SİSMİK MİKROBÖLGELEME ÇALIŞMALARINDA CBS (COĞRAFİ BİLGİ SİSTEMİ) KULLANIM YÖNTEMİ

Benzer belgeler
An Innovative Approach for Seismic Zonation by Using Geographical Information System

Deprem Tehlike Analizi Nedir? Ne Zaman Gerekir? Nasıl Yapılır? Naz Topkara Özcan

SİSMİK TEHLİKE ANALİZİ

KONU: KOMİTE RAPORU TAKDİMİ SUNUM YAPAN: SALİH BİLGİN AKMAN, İNŞ. YÜK. MÜH. ESPROJE GENEL MÜDÜRÜ

Bursa İl Sınırları İçerisinde Kalan Alanların Zemin Sınıflaması ve Sismik Değerlendirme Projesi

1. Giriş. 2. Model Parametreleri

İNM Ders 9.2 TÜRKİYE DEPREM YÖNETMELİĞİ

Kocaeli Büyükşehir Belediyesi Sınırlarında Deprem Tehlike ve Riskinin Belirlenmesi

EN BÜYÜK OLASILIK YÖNTEMİ KULLANILARAK BATI ANADOLU NUN FARKLI BÖLGELERİNDE ALETSEL DÖNEM İÇİN DEPREM TEHLİKE ANALİZİ

Neotektonik incelemelerde kullanılabilir. Deformasyon stili ve bölgesel fay davranışlarına ait. verileri tamamlayan jeolojik dataları sağlayabilir.

İNM Ders 2.2 YER HAREKETİ PARAMETRELERİNİN HESAPLANMASI. Yrd. Doç. Dr. Pelin ÖZENER İnşaat Mühendisliği Bölümü Geoteknik Anabilim Dalı

MİKROBÖLGELEMEDE AMPİRİK BİR YAKLAŞIM; SİSMİK YÖNETMELİKLER

Ders 1.2 Türkiyede Barajlar ve Deprem Tehlikesi

SİSMOTEKTONİK (JFM ***)

INS13204 GENEL JEOFİZİK VE JEOLOJİ

İTME ANALİZİ KULLANILARAK YÜKSEK RİSKLİ DEPREM BÖLGESİNDEKİ BİR PREFABRİK YAPININ SİSMİK KAPASİTESİNİN İNCELENMESİ

DEPREME DAYANIKLI YAPI TASARIMI

ÖN SÖZ... ix BÖLÜM 1: GİRİŞ Kaynaklar...6 BÖLÜM 2: TEMEL KAVRAMLAR... 7

DOĞU ANADOLU BÖLGESİ VE CİVARININ POISSON YÖNTEMİ İLE DEPREM TEHLİKE TAHMİNİ

70.DEPREM VE ZEMİN İNCELEME MÜDÜRLÜĞÜ

BURSA ĠLĠ ĠÇĠN ZEMĠN SINIFLAMASI VE SĠSMĠK TEHLĠKE DEĞERLENDĠRMESĠ PROJESĠ

BAÜ Müh-Mim Fak. Geoteknik Deprem Mühendisliği Dersi, B. Yağcı Bölüm-5

Deprem Tehlike Yönetimi (INM 476)

GEOTEKNİK DEPREM MÜHENDİSLİĞİ KAYNAKLAR 1. Steven L. Kramer, Geotechnical Earthquake Engineering (Çeviri; Doç. Dr. Kamil Kayabalı) 2. Yılmaz, I.

Maden Tetkik ve Arama Genel Müdürlüğü

MEVZİİ İMAR PLANINA ESAS JEOLOJİK-JEOTEKNİK ETÜT RAPORU

Deprem Mühendisliği 1

GPE DEÜ Fen Bilimleri Enstitüsü. Sismik Risk ve Sismik Tehlike : Tanım, Temel kavramlar Sismotektonik haritalar : USGS 30sec DEM topoğrafya

Profesör, Yrd.Doç.Dr., Jeofizik Müh. Bölümü, Dokuz Eylül Üniversitesi, İzmir 2. Uzman, Rektörlük, Dokuz Eylül Üniversitesi, İzmir 3

Deprem Tehlike Yönetimi ( )

ZEMİNİN SİSMİK ÖZELLİKLERİNİN COĞRAFİ VERİTABANI TASARIMI

İNM 106 İnşaat Mühendisleri için Jeoloji

DEPREM TEHLİKE HARİTALARININ HAZIRLANMASI VE AZALIM İLİŞKİLERİ

Kastamonu İlinin Depremselliği ve Deprem Tehlikesi. Bülent ÖZMEN. Afet İşleri Genel Müdürlüğü, Deprem Araştırma Dairesi

Kastamonu İlinin depremselliği ve deprem tehlikesi The seismicity and earthquake hazard of Kastamonu Province

SİSMİK TEHLİKE ANALİZİ. Deprem Tehlike (Risk) Analizi

Depremler. 1989, Loma Prieta depremi, Mw = 7.2

TÜRKİYE DEPREM VAKFI

MTA Genel Müdürlüğü Tarafından Yürütülen TUCBS ve INSPIRE Standartları Çalışmaları

Ulusal Kuvvetli Yer Hareketi Kayıt Şebekesi Veri Tabanının Uluslararası Ölçütlere Göre Derlenmesi

İSTANBUL UN OLASI DEPREM KAYIPLARI TAHMİNLERİNİN GÜNCELLENMESİ İŞİ (İSTANBUL DEPREM SENARYOSU) YÖNETİCİ ÖZETİ

Şekil 1. Mikrotremor sinyallerini oluşturan bileşenler (Dikmen, 2006 dan değiştirilmiştir)

COĞRAFİ BİLGİ SİSTEMLERİ

2010 YILINDA UYGULANACAK ÜCRET TARİFELERİ

Havza. Yağış. Havza. sınırı. Havza. alanı. Akarsu ağı. Akış Havzanın çıkış noktası (havzanın mansabı) Çıkış akımı

İMAR VE ŞEHİRCİLİK DAİRESİ BAŞKANLIĞI DEPREM VE RİSK YÖNETİMİ ŞUBE MÜDÜRLÜĞÜ TEŞKİLAT YAPISI VE ÇALIŞMA ESASLARINA DAİR YÖNERGE

SIVILAŞMA POTANSİYELİNİN BELİRLENMESİNDE BASİTLEŞTİRİLMİŞ YAKLAŞIMLA YAPI ETKİSİ ANALİZİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ

by Karin Şeşetyan BS. In C.E., Boğaziçi University, 1994

Jeoloji Mühendisleri için ArcGIS Eğitimi

Senaryo Depremlerin Zemin Hareketi

Ders. 5 Yer Tepki Analizleri

KONU: BARAJLARDA SİSMİK TEHLİKENİN TAYİNİ - Olasılıksal ve deterministik hesaplar sonrası baraj tasarımında kulanılacak sismik tehlike seviyeleri

10. SINIF COĞRAFYA DERSİ KURS KAZANIMLARI VE TESTLERİ

Yerleşik Alanlar, Yapılı Kentsel Çevre Çevre Düzeni Planları Nazım İmar Planları 3- Planlama Aşaması Gelişmeye Açılacak Alanlar

Yrd.Doç. Dr. Tülin ÇETİN

HARİTA, TOPOGRAFİK HARİTA, JEOLOJİK HARİTA. Prof.Dr. Atike NAZİK Ç.Ü. Jeoloji Mühendisliği Bölümü

SIVILAŞMA ANALİZLERİNİN ARİAS ŞİDDET KAVRAMI İLE DEĞERLENDİRİLMESİ

JEO156 JEOLOJİ MÜHENDİSLİĞİNE GİRİŞ

1.2. Aktif Özellikli (Her An Deprem Üretebilir) Tektonik Bölge İçinde Yer Alıyor (Şekil 2).

16.6 DEPREM ETKİSİ ALTINDAKİ ZEMİNLERDE SIVILAŞMA RİSKİNİN DEĞERLENDİRİLMESİ

DEPREMLER - 2 İNM 102: İNŞAAT MÜHENDİSLERİ İÇİN JEOLOJİ. Deprem Nedir?

TARİHİ YARIMADA(İSTANBUL) NIN SIVILAŞMA VE ŞEV STABİLİTESİ POTANSİYELİ

ULUSAL KUVVETLİ YER HAREKETLERİ KAYIT ŞEBEKESİ NATIONAL STRONG GROUND MOTION NETWORK

II. DOĞAL AFETLER (NATURAL DISASTERS)

JEOLOJİK-JEOTEKNİK BİLGİ SİSTEMİNE BİR ÖRNEK: AKSARAY İL MERKEZİ

MAPINFO PRO TEMEL VE İLERİ SEVİYE EĞİTİM İÇERİĞİ

PRELIMINARY REPORT. 19/09/2012 KAHRAMANMARAŞ PAZARCIK EARTHQUAKE (SOUTHEAST TURKEY) Ml=5.1.

ZEMİN İNCELEMELERİ. Yetersiz Zemin İncelemesi Sonucu Ortaya Çıkabilecek Kayıplar. İçin Optimum Düzey. Araştırma ve Deney

İMAR PLANINA ESAS JEOLOJİK-JEOTEKNİK ETÜT RAPORU

ARAŞTIRMALARINDA ARAZİ DENEYLERİ KAPSAMINDA YAPILACAK JEOFİZİK ARAŞTIRMALAR

MARMARA BÖLGESİNİN KUVVETLİ YER HAREKETİ AZALIM İLİŞKİSİ MODELİ STRONG GROUND MOTION ATTENUATION RELATIONSHIP MODEL FOR MARMARA REGION

SERAMAR Projesi nin. Mehmet Cemal Genes Mustafa Kemal Üniversitesi, Mühendislik Fakültesi, Hatay, Türkiye

DEPREM MAGNİTÜDLERİ İÇİN TEKRARLANMA YILLARININ ELDE EDİLMESİ : MARMARA BÖLGESİ ÖRNEĞİ

NÜKLEER ENERJİ SANTRALLERİNİN KURULMASINDA SİSMİK AKTİVİTENİN ÖNEMİ VE SİSMİK RİSK ÇALIŞMALARI. Ali İsmet KANLI

MapCodeX Web Client ELER, AKOM Modülleri

27 Şubat 2009 Uzaktan Algılama ve CBS ile Afet Yönetimi Đstanbul Teknik Üniversitesi. Çalışmanın Amacı

ELER Programı İle Dinamik Çalışan Web Tabanlı Afet Koordinasyon Sistemi

SİSMİK PROSPEKSİYON DERS-1 (GİRİŞ) DOÇ.DR. HÜSEYİN TUR

VE TASARIM YER HAREKETLERĠ

MAPINFO PROFESSIONAL TEMEL VE İLERİ SEVİYE KURS İÇERİĞİ

Dinamik yapı zemin etkileşim analizleri için tasarıma esas kuvvetli yer hareketlerinin geliştirilmesi: genel değerlendirme ve yeni gelişmeler

BİNA VE BİNA TÜRÜ YAPILAR (KATEGORİ 1) İÇİN PARSEL BAZINDA DÜZENLENECEK ZEMİN VE TEMEL ETÜDÜ (GEOTEKNİK) VERİ VE DEĞERLENDİRME RAPORU FORMATI

7. Self-Potansiyel (SP) Yöntemi Giriş...126

Şekil 6. Kuzeydoğu Doğrultulu SON-B4 Sondaj Kuyusu Litolojisi

ĐMAR PLANINA ESAS JEOLOJĐK-JEOTEKNĐK ETÜT RAPORU

Deprem Riski nde Yumuşak Kat Etkisi

DEPREM BİLİMİNE GİRİŞ. Yrd. Doç. Dr. Berna TUNÇ

TEMATİK COĞRAFİ HARİTALARIN VERİMLİLİK AÇISINDAN DEĞERLENDİRİLMESİ

MAPINFO PRO TEMEL SEVİYE EĞİTİM İÇERİĞİ

Türkiye Deprem Tehlike Haritası ve İnteraktif Web Uygulaması

INS13204 GENEL JEOFİZİK VE JEOLOJİ

ANKARA YÖRESİ ZAYIF VE KUVVETLİ YER HAREKETİ KAYIT AĞININ KURULMASI

YENİŞEHİR/BURSA İLÇESİ YERLEŞİM ALANI DEPREM ÇEKİNCESİ

JEM 419 / JEM 459 MAGMATİK PETROGRAFİ DERSİ

BALÇOVA VE SEFERİHİSAR İLÇELERİNDE GERÇEKLEŞTİRİLEN YAPI STOĞU ENVANTER VE DEPREM GÜVENLİĞİ ÖN DEĞERLENDİRMESİ PROJESİ

SAKARYA ÜNİVERSİTESİ DEPREM KAYIT İSTASYONUNUNA AİT SÜREYE BAĞLI BÜYÜKLÜK HESABI

Sıvı Depolarının Statik ve Dinamik Hesapları

Hamza GÜLLÜ Gaziantep Üniversitesi

Proje kapsamında Arazi İzleme Sisteminin bir bütün olarak sunulması için bir portal yapısı hazırlanmıştır. Arazi İzleme Sistemi;

Transkript:

SİSMİK MİKROBÖLGELEME ÇALIŞMALARINDA CBS (COĞRAFİ BİLGİ SİSTEMİ) KULLANIM YÖNTEMİ Ergin ULUTAŞ 1, Taciser ÇETİNOL 1, İ.Talih GÜVEN 1,Berna TUNÇ 1, T.Serkan IRMAK 1, Süleyman TUNÇ 1,Deniz ÇAKA 1, Metin AŞÇI 1, Mithat Fırat ÖZER 1 http://yubam.kou.edu.tr Anahtar Kelimeler: Coğrafi Bilgi Sistemi, Sismik Mikrobölgeleme, Zemin Büyütmesi, Toprak Kayması, Sıvılaşma, Fay Boyunca Enerji Yönlenmesi. CBS (Coğrafi Bilgi Sistemi) yeryüzünde coğrafya ile ilişkilendirilecek her tür veriyi haritalamaya ve konumsal veriler arasında ilişki kurmaya yönelik bir bilgi sistemidir. Bu sistemler çok miktarda konumsal ve tablosal veri biriktirme, üzerinde değişiklikler yapabilme, bu verilere yönelik istatistiksel çözümleme ve gösterebilme özelliğine sahiptir. CBS ile sistem harici bir program ve yüksek seviyeli bir veri tabanı sistemi ile bağlantı kurulabilir. Bütün bu özellikleri ile CBS, diğer bilgi sistemlerinden ayrılır ve sonuçların kolay ve hızlı algılanması açısından da diğer sistemlere göre üstünlük sağlar. CBS kapsamlı bir bölgesel sismik bölgeleme, tehlike ve risk çalışmaları içinde ideal bir ortam oluşturur. Sistem sismik mikrobölgelemeye yönelik her bir adımın birbirinden bağımsız ele alınarak birleştirilmesinde kullanılabilir. Kapsamlı bir sismik mikrobölgeleme çalışmasında pek çok faktörün etkisi birleştirilmelidir. Bu faktörlerin her biri konumsal ve tablosal verilerin modellemesini ve çözümlemesini kapsar. Bu çalışma ile çoklu tehlike çözümlemesi (multi-hazard analysis) ve mikro bölgeleme çalışmalarında CBS nin nasıl kullanılacağı her bir etkinin ağırlıklarının birbirine göre hangi oranda olacağı anlatılmaktadır. Çoklu tehlike çözümlemesi sözcüğü, depremin oluşturduğu sarsıntı ile birlikte zemin büyütmesi, toprak kayması, eğim, sıvılaşma ve var olan faylar boyunca enerji yönlenmesi gibi ikinci dereceden etkilerin birlikte değerlendirilmesinden dolayı kullanılmaktadır. Giriş Tüm dünya genelinde son yıllarda depremlerin yukarda açıklanan etkilerini azaltmak amacıyla güvenli yerleşim alanlarının tespiti ve yapılaşmada her bölgeye uygun bina tasarımları oluşturmak için sismik mikrobölgeleme çalışmaları kullanılmaktadır. Bu çalışmalar bir bölgedeki deprem tehlikesi ile belirlenecek olan yerleşime uygunluk ve arazi kullanım ilkeleri için etkin bir yaklaşımdır. Sismik mikrobölgeleme çalışmalarındaki en önemli nokta deprem tehlikesini belirlemeye yönelik farklı etkilerin nasıl birleştirileceği ve her bir etkinin ağırlıklarının birbirine göre hangi oranda olacağıdır. Bu işlemlerin gerçekleştirilmesine yönelik kapsamlı bir sismik tehlike ve sismik mikrobölgeleme çalışmaları için için ideal bir ortam oluşturan Coğrafi Bilgi Sistemleri (CBS) kullanılır. CBS ile Sismik Tehlike Çözümlemesi Bölgesel sismik tehlike çözümlemelerinin amacı gelecekte oluşabilecek bir depreme bağlı olarak depremden en fazla etkilenecek, potansiyel hasar ve kayıpların olabileceği alanların belirlenmesidir. Bu çözümlemeler farklı tür etki oluşturabilecek bilgilerin birleştirilmesi temeline dayanır. Bu bilgiler temelde birbirlerinden bağımsız ele alınarak birleştirilmelidir. Bir bölge için CBS ile sismik tehlike çözümlemesi için gerekli adımlar şöyledir (King ve Kiremidjian, 1994) Sismik kaynakların belirlenmesi Sismik kaynaklardaki deprem oluşumlarının modellenmesi İnceleme alanı (potansiyel tehlike alanı) ve sismik kaynaklar arasındaki yer hareketi azalım ilişkilerinin belirlenmesi Yüzey faylanması, toprak kayması, sıvılaşma ve zemin büyütmesi gibi yerel etkilerin belirlenmesi Sismik Kaynakların Belirlenmesi Bölgesel sismik tehlike çözümlemelerindeki ilk adım bir bölgeyi etkileyebilecek potansiyel sismik kaynakların belirlenmesidir. Sismik kaynaklar bir bölgedeki homojen depremselliği gösteren coğrafik kaynaklardır (Vasudevan ve diğ, 1992). Bu kaynaklar nokta, çizgi yada alansal kaynak olabilir. Nokta kaynaklar tekrarlı bir biçimde aynı noktada 1 Kocaeli Üniversitesi Yer ve Uzay Bilimleri Araştırma Merkezi Kocaeli 1319

deprem oluşturan kaynaklardır. Genellikle bu tür kaynaklar nadirdirler. Çizgisel kaynaklar, genellikle doğrusal bir çizgi şeklinde üzerinde deprem dışmerkezlerinin bulunduğu fayları gösteren kaynaklardır. Yüksek depremselliğe sahip ancak tam olarak ayrıntıda çizgi ya da nokta olarak tanımlanamayan kaynaklar tipik olarak alansal kaynak olarak modellenir. Sismik Kaynaklarda Deprem Oluşumları Tehlike çözümlemesindeki ikinci adım her bir sismik kaynaktaki deprem oluşumlarının belirlenmesidir. Deprem oluşumlarını modellemek için deterministik veya olasılıksal (probabilistik) çözümlemeler kullanılır. Deterministik modelde gelecekte oluşacak bir depremin dışmerkez, büyüklük ve oluşum zamanı tahmin edilir. Burada senaryo deprem bölgedeki sismik etkinliğe bağlı olrak daha önce oluşan depremlerin tekrarı olabilir. Başka bir deyişle tekrar edeceği düşünülen deprem bölgeyi etkileyebilecek sismik kaynaklarda oluşabilecek en büyük magnitüdlü depremdir. Olasılıksal model ise depremlerin zaman, uzay ve büyüklük boyutundaki dağılımlarının, uzaklık-kuvvetli yer hareketi azalım ilişkisi modelleriyle sentez edilerek, ilgilenilen bir peryod için belirlenen bir yer hareketi değerini aşma olasılığı olarak açıklanır (Reiter 1990). Yer Hareketi-Uzaklık Azalım İlişkilerinin Belirlenmesi Yerel Bölgesel sismik tehlike çözümlemesi için olasılıksal veya deterministik modelin seçilmesinden sonraki adım ana kayadaki (rock) yer hareketinin belirlenmesidir. Bunun belirlenmesindeki en yaygın yöntem deneysel ivme-uzaklık azalım ilişkileridir. Bu ilişkiler bir depremin büyüklük ve dışmerkezinin ya da iç merkezinin bir fonksiyonu olarak yer hareketi etkisini açıklamaktadır. Bir bölge içinde kaydedilen ivme verilerine istatistiksel regresyon çözümlemeleri yapılarak çeşitli azalım ilişkileri geliştirlmiştir (Campell,1985). Bu ilişkiler farklı zemin koşulları, uzaklık, magnitüd ve yer hareketi tanımlamalarına bağlı olarak farklı fonksiyonel biçimlerde geliştirlmişlerdir. CBS ile sismik tehlike çözümlemelerinde zemin etkisinin ayrı bir katman olarak tanımlanması amacıyla yer hareketi azalım ilişkileri sadece tek bir zemin türüne ait kayıtlar kullanılarak belirlenir. Bu tür işlemlerde genellikle zemin büyütmesinin olmadığı ya da çok az olduğu kaya zeminler kullanılır Yerel Zemin Etkilerinin Belirlenmesi Yerel jeolojik zemin yapısının sismik hareketin karakterini değiştirdiği ve bu zeminler üzerinde kurulu insan yapımı yapılar üzerinde hasara sebep olabileceği çok iyi bilinmektedir (Borcherd, 1990). Yerel zemin etkileri zemin büyütmesi, sıvılaşma, toprak kayması ve yüzey faylanması olarak tanımlanır. Bölgesel sismik tehlike çözümlemelerinde en çok kullanılan yerel zemin etkisi zemin büyütmesidir. Yerel zemin şartlarının özelliklerine bağlı olarak ana kayada ölçülen bir yer hareketinin, yeryüzeyindeki değerini belirlemek için çeşitli zemin büyütme etkisi modelleri vardır. Bu modeller kuvvetli yer hareketi değerlerinin zemine bağlı değişimini gösteren modellerden, doğrusal olmayan dinamik zemin tepkisi temeline oturtulan yer hareketi değerinin zemine bağlı değişimini gösteren karmaşık yöntemlere kadar çeşitlendirilebilir (King ve Kiremidjian, 1994). İkincil yerel zemin etkileri, sıvılaşma, toprak kayması, ve yüzey faylanmasının belirlenmesi ve modellenmesi zemin büyütmesinin belirlenmesine göre çok daha zordur. Bu nedenle çoğu mikrobölgeleme çalışmasında bu tür etkiler, yüksek, orta ve düşük gibi tehlike kriterleri ile araştırmacı tarafından çalışmaya aktarılabilir (Kremidjian,1992). CBS Tabanlı Sismik Tehlike Belirlenmesine Yönelik Kuramsal Örnek Bu çalışmada hazırlanan kuramsal örnek, CBS tabanlı sismik tehlike integrasyon yöntemini tanımlamada yukardaki paragraflarda anlatılan yöntemlere uygun olarak basitleştirilmiş yaklaşımları içermektedir. Bu basitleştirilmiş yaklaşımlar, rastgele tasarlanmış küçük bir bölge için gerçeğe uygun jeolojik, jeofiziksel ve geoteknik bilgi kullanılarak CBS tabanlı sismik tehlike çözümlemesi için yapılmıştır. Örnek uygulamada sismik tehlike integrasyon yönrtemine uygun olarak her bir katman için kullanılan ağırlıklar King ve Kiremidjian (1994) tarafından önerilen yöntem ve ağırlıklardır (Çizelge 1). Daha önce anlatılan CBS tabanlı sismik tehlike integrasyon yöntemine uygun olarak Çizelge 2 de maddeler halinde örnek uygulama şeklinde CBS ile sismik tehlike çözümlemesi verilmiştir. 1320

Tablo1. Sismik Tehlike Çözümlemesi İçin Kullanılan Tehlike Etkileri ve Kuramsal Ağırlıklar. Olası Sismik Tehlike Etkileri Yer Sarsıntısı CBS de kullanılan ağırlıklar I ST =I YS Yer Sarsıntısı + Sıvılaşma I ST =0.55I YS +0.45I SZ +0.5 Yer Sarsıntısı + Yüzey Faylanması I ST =0.60I YS +0.40I YF +0.5 Yer Sarsıntısı + Toprak Kayması I ST =0.65I YS +0.35I TK +0.5 Yer Sarsıntısı +Sıvılaşma+ Yüzey faylanması Yer Sarsıntısı +Sıvılaşma+ Toprak Kayması Yer Sarsıntısı+Yüzey Faylanması+ Toprak Kayması Yer Sarsıntısı +Sıvılaşma+ Yüzey faylanması+toprak Kayması I ST =Şiddet ölçeğinde sismik tehlike I YS = Şiddet ölçeğinde Yer sarsıntısı I SZ = Şiddet ölçeğinde Zemin Sıvılaşması I YF = Şiddet ölçeğinde Yüzey Faylanması ı TK = Şiddet ölçeğinde Toprak Kayması I ST =0.40I YS +0.30I SZ +0.30I TK +1.0 I ST =0.40I YS +0.35I SZ +0.25I TK +1.0 I ST =I0.45 YS +0.30I YF +0.25I TK +1.0 I ST =0.30I YS +0.25I YF +0.25I TK +0.20I TK +1. 5 Tablo 2. CBS tabanlı sismik tehlike integrasyon yöntemine yönelik kuramsal örnek a CBS tabanlı sismik tehlike çözümlemesi için örnek uygulama alanı, bu alandan geçen aktif fay ve sismik tehlike etkisi altında bulunan yerleşim alanı. b Olasılıksal deprem tehlikesi çözümlemesi (ODTÇ) ile belirlenen kaya zemin için pik kuvvetli yer hareketi dağılımı (PYİ). ODTÇ ile belirlenen değerler; bölgeyi etkileyen sismik kaynaklar, bu kaynaklardaki deprem tekrarlamaları ve kuvvetli yer hareketi uzaklık azalım ilişkisi kullanılarak elde edilir. 1321

c Bölgeye ait zemin büyütme katsayıları. Bu değerler jeolojik, jeofiziksel ve geoteknik bilgi kullanılarak belirlenebilir. d b deki kaya zemin için PYİ değerlerinin, c deki zemin büyütme değerleri ile çarpılarak elde edilen PYİ dağılımı. e f Çalışma alanına ait şiddet dağılımı, d deki PYİ dağılımın, Mercalli Şiddet Ölçeğine göre düzenlenmiş şeklidir. Bu örnek uygulamada, dönüşüm bağıntısı olarak log( PYİ) = 0. 014 + 0. 3(I) kullanılmıştır (Trifunac ve Brady, 1975). Burada, I, Mercalli Şiddet birimidir. Bu dönüşümdeki amaç yapısal hasarların ve kayıpların bir göstergesi olarak kullanılan Mercalli şiddet ölçeğinden yararlanarak, sismik tehlike ile ilişkili sismik riskin belirlenmesini sağlamaktır. Yerleşim alanını etkileyebilecek fay etrafında oluşturulan 100m ve 200m lik tampon bölgeler. Tampon bölgelerin tanımlanması yüzey faylanmasından kaynaklanabilecek sismik tehlikenin belirlenmesinde gerekli kuramsal bir yoldur. g Yüzey faylanmasından kaynaklanan sismik tehlikenin belirlenmesi için aşağıdaki kuramsal yollar izlenir. 100m tampon bölge içinde yeralan alan için, I YF =I YS +2 200m tampon bölge içinde yeralan alan için, I YF =I YS +1 Her iki durumun dışında kalan alan için, I YF =0 Bu harita CBS ortamında e nin üzerine f nin çakıştırılmasıyla oluşturulmuştur 1322

h Çalışma alanı içinde yeralan sıvılaşmaya uygun zeminler. Bu zeminler jeolojik, jeofizik ve geoteknik yöntemler kullanılarak belirlenebilir. i Sıvılaşmadan kaynaklanan sismik tehlikenin belirlenmesi için aşağıdaki kuramsal yollar izlenir. Sıvılaşabilir zeminler için I SZ =I YS +2 Sıvılaşmayan zeminler için I SZ =0 Bu harita CBS ortamında e nin üzerine h nin çakıştırılmasıyla oluşturulmuştur. j Çalışma alanına ait toprak kayması olasılığı olan alanlar. Bu alanlar toprak kayması potansiyeline göre çok düşük, düşük, orta ve yüksek olasılıklı alan olarak sınıflandırılabilirler. Bu alanların belirlenmesinde başta eğim olmak üzere yerel zemin koşulları, faylara olan yakınlık, topografya kullanılabilir. k l Toprak kaymasından kaynaklanan sismik tehlikenin belirlenmesi için aşağıdaki kuramsal yollar izlenir. Yüksek derecede heyelan olasılığına sahip alanlar için I TK =I YS +2 Orta derecede heyelan olasılığına sahip alanlar için I TK = I YS +1 Heyelan olasılığı düşük ve çok düşük alanlar için I TK =0 Bu harita CBS ortamında e nin üzerine j nin çakıştırılmasıyla oluşturulmuştur. Örnek inceleme alanına ait, yer sarsıntısı etkisi, zemin sıvılaşması etkisi, toprak kayması etkisi ve yüzey faylanması etkisinin CBS ile oluşturulan Sismik Mikrobölgeleme Haritası. Bu harita e,f,i ve k nın King ve Kiremidjian (1994) ağırlık katsayıları kullanılarak CBS ortamında çakıştırılması (overlay) ile oluşturulmuştur.. Sonuçlar 1323

Bu çalışmada bölgesel yer etkileri; zemin büyütmesi, zemin sıvılaşması, toprak kayması ve yüzey faylanması gibi sismik tehlike unsurlarına olasılıksal deprem tehlikesi çözümlemesini de katarak, CBS tabanlı Sismik Mikrobölgeleme için kuramsal örnek oluşturulmuştur. Bu kuramsal örnek ile farklı yer etkileri ağırlıklarına göre CBS de değerlendirilmişdir. Bir bölgede depremle birlikte hasar oluştuğunda genellikle bölgesel yer etkilerine göre hasarın kaynağını tam olarak ayırmak oldukça güçtür. Bu nedenle bir bölgeye ait sismik mikrobölgeleme çalışmaları, her bir etki ile ilgili tehlikenin ağırlıkları oranında birleştirilmesi temeline dayandırılmalıdır. Bu yaklaşım ile CBS kullanılarak yapılan sismik mikrobölgeleme çalışmaları, ayrıntıda her bir etkinin hesaba katılması açısından sismik tehlikeye yönelik diğer çalışmalara göre üstünlük sağlar. Her bir etkinin sonuçta tek bir veri tabanında depolanması, istenildiğinde farklı yer etkilerine hızlı erişim, sonuç haritaların farklı projeksiyon sistemlerine kolayca dönüştürülmesi ve inceleme alanındaki her bir küçük alanda sorgulama yapılabilmesi gibi özellikler de CBS ile sismik mikrobölgeleme çalışmalarının üstün yönlerinden bazılarıdır. KAYNAKLAR 1. Campell, K. W., 1985. Strong motion attenuation relations: a ten year perspective, Earthquake Spectra,1, 759-803. 2. Borcherdt, R.D. 1990. Influence of Local Geology in the San Francisco Bay Region California on Ground Motions Generated by the Loma Prieta Earthquake of Octaber 17, 1989. Proceedings of International Symposium on Safety of Urban Life and Facilities. Tokyo, Japan. Novamber 1-2, 1990, pp.1-35. 3. King, A.S., and Kremidjian, S.A. 1994. Regional Seismic Hazard abd Risk Analysis Through Geographic Information Systems, The John A. Blume Earhquake Engineerin Center, Repor No:111. 4. Kremidjian, S.A. 1992. Methods for Regional Damage Estimation. Proceedings of the 10 th World Conference on Earthquake Engineering. Madrid, Spain. July 19-24. 5. Reiter, L., 1990. Eartkquake Hazard Analysis-Issues and Insights, Columbia University Presss, Newyork, 254pp. 6. Trifunac, M.D., and Brady, A.G. 1975. On the Correlation of seismic Intensity with Peaks of Recorded Strong Ground Motion. Bulletin of the Seismological Society of America, Volume 65. Number 1, pp. 139-162. 7. Vasudevan, R., Kremidjian, S.A., Howard H.C. 1992. An Integrated Inventory Methodology for Seismic Damage Assessment. The John A. Blume Earhquake Engineerin Center, Repor No:102. Department of Civil Engineering, Stanford University, Stanford, California. 1324