür. Dünyamız renkli gökyüzüne sahip tek gezegen değildir. Örneğin toz fırtınaları nedeniyle Mars, öğle vakti kırmızı, günbatımında ise mor bir renk alır. Hava molekülleri ve çok küçük parçacıklar tarafından mavi ışığın seçici saçılımı, uzaktaki dağların mavi görünmesine neden olabilir. Bazı yerler (bu yerler 5

insan kaynaklı hava kirliliğinden uzak yerlerde olabilir) mavi pus ile örtülmüş olabilir. Mavi pus bazı özel süreçlerin sonucu olarak meydana gelmektedir. Bitkiler tarafından ozonla etkileşebilen son derece küçük partiküller (hidrokarbonlar) atmosfere bırakılır. Bu etkileşim, mavi ışığı seçici olarak saçan küçük parçacıkların (0.2 μm çapında) oluşmasına neden olur. Atmosferde asılı haldeki Toz ve tuz gibi küçük parçacıkların konsantrasyonu arttıkça gökyüzünün rengi de maviden süt beyaza doğru değişir. Bu parçacıklar boyutça çok küçük olmalarına karşın, görünür ışığın bütün dalga boylarını her yönde ve eşit bir şekilde saçılmaya uğratacak kadar büyüktürler (geometrik saçılma). Görünür ışığın bütün dalga boyları gözümüze ulaştığı için gökyüzü beyaz görünür, görüş uzaklığı düşer. Bu olay pus olarak adlandırılır. Eğer nem yeterince yüksek ise çözünebilir parçacıklar (çekirdekler) gittikçe büyüyecek ve pus partikülleri haline gelecektir. Bu nedenle gökyüzünün rengi, atmosferde ne kadar asılı madde olduğu hakkında bir fikir verir. Örneğin, ne kadar çok asılı madde varsa, saçılma da o kadar fazla olacak ve gökyüzü daha beyaz görünecektir. Asılı parçacıkların önemli bir kısmı yere yakın olduğundan, ufuk beyaz renkte görünür. Eğer bir dağın tepesinde isek, asılı parçacıkların önemli bir kısmı, bulunduğumuz seviyenin altında kalacağı için gökyüzü koyu mavi bir renkte görünür. Pus, güneş doğarken veya batarken ışığı saçar. Bunun sonucunda güneş ışığını daha parlak bir renkte görürüz.benzer görüntü güneş ışınlarının bulutların arasında kalan açıklıklardan geçmesi durumunda da ortaya çıkar. 6

GÜNEŞ VE AYIN RENKLERİ Güneş öğle vakti parlak beyaz, oysa günbatımında sarı, turuncu veya kırmızı bir renkte görünür. Öğle vakti güneş tapededir ve gelen ışınların şiddeti fazladır. Dolayısı ile görünür ışığın bütün dalga boyları eşit şiddette gözümüze ulaşır, bunun sonucunda güneşi beyaz olarak görürüz. Gündoğumu ya da günbatımına yakın, güneş ışınları atmosfere daha küçük bir açıyla girerler. Dolayısı ile güneş ışınlarının atmosferde katettiği mesafe bu saatlerde en fazladır (örneğin güneşin ufuk üzerindeki yüksekliği 4 o olduğu zaman, güneş ışınlarının katedeceği atmosfer tabakasının kalınlığı güneşin tepede olduğu zamankinden 12 kat daha fazladır). Güneş ışığı daha kalın bir atmosfer tabakasını geçmek zorunda kaldığından kısa dalga boylarındaki görünür ışığın çoğu hava molekülleri tarafından saçılmaya uğratılır ve gözümüze kırmızı, turuncu ve sarı gibi daha uzun dalga boylarındaki ışık ulaşır, (Şekil 3). Parlak sarı-turuncu günbatımı örneğin yağış sonrasında olduğu gibi yalnızca temiz bir atmosferde gözlenir. Eğer atmosferde, çapı hava moleküllerinin çapından biraz daha büyük olan parçacıklar çoğunlukta ise sarı ışık gibi daha uzun dalga boyları da saçılmaya uğrar. Bu durumda turuncu ve kırmızı ışık gözlerimize ulaşır ve güneş kırmızı-turuncu bir renkte görünür. Diğer taraftan eğer atmosfer partiküler maddelerle yüklü ise yalnızca uzun dalga boyuna sahip kırmızı ışık atmosferi kateder ve güneşin kırmızı bir renkte görünmesine neden olur. Bazı doğal olaylar da kırmızı gündoğumu ve günbatımına neden olabilir. Örneğin okyanuslarda, atmosferde asılı haldeki küçük tuz parçacıkları ve subuharı 7

GECE YILDIZLARIN GÖRÜNÜŞÜ Bilindiği gibi daha yoğun bir ortama giren ışığın hızı azalır. Eğer ışık ortama bir açıyla girerse, ilerleme doğrultusunu değiştirir, bu olaya kırılma denir. Kırılma miktarı iki faktöre bağlıdır: Ortamın yoğunluğu ve ışığın bu ortama giriş açısı. Az yoğun bir ortamdan daha yoğun bir ortama giren ışığın hızı azalır ve normale yaklaşır; tersi durumda ise hızı artar ve normalden uzaklaşır. Işığın atmosferde uğramış olduğu kırılma, çeşitli görsel olaylara neden olur. Örneğin, gece tam tepemizdeki bir yıldızın ışığı her hangi bir kırılmaya uğramaz ancak bir açıyla atmosfere giren yıldız ışığı ilerleme doğrultusunu değiştirir. Diğer taraftan ufkun hemen üzerinde atmosfere giren yıldız ışığının kat edeceği yol daha fazladır, bu nedenle kırılma da fazla olur. 8

Şekil 4 den de görüldüğü gibi, Yıldız ışığı daha yoğun bir ortama girdiği için, kırılan ışık normale yaklaşmaktadır. Kırılmış yıldız ışığı gözlerimize ulaştığında, yıldızı gerçek konumundan daha yüksek bir noktadaymış gibi görürüz. Çünkü gözlerimiz ışığın bükülmesini algılayamaz. Dolayısı ile ışığı belli bir doğrultudan geliyormuş gibi algıladığımız için, yıldızı da o doğrultu üzerinde görürüz. Gece ufka yakın belli bir yıldızın göründüğü konumu dikkate alalım. Yıldızın gerçek konumu, görünen konumundan yaklaşık 0.5 o daha aşağıdadır, (Tablo 2). Yıldız ışığı atmosfere girdiğinde farklı yoğunluklarda atmosfer katmanlarından geçer. Her bir katmanın gelen yıldız ışığını farklı oranda kırılmasına, dolayısı ile yıldızın görünen konumunun sürekli olarak değişmesine neden olur. Bunun sonucunda yıldız ışığı bize titrek (yanıp-söner veya göz kırpar) bir ışık şeklinde ulaşır. Tablo 2: Deniz seviyesinde atmosferik kırılma miktarları (60 ' =1 o ) Ufuktan Olan Yükseklik Kırılma Miktarı (Derece Olarak) (Dakika Olarak) 0 o 35.0 5 o 10.0 20 o 2.6 40 o 1.2 60 o 0.6 90 o 0.0 9

Dünyaya yakın olan gezegenler daha büyük görünürler ve ışıkları titrek değildir. Çünkü bu gezegenlerin büyüklüğü, ışıklarının atmosferdeki sapma açısından daha büyüktür. Eğer gezegenler ufka yakınsa, kırılma daha fazla olacağından ışıkları bazen titrek görünür. Işığın atmosferde uğradığı kırılma bazı ilginç sonuçların ortaya çıkmasına neden olur. Örneğin, Atmosfer, gün doğarken ya da batarken ( ay için de geçerlidir) gelen ışınların derece derece bükülmesine neden olur. Güneşin (ya da ayın) alt kısmından gelen ışık ışınları, üst kısmından gelen ışık ışınlarına göre daha fazla bükülürler. Bu durum güneşin bir elips şeklinde (yassılaşmış) SERAP OLAYI Atmosferde bir nesnenin gerçek konumuna göre yer değiştirmiş gibi görünmesine serap denir. Serap, bir hayal ürünü değildir. Bu olayda bizi yanıltan zihnimiz değil, atmosferdir. Atmosferdeki seraplara ışığın farklı yoğunluktaki hava katmanlarından geçmesi ve kırılması neden olur. Bu tür belirgin yoğunluk değişimleri hava sıcaklığındaki belirgin değişimlerin bir sonucudur. Sıcaklıktaki değişim ne kadar fazla ise ışığın kırılması da o kadar fazla olur. Örneğin sıcak ve güneşli bir günde, asfalt yollar önemli miktarda güneş enerjisi absorblar ve aşırı derecede ısınırlar ve yol yüzeyi ile temas halindeki havayı kondüksiyonla ısıtırlar. Ancak hava zayıf bir termal iletken olduğu için, bu yolla ısı iletimi yüzeye yakın bir tabaka ile sınırlı kalır. Dolayısı ile daha serin hava yerden biraz daha yukarıdadır. Sıcak günlerde bu yollar ıslakmış gibi görünür. Yolun bu şekilde görünmesinin nedeni, farklı yoğunluktaki hava katmanlarını geçerek gelen ışığın yukarı doğru kırılarak gözlerimize ulaşmasıdır. 10

Benzer serap olayı sıcak yaz günlerinde çöllerde sıklıkla gözlenir. Çölde yolculuk eden insanlar, uzaktan su birikintisi zannettikleri şeyin gerçekte kızgın çöl kumu olduğuna sıklıkla tanık olurlar. Bazen bu gibi yüzeyler titrek bir görüntü ortaya koyar. Bunun nedeni yüzey yakınındaki yükselen ve çöken hava parsellerinin neden olduğu yoğunluk değişimidir. Dolayısı ile ışık böyle bir ortamdan geçerken ilerleme doğrultusu sürekli değişir ve yüzeyin titrek bir şekilde görünmesine neden olur. Yer yakınındaki havanın yukarı seviyedeki havadan daha sıcak olması durumunda, cisimler bulundukları konumdan daha aşağıda ve (sıklıkla) ters dönmüş olarak görünürler. Bu tür seraplar alçak seraplar olarak adlandırılır. Şekil 5 deki ağacı dikkate alalım ve bu ağacı neden ters dönmüş olarak gördüğümüzü açıklamaya çalışalım. Yüzey üzerindeki sıcak ve az yoğun havaya giren ışık ışınları yukarı doğru kırılır ve gözümüze aşağı seviyelerden (yer seviyesinden) gelerek ulaşırlar. Beynimizin, gözümüze ulaşan bu ışık ışınlarını yeryüzeyinin altından geliyormuş gibi algılaması sonucu ağaç ters dönmüş olarak görünür. Ağacın tepesinden gelen ışınların bir kısmı yaklaşık olarak aynı yoğunluktaki hava içinden geçerek gelir ve bu nedenle çok az kırılmaya uğrar. Bu ışınlar göze doğrudan ulaştığı için ağaç düz olarak görünür. Dolayısı ile belli bir mesafenin dışında, hem ağacın kendisinin hem de ters dönmüş halinin birlikte görünmesi de mümkündür. Bu son durumda ağacın ve gözlemcinin boylarının karşılaştırılabilir olması önemlidir. Serap olayları yalnızca çok sıcak bölgelerde değil, çok soğuk bölgelerde de meydana gelir. Kutup bölgelerinde, karla örtülü alanların üzerindeki hava, daha yukarılardaki havaya göre çok soğuktur. Soğuk hava çok daha yoğundur dolayısı ile 11

uzaktaki nesnelerden gelen ışık normale yaklaşarak kırılır. Bunun sonucunda uzaktaki nesne gerçek konumundan daha yukarıda görünür. Bu tip seraplar yüksek seraplar olarak adlandırılır, (Şekil 6). HALE,PARHELİA VE IŞIKLI KOLON Güneş veya ayın etrafında görülen dairesel ışıklar hale olarak adlandırılır. Bu görüntü, güneş ya da ay ışıklarının buz kristalleri içinden geçerken kırılması nedeniyle oluşur. Bundan dolayı halenin görülmesi sirüs türünden bulutların varlığına işaret eder. En yaygın görülen hale, 22 o yarıçaplı haledir, buna küçük hale denir. Bu haleler, kolon tipindeki çok küçük buz kristallerinin (çapı 20 μm den küçük) varlığında meydana gelirler. 46 o yarıçaplı hale (büyük hale) durumunda da kolon tipindeki buz kristalleri sözkonusudur. Ancak bu durumda buz kristallerinin çapı 15-25 μm arasında değişir, (Şekil 7). 12

Bazen küçük halelerin üst kısmında parlak bir ışık yayı görülebilir. Bu yay, haleye teğet olduğu için teğet yay olarak adlandırılır. Yay, büyük hegzagonal buz kristallerinin uzun eksenleri yeryüzüne paralel olacak şekilde düşmeleri halinde meydana gelir. Parlak ışık yayı, güneş ışınlarının buz kristalleri tarafından kırılması sonucu meydana gelir. Güneş ufukta iken, halenin üst kısmında görülen yay üst teğet yay; güneş ufkun üzerinde iken, halenin alt kısmında görülen yay ise alt teğet yay olarak adlandırılır. Yayın şekli önemli ölçüde güneşin konumuna bağlıdır. Küçük halenin üst kısmında oluşan teğet yayların benzeri büyük halede de gözlenir. Bu durumda buz kristalleri hegzagonal plaka şeklindedir ve yere paralel konumdaır. Güneş ışınları buz kristallerinin üst kısmından girer ve kırılarak kenarlarından çıkar. Bu tip teğet yay dolayzenital yay olarak adlandırılır. Gökyüzünde uçları yukarı doğru olan bir gökküşağına benzer. Bu yayın gökkuşağı ile karıştırılması mümkündür. Oysa gökkuşağı sadece yağmurlu günlerde oluşan bir optik olaydır. Hale genellikle parlak, beyaz bir çember şeklinde görünür. Bununla birlikte renkli göründüğü durumlar da vardır. Neden böyle olduğunun daha iyi anlaşılması için kırılma olayının yakından incelenmesi gerekir. Işık bir cam prizmanın içinden geçtiğinde kırılır ve görünür ışık bileşenlerine ayrılır. Görünür ışığın her bir dalga boyu cam tarafından yavaşlatılır. Ancak yavaşlama miktarı her bir dalga boyu için az da olsa bir farklılık gösterir. Uzun dalga boyları (örneğin kırmızı) daha az, kısa dalga boyları (örneğin mor) ise daha fazla yavaşlatılır. Bu nedenle kırmızı ışık daha az, mor ışık ise daha fazla bükülür. Beyaz ışığı oluşturan dalga boylarının seçici kırılmaya uğrayarak bileşenlerine ayrılması dispersiyon olarak adlandırılır. Dispersiyon, ışık buz kristallerinin içinden geçerken, kırmızı ışığın halenin iç kısmında; mavi ışığın ise dış kısmında yer almasına neden olur. Çapı yaklaşık 30 μm den büyük olan plaka şeklindeki hegzagonal buz kristalleri bu büyüklüğe ulaştıklarında yavaş ve yatay bir konumda düşme eğilimi gösterirler. Bu durumda her bir buz kristali küçük birer prizma gibi davranarak ışığın kırılmasına ve dağılmasına neden olurlar. 13

Eğer güneş ufka yakın bir konumda ise gözlemci ve buz kristalleri aynı yatay düzlemde bulunurlar. Böyle bir durumda gözlemci, güneşin her iki tarafında dışa doğru incelen, parlak renklerden oluşmuş bir ışık demeti görür. Bu optik oluşum parhelia (sundog) olarak adlandırılır. Parheliada güneşe yakın renk (en az bükülen) kırmızı; uzak olan renk ise (daha fazla bükülen) mavidir, (Şekil 8). Parhelia, teğet yay ve hale güneş ışıklarının buz kristalleri tarafından kırılmaya uğratılmasıyla oluşur. Işıklı kolonlar ise güneş ışınlarının buz kristalleri tarafından yansıtılması sonucu oluşur. Işıklı kolonlar gündoğumunda ve günbatımında güneşten yukarıya veya aşağıya doğru uzamış, düşey ışık demeti şeklinde sıklıkla gözlenen optik bir olaydır. Buraya kadar bahsedilen tüm optik olaylar sirüs tipi bulutların varlığında meydana gelirler. 14

GÖKKUŞAĞI Gökkuşağı, gökyüzünün bir kısmında yağmur, diğer kısmında güneş varken görülen yaygın bir optik olaydır. Bu olay havaya püskürtülen spreylerde, su fıskiyelerinde ve çağlayanlarda sıklıkla görülür. Gökkuşağını görebilmek için, güneş arkamızda olacak şekilde yağışın olduğu tarafa bakmamız gerekir. Şekil 9 dan da görüldüğü gibi, eğer gökkuşağını sabah saatlerinde görmüş isek, yüzümüz batıya (yani yağışın olduğu tarafa) dönük demektir. Orta enlemlerde bulutlar batıdan doğuya doğru hareket ettiği için, bulutlar ve dolayısı ile de yağış yakında bulunduğumuz yere ulaşacak demektir. Bunun aksine, akşam vakti gökkuşağını görebilmek için doğuya (yağışın olduğu tarafa) dönmemiz gerekir, batıda havanın açık olması, yağışın ardından havanın tamamen açacağını gösterir. Şekil 10 da görüldüğü gibi şimdi de gökkuşağının nasıl oluştuğunu yakından inceleyelim. Güneş ışığı yağmur damlasının içine girdiğinde hızı yavaşlar ve mor en fazla, kırmızı en az olmak üzere kırılmaya uğrar. Bu ışığın önemli bir kısmının damlanın içinden tamamen geçmesine ve tarafımızdan görülmemesine rağmen, bir 15

kısmı da (geliş yönüne göre) damlanın arka kısmına belli bir açıyla çarparak, damla içinde yansımaya uğrar. Bu tür bir yansımanın gerçekleştiği açı kritik açı olarak adlandırılır. Su için bu açı 48 o dir. Kritik açıdan daha büyük açılarda gelen güneş ışınlarının uğramış olduğu bu yansıma iç yansıma olarak gözlerimize ulaşır, Şekil 10b de görüldüğü gibi diğerlerinden farklı bükülür ve farklı bir açıyla da damlayı ter keder. Bu açı, gelen güneş ışınları ile kırmızı ışık arasında 42 o, mor ışık durumunda ise 40 o dir. Dolayısı ile damlayı terkiden ışık bir uçta kırmızı, diğer uçta mor olmak üzere spektrumuna ayrılır. Her bir damladan tek bir renk görmemiz nedeniyle (Her bir damlanın ışığı kırması ve yansıtması sonucu gözlerimize ulaşan ışık, çok küçük de olsa farklı bir açıya sahiptir) birincil gökkuşağının parlak renklerinin oluşumu için oldukça çok sayıda yağmur damlasına gereksinim vardır. Şekil 10b yakından incelendiğinde, gökkuşağında kırmızı halkanın içte, mor halkanın ise dışta yer alışması gerektiği gibi yanlış bir sonuç çıkarılabilir. Şekil 11 de, iki yağmur damlasını terkiden ışınları dikkate alalım. Aşağıdaki damladan gelen mor ışık gözlerimize ulaştığı zaman, aynı damladan gelen kırmızı ışık gözlerimizden daha aşağı bir seviyeye gelir. Şekilden görüldüğü gibi gözlerimize gelen kırmızı ışık daha üstteki damladan gelir. Kırmızı ışığın daha üstte bulunan damladan, mor ışığın ise daha aşağıdaki damladan gelmesi nedeniyle birincil gökkuşağının renkleri, kırmızı üstte ve mor altta olmak üzere sıralanır. 16

Birincil gökkuşağının yanında ikinci bir gökkuşağı da sıklıkla görülen bir durumdur. Bu ikinci gökkuşağı birincil gökkuşağının üzerinde yer alır ve renk dizilişi birinciye göre terstir. Bu gökkuşağının renkleri birincil gökkuşağına göre daha solgundur ve ikincil (tali) gökkuşağı olarak adlandırılır. İkincil gökkuşağı, güneş ışığının belli bir açıda yağmur damlasına girmesi ve iki kez iç yansımaya uğraması sonucu oluşur. Her bir yansıma ışığın şiddetinin biraz daha azalmasına neden olur. Bunun sonucunda ikincil gökkuşağı birinciye göre daha solgun görünür. İkincil gökkuşağında renklerin ters dizilişinin nedeni Şekil 12 den kolaylıkla izah edilebilir. 17

KAYNAK: Atlas.cc.itu.edu.tr/~kkocak/abgdtf 18