BÖLÜM 6 STEREO VERİCİ VE ALICILAR. 6.1 Stereo Sinyal Kodlama/Kod Çözme Teknikleri ANALOG HABERLEŞME



Benzer belgeler
DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 2.

DENEY NO : 4 DENEY ADI : Darbe Genişlik Demodülatörleri

KABLOSUZ İLETİŞİM

DENEY NO : 4 DENEY ADI : Taşıyıcısı Bastırılmış Çift Yan Bant ve Tek Yan Bant Genlik Modülatör ve Demodülatörleri

Bölüm 14 FSK Demodülatörleri

DENEY 5: GENLİK KAYDIRMALI ANAHTARLAMA (ASK) TEMELLERİNİN İNCELENMESİ

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

Şeklinde ifade edilir. Çift yan bant modülasyonlu işaret ise aşağıdaki biçimdedir. ile çarpılırsa frekans alanında bu sinyal w o kadar kayar.

ELK 318 İLETİŞİM KURAMI-II

DENEY NO : 6 DENEY ADI

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 1.

BÖLÜM 2 GENLİK MODÜLASYONU

DENEY 3. Tek Yan Bant Modülasyonu

4.1 FM ve FzM İŞARETLERİN GÖSTERİMİ

ANALOG HABERLEŞME (GM)

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ İLETİŞİM ve İLETİŞİM TEKNİĞİ DERSİ LABORATUARI

Taşıyıcı İşaret (carrier) Mesajın Değerlendirilmesi. Mesaj (Bilgi) Kaynağı. Alıcı. Demodulasyon. Verici. Modulasyon. Mesaj İşareti

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 3.

HABERLEŞME ELEKTRONĐĞĐNE DENEY FÖYLERĐ 2011 V.Y.S.

ANALOG HABERLEŞME. 5.2 Frekans modülasyonunun avantajları ve dezavantajları

KABLOSUZ İLETİŞİM

Bölüm 13 FSK Modülatörleri.

Mobil ve Kablosuz Ağlar (Mobile and Wireless Networks)

1. DARBE MODÜLASYONLARI

DENEY 8: SAYISAL MODÜLASYON VE DEMODÜLASYON

1. LİNEER PCM KODLAMA

ANALOG İLETİŞİM. 3. Kanal ayrımı sağlar. Yani modülasyon sayesinde aynı iletim hattında birden çok bilgi yollama olanağı sağlar.

Bölümün Amacı Genlik Modülasyonu (GM) ve Frekans Modülasyonu (FM) için verici ve alıcı blok şemalarını çizebilme ve tanımlayabilme,

DENEY 7. Frekans Modülasyonu

KABLOSUZ İLETİŞİM

Bölüm 16 CVSD Sistemi

DENEY NO:1 SAYISAL MODÜLASYON VE DEMODÜLASYON

Bölüm 12 İşlemsel Yükselteç Uygulamaları

KISIM 1 ELEKTRONİK DEVRELER (ANALİZ TASARIM - PROBLEM)

Şekil 6-1 PLL blok diyagramı

BÖLÜM 4 AM DEMODÜLATÖRLERİ

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 2008 DEVRELER II LABORATUARI

BÖLÜM 4 RADYO ALICILARI. 4.1 Süperheterodin Alıcı ANALOG HABERLEŞME

ANALOG HABERLEŞME A GRUBU İSİM: NUMARA

ANALOG MODÜLASYON BENZETİMİ

BÖLÜM 3 FREKANS MODÜLASYONU

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme

Şekil 5-1 Frekans modülasyonunun gösterimi

Bölüm 11 ALTERNATİF AKIM (AC) Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

BÖLÜM 2 İKİNCİ DERECEDEN FİLTRELER

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi

DUMLUPINAR ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ 9. BÖLÜM ANALOG SİSTEMLER

Bölüm 8 FM Demodülatörleri

Bölüm 18 ASK Sistemi 18.1 AMAÇ 18.2 TEMEL KAVRAMLARIN İNCELENMESİ

GERİBESLEME VE OSİLATÖR DEVRELERİ

EEM 202 DENEY 9 Ad&Soyad: No: RC DEVRELERİ-II DEĞİŞKEN BİR FREKANSTA RC DEVRELERİ (FİLTRELER)

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü

Bölüm 13 FSK Modülatörleri.

Erdem ÇAKMAK Üst Kurul Uzmanı Radyo ve Televizyon Üst Kurulu

FM (Frequency Modulation) SiSTEMLERİ

NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

ASK modülasyonu ve demodülasyonu incelemek. Manchester kodlamayı ASK ya uygulamak. Gürültünün ASK üzerine etkisini incelemek.

Doğrudan Dizi Geniş Spektrumlu Sistemler Tespit & Karıştırma

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

BÖLÜM 1 TEMEL KAVRAMLAR

KURANPORTÖR SİSTEMİ MEHMET ŞENLENMİŞ ELEKTRONİK BAŞ MÜHENDİSİ

1. Darbe Genlik Modülasyonunu anlar ve bunun uygulamasını

Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Laboratuvarı I İŞLEMSEL YÜKSELTECİN TEMEL ÖZELLİKLERİ VE UYGULAMALARI

Haberleşme Elektroniği (EE 410) Ders Detayları

EET349 Analog Haberleşme Güz Dönemi. Yrd. Doç. Dr. Furkan Akar

FM VERİCİ YAPIMI VE ÇALIŞMA PRENSİBİNİN ÖĞRENİLMESİ

EVK Enerji Verimliliği, Kalitesi Sempozyumu ve Sergisi Haziran 2015, Sakarya

ANALOG HABERLEŞME Alper

SÜPER HETERODİN (HETERODYNE) ALICI PRENSİBİ (FREKANS DEĞİŞTİRMELİ ALICI)

ANALOG FİLTRELEME DENEYİ

Data Communications. Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü. 5. Analog veri iletimi

Deniz Elektronik Laboratuvarı Tel: D7220_RV4

ANALOG İLETİŞİM SİSTEMLERİNDE İLETİM KAYIPLARI

ELH 203 Telefon İletim ve Anahtarlama Sistemleri 4. HABERLEŞME SİSTEMLERİNDE TEMEL KAVRAMLAR-4

Sürekli Dalga (cw) ve frekans modülasyonlu sürekli dalga (FM-CW) radarları

SEYRÜSEFER VE YARDIMCILARI

İletişim Ağları Communication Networks

Bölüm 8 Ardışıl Lojik Devre Uygulamaları

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

Sakarya Üniversitesi Bilgisayar ve Bilişim Bilimleri Fakültesi Bilgisayar Mühendisliği Bölümü

BAND PLANI EMİSYONLAR

TIBBİ ENSTRUMANTASYON TASARIM VE UYGULAMALARI SAYISAL FİLTRELER

DSB. Radyo İstasyonları net ses isterler

Elektrik Elektronik Mühendisliği. Analog Haberleşme Sistemleri Ders 4 Alıcı Devreleri

Şekil 1.1: Temel osilatör blok diyagramı

Bölüm 14 Temel Opamp Karakteristikleri Deneyleri

Sayısal Radyo Yayıncılığı

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler. Yard.Doç.Dr. Ahmet Özkurt.

3 Genlik Modülasyonu

KABLOSUZ İLETİŞİM

ELH 203 Telefon İletim ve Anahtarlama Sistemleri 3. HABERLEŞME SİSTEMLERİNDE TEMEL KAVRAMLAR-3

SAYISAL MODÜLASYON TEKNİKLERİ VE SİMÜLASYONU

BÖLÜM 8 TRİGONOMETRİK FORMÜLLER ANALOG HABERLEŞME. ÇARPIM (Mixer) FORMÜLLERİ. Bazı açıların trigonometrik değerleri. sinα

BÖLÜM IX DALGA MEYDANA GETİRME USULLERİ

ELK 318 İLETİŞİM KURAMI-II

Doç. Dr. İbrahim Altunbaş Araş. Gör. Hacı İlhan TEL 351 ANALOG HABERLEŞME Final Sınavı

KIRIKKALE ÜNİVERSİTESİ

TÜRKÇE TANITIM VE KULLANMA KILAVUZU : SES MĐKSERĐ MODEL EUROPOWER PMP-1680S EUROPOWER PMP-4000 EUROPOWER PMP-6000

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME

DENEY NO:1 DENEYİN ADI: 100 Hz Hz 4. Derece 3dB Ripple lı Tschebyscheff Filtre Tasarımı

Transkript:

BÖLÜM 6 STEREO VERİCİ VE ALICILAR 6.1 Stereo Sinyal Kodlama/Kod Çözme Teknikleri Stereo kelimesi, yunanca 'da "üç boyutlu" anlamına gelen bir kelimeden gelmektedir. Modern anlamda stereoda ise üç boyut etkisi, dinleyiciden belli bir mesafe uzaklıkta bulunan iki-kaynaklı bir ses sistemiyle sağlanır. Stereo sistemde alıcı, iki-kaynaklı bir sinyali ayırabilecek, verici de iki kaynaklı program yaratacak şekilde dizayn edilmiştir. Stereo yayın için sadece FM kullanılır. Diğer modülasyon çeşitleri AM, DSB, SSB gibi FM in sağladığı kaliteyi sağlayamazlar. Stereo kodlama, FM vericisinin akustik bölümü olarak kabul edilir ve ses devresiyle modülatör arasına yerleştirilir. Stereo kod çözücü, dedektör ve akustik bölümü arasındaki bir FM alıcısıdır. Şekil 1 deki iki ses kaynağı mikrofon olarak belirtiliyor; fakat herhangi bir çift-program kaynağı olabilirdi. Sol kanal için "L" (left), sağ kanal için se R (right) kullanılmıştır. Her kanal, bağımsız bir ön amplifikatöre sahiptir ve her kanalın çıkış seviyelerini dengelemek için genel bir kazanç kontrolü vardır. Genel kullanıma sunulan yeni bir sistem genellikle mevcut sistem ile uyumludur. Stereo yayıncılık, ancak FM-mono iyi bir şekilde kurulup milyonlarca FM-mono alıcısı kullanılmaya başladıktan sonra geliştirilmiştir. Stereo kodlama prosedürü standartlaştırılırken, mevcut sistem ile uyumlu olmasına dikkat edilmiştir. Yani tek-kanal alıcısının iki ses kanalının, kalite kaybı olmadan bir hoparlörden alabilmesi için iki ses kaynağı birleştirilmiştir. İki kanal alıcısı kullanan dinleyici aynı programı, iki ses kaynağı tarafından kullanılan iki hoparlörden, aynı anda duyacaktır. Bu işin ilk kısmını gerçekleştirmek için, sol ve sağ kanal sesleri mono-akustik (teksesli) bir program oluşturmak amacıyla 50 Hz ile 15 khz arasında bir frekansla basitçe birbirine eklenir. Bu sinyal "L+R" olarak adlandırılır. Bu, Şekil 1'de iki kare dalgasının toplamı olarak; Şekil 2'de de 50 Hz ve 15 khz arası banttaki frekansların, herhangi bir kombinasyonu olarak gösterilmiştir. (burada kare dalgalar devre performansını anlamayı kolaylaştırmak için kullanılmıştır; gerçek hayatta programlamanın sinüzoidal olacağı açıktır). İkinci kısımda fazladan birkaç adım daha vardır. Ön amplifikatörden sonra, sağ kanal (R) sinyali, sol kanal (L) sesine göre ters çevrilir. (180 faz kaydırması). Herhangi bir genel verici amplifikatör veya ters çevirici op-amp (işlem amplifikatörü) devresi bunu sağlar. Daha sonra ters çevrilen R sinyali (-R), L sinyaline L - R elde etmek için eklenir. Bu ikinci kümedeki sinyaller aynı frekans aralığında olacaktır, 50 Hz ile 15 khz arasında, fakat sinyaller ilk kümeye direk olarak eklenmez. Bunun yerine ilk olarak L-R sinyalinin, dengelenmiş modülatördeki 38 KHz taşıyıcı üzerine genlik modülasyonu yapılır. Bu modülatör, taşıyıcı frekanstaki voltajı durdurur. Böylece oluşturulan yan band lar, Şekil 2'de gösterildiği gibi, 38 KHz 'in 15 khz altından(yani 23 khz) 38 KHz 'in 15 khz üstüne (yani 53 khz) frekans bandında yer alır. L-R sinyalinin (dengelenmiş) modülasyonlu yan bağları, iki küme arasında karışma 66

imkanı tanımadan modüle olmamış L+R sinyaline eklenebilir çünkü frekans ayrımı vardır ve de biri modüle olmuş diğeri olmamıştır. 67

Burada ekleyici ve ters çeviricilerden "basit" devreler olarak söz ediliyorsa da, bunların FM radyo yayınını destekleyen yüksek kalite devreler olması gerektiği akıldan çıkarılmamalıdır. Stereo mesaj sinyalini yeniden elde etmek veya demodüle etmek için, ilk olarak taşıyıcı yeniden yerleştirilmeli ve AM sinyali olarak demodüle edilmelidir. Yeniden yerleştirme amacıyla 38 khz taşıyıcı oluşturmak için, vericiyle aynı frekansta birkaç milyon alıcı beklemek çok fazla şey istemek olur. 30 Hz 'lik (%0.08) bir frekans kayması, hoparlörde çok yüksek, rahatsız edici bir ses olarak duyulur. Bundan kaçınmak için, 19 khz pilot sinyali (38 khz 'in yarısı) ses sinyalleriyle birlikte alıcı için bir referans tonu olarak iletilir. Şekil 1'de programla birlikte iletilmek için 19 khz osilatörle oluşturulan ve birleştirilmiş toplam sinyalin %10'undan daha az genliğe sahip bir pilot tonu oluşturuluyor. Daha sonra pilot sinyal frekansı, dengelenmiş modülatöre taşıyıcı giriş olarak kullanılmak için ikiye katlanır (38 khz). Kuvvetlendirilmiş L+R sinyali, pilot sinyali ve L-R sinyalinin modüle olmuş üst ve alt yan bandlarının toplam birleştirilmiş paketi, Şekil 2'deki mesaj sinyalini oluşturur. Bu mesaj, daha sonra istasyon taşıyıcısını frekans-modüle etmek için vericiye uygulanır. Yine, stereo işleminin tamamının, frekans modülasyonu içermesine rağmen, vericinin akustik bölümüne düştüğü kabul edilir. Bu yüzden alıcı tarafında da, stereo demodülasyon, akustik bölümünün işi olarak kabul edilmeli ve FM detektöründen sonra yer almalıdır. Alıcı, stereo sinyalini vericinin izlediği sıranın tersine işleme sokar. Vericinin son yaptığı bütün sinyalleri birleştirmekti; bu yüzden alıcının ilk yaptığı Şekil 3'te görüldüğü gibi bütün sinyalleri ayırmaktır. Düşük frekans L+R sinyali, toplam sinyalden alçak frekans filtresiyle kolayca ayrılır. Burada tek dikkat edilecek nokta filtre kesme noktasının, 15 khz sinyali çok az zayıflattığını veya hiç dokunmadığını, fakat 19 khz sinyali en azından 20 db azalttığını gözlemleyebilmektir. L+R sinyali, daha fazla işleme sokulmadan önce sıkıştırılır. Modüle olmuş L-R çift-yan band sinyalleri, sadece 23 khz ile 53 khz arasındaki sinyallerin stereo demodülatöre geçmesini sağlayan band-geçirici filtre tarafından ayrılır. Daha sonra 19 khz pilot taşıyıcının frekansı 38 khz alttaşıyıcı sinyali oluşturmak ve stereo göstergesini çalıştırmak için ikiye katlanır. Çift-yan band L-R sinyali bir transformatöre taşınır ve 38 khz 'lik taşıyıcı sinyal, transformatörün ikincil merkez çıkışında ikiye katlanır. Bununla yan bandlar yeniden birleştirilir ve D1 ve D2 redresörlerine uygulanır. D1 diodu, sadece yeniden birleştirilmiş AM taşıyıcı dalgasının pozitif yarımperiyodunu doğrultmak için polarize edilir. Filtre devresi C1 - R1, taşıyıcıyı yok eder ve demodüle olmuş L-R sinyalini amplifikatörün sol kanalına geçirir. Bu noktada, sıkıştırılmış L+R sinyali sisteme geri verilir, iki sinyalin toplamı elde edilir: (L+R) + (L-R) = 2L Bir sinyalin pozitif sağ parçası, diğer sinyalin negatif sağ parçasını iptal eder; geriye kalan sadece sol sinyalin iki katı genlikte bir sinyaldir (2L). 68

69

D2 diodu, birleştirilmiş AM taşıyıcı dalgasının sadece negatif yarımperiyodunu doğrultmak için polarize edilir. C2 - R2 filtresi taşıyıcıyı yok eder ve demodüle olmuş -(L- R) sinyalini sağ kanal amplifikatörüne geçirir. Bu noktada sıkıştırılmış L+R sinyali sisteme geri verilir, ve sonuç iki sinyalin toplamına eşittir. sonuç: ( L+R ) - ( L -R ) = 2R Bir sinyalin pozitif sol parçası, sağ sinyalin iki katı genlikte bir sinyal bırakarak (2R) diğer sinyalin negatif sol kısmını iptal eder. Ayrılmış R ve L sesi daha sonra herbir amplifikatöre (özdeş) farklı iki tip hoparlör oluşturmak için verilir. Ton, denge ve ses kontrolleri akustik (ses) bölümünün işidir. Kuadrofonik ses dört-kanallı bir sestir. Sol arka, sol ön, sağ arka ve sağ ön sinyalleri içeren ses dağıtım sistemini iletme teoremi üzerine 1972 'den beri çalışılmaktadır. Birçok teoremde "Kabul Edilebilir Bir Sistem" için dört konfigürasyon ön plandadır. Şekil 1'deki verici blok diyagramını inceleyin; sol veya sağ ses kaynağını, ön ve arka mikrofonlardan oluşan diğer bir komplike devreler kümesi olduğunu veya Şekil 3 'teki alıcının sol kanal sesini, sol ön ve sol arka sesi olarak ayırdığını gözlemleyin. Her ne kadar bazı sistemler modülasyon işleminde faz açısı (örneğin L arka -45 ve L ön +45 ) içerseler de elektroniği zor değildir. Bütün sistemler şu yasayı sağlamalıdır : mono akustik alıcıya giden bütün ses tek hoparlörden, toplam stereo ses iki-kanal alıcıya, ve dört ses kanalı da Kuadrofonik alıcıya. Şekil 2 'de henüz sonuçlandırılmamış bir konu fark edilebilir. Bu frekans spektrumunda, mevcut sistemlere en az zarar verecek ve diğer sinyallerle harmonik oluşumla girişime sebep olmayacak, modüle olmuş diğer bir yan bandlar kümesi eklemek için en iyi yer neresidir. Henüz "kabul edilebilir" bir sistem yoktur. 70