The Using of Latent Growth Models for Educational Researches

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "The Using of Latent Growth Models for Educational Researches"

Transkript

1 Elementary Education Online, 8(), , 009. lkö retim Online, 8(), , 009. [Online]: The Using of Latent Growth Models for Educational Researches Petek A*kar * Halil Yurdugül ** ABSTRACT: The concept of education is explained with some concepts such as development, change, and growth. Because of it, educational measurements used to determine learners achievement growth and cognitive development, or learners status of achievement. Linear or nonlinear traditional statistical models used for status of analysis. To determine the change commonly used paired t test statistics, constructed on the pre-test and posttest experimental design, and variance of analysis based on repeated measurements. However, these methods include some limitations and not enough to define the growth. On the other side, the latent growth modelling has been increasingly used to analyze longitudinal data, especially for educational researches. In this article, the latent growth modelling was dealt with for educational purposes and discussed. Also to determine the achievement growth (cognitive development), the all of latent growth models have been applied on a simulated data set. Key Words: SUMMARY Purpose and Significance: The educational purposes are commonly explained in terms of the change because learning implies change. In traditional approaching, classical statistical modelling yielded a lot of correlated errors in developmental researches. The other experimental design, commonly used, consists of pre-test and post-test based on two occasional data and the model not enough for explain the growth. Latent growth modelling has been used for analyzing of longitudinal data gathered from more occasional data. Latent growth models analyze longitudinal changes in means, variances, and covariances of variables. Latent growth curve methodology also provides a means of modelling a developmental function as a factor repeated observations over time in educational researches. The developmental trajectories in educational studies are generally monotonic increasing functions based on longitudinal data include cognitive measures based on achievement data. So the graphical representation of longitudinal data shows cognitive developmental trajectories. We renamed the intercept parameter in LGM as priori achievement parameter and the slope parameter as ratio of cognitive development. In this article, using the univariate and multivariate LGM for educational aims were introduced and the models were applied to repeated data in Turkish, mathematics, and sciences. Method: The achievement growth in learning domains of Turkish, mathematics, and sciences separately tested with unconditional LGM and conditional LGM respect to gender. Also to determine relations among latent growth factor patterns used the associative LGM in terms of multivariate LGM. We used the second order LGM to test whether higher order learning construct describes the relations among lower order developmental factors. Results and Discussion: In this study, we analyzed the different six latent growth models sequentially for three learning domain and each learning domain consist with three measurement occasions. Each data set fits linear growth with satisfied data-fit index values. The findings in each model were discussed according to educational approaching. It was declared in this study, it is important to use the multivariate LGM in educational researches, because latent growth factors have relations such as the growth achievement (slope) in mathematics and priori achievement (intercept) in reading (in Turkish). * Prof. Dr., Hacettepe University, Computer Education & Instructional Technologies, ** Dr., Hacettepe University, Computer Education & Instructional Technologies,

2 Örtük Büyüme Modellerinin E)itim Ara*t+rmalar+nda Kullan+m+ Petek A*kar * Halil Yurdugül ** ÖZ: E itim kavramf bir geli*im sürecini ifade eder. Bu nedenle e itimdeki ölçmeler, ö rencilerin ba*arf durumlarfnfn belirlenmesinin yanf sfra onlarfn geli*im durumlarfnfn da belirlenmesini gerektirir. Geleneksel istatistiksel yöntemler genellikle durum belirleme çalf*malarfnda kullanflmaktadfr. Geli*imin belirlenmesinde ise yaygfn bir *ekilde öntest-sontest deneysel düzene inde ba FmlF örneklem t testi ya da tekrarlf ölçümler düzene indeki varyans analizi yöntemlerinin kullanfldf F görülmektedir. Geli*imin belirlenmesinde bu yakla*fmlar bir çok olumsuzlu u da içermektedir. Bununla birlikte son zamanlarda sfkça kullanflmaya ba*lanan örtük büyüme modelleri e itim alanfnda da kullanflmaya ba*lanmf*tfr. Bu çalf*manfn amacf örtük büyüme modellerinin e itsel amaçlf kullanflmasfnf tartf*mak ve e itsel de i*kenler üzerinde kullanfmfnf ele almaktfr. Anahtar Sözcükler: G/R/0 E itimin temel konusu ö renenlerdeki bili*sel, duyu*sal ya da devini*sel geli*melerdir. Bu nedenle e itim üzerine yapflan tanfmlamalar genellikle süreç, de i*im ve/veya geli*im kavramlarf ile birlikte ifade edilir. Ölçmeye konu olan kavrama ili*kin geli*imi analiz edebilmek için ise aynf özelli e ili*kin farklf zamanlarda elde edilen tekrarlf ölçmelere ihtiyaç vardfr. Bu tür ölçmelerden elde edilen veriler boylamsal veriler (longitudinal data) olarak adlandfrflmaktadfr. Bununla birlikte; e itim alanfnda yapflan ara*tfrmalarda enlemsel veriler (latitudinal data) de kullanflmaktadfr. Enlemsel veriler zamanfn herhangi bir kesitinde elde edilen ölçmeleri ifade eder ve genellikle bu tür verilerin çözümlenmesinde geleneksel istatistiksel modellemeler kullanflfr. Enlemsel veriler ö renenlerin ba*arf düzeylerini belirleme gibi durumsal analizlere (analysis of status) uygun iken boylamsal veriler ö renendeki geli*imin modellenmesinde önemli bir rol oynar ve bu tür analizler; deiim analizleri (analysis of change), büyüme analizleri 1 (analysis of growth) ya da yörünge analizleri (analysis of trajectory) gibi adlandfrflmalar ile anflmaktadfr. Günümüzde geli*imi ve/veya de i*imi belirlemek üzere elde edilen verilerin çözümlenmesinde örtük büyüme modelleri (latent growth model) sfkça kullanflmaya ba*lanmf*tfr. Ancak bu modeller özellikle sosyoloji, psikoloji, biyoloji ve sa lfk konularfnda yaygfn bir *ekilde kullanflmasfna kar*fn e itim amaçlf kullanfmlarf henüz yenidir. Bu çalf*manfn amacf da de i*im analizi kapsamfnda örtük büyüme modellerinin ele alfnmasf ve e itsel amaçlara uygun kullanflmasfnfn tartf*flmasfnf içermektedir. Geli*im Analizi ve Büyüme Modelleri E itim planlanmf* ve yapflandfrflmf* bir süreçtir ve bu süreç herhangi bir ö renme alanfndaki etkinlikler yardfmf ile ö rencideki bili*sel, duyu*sal ya da devini*sel geli*meyi konu alfr. Sürecin etkilili i, ö renendeki geli*im ile ilgilidir ve bu geli*imlerin artan yönde olma beklentisi söz konusudur. Herhangi bir ö rencinin zamana göre yapflan ölçümleri, ilgili ö rencinin bilisel geliim yörüngesini ortaya koyacaktfr. Bili*sel geli*im yörüngeleri hem ö renciyi tanfma konusunda hem de ö retim programfnfn etkilili i konusunda bilgiler içermektedir. Örne in Çizim 1 de üç farklf zamanda elde edilen ölçme sonuçlarfna göre üç farklf ö rencinin sfrasfyla artan bili*sel geli*im yörüngesi, dura an bili*sel geli*im yörüngesi ve azalan bili*sel geli*im yörüngesi verilmi*tir. E itim alanfnda yapflan ara*tfrmalarda genellikle bir ö renme sürecinin etkilili i yaygfn olarak (zamanfn yalnfzca iki noktasfndaki ölçmelere dayalf olarak) öntest ve sontest modeli ile çözümlenmek * Prof. Dr., Hacettepe Üniversitesi, Bilgisayar ve Ö retim Teknolojileri E itimi Bölümü, ** Dr., Hacettepe Üniversitesi, Bilgisayar ve Ö retim Teknolojileri E itimi Bölümü, 1 lgili literatürde bu analizler de i*im, büyüme, geli*im ya da yörünge analizleri olarak adlandfrflmaktadfr. Ancak e itim alanfnda ele alfnan büyüme ve/veya de i*im, ö rencideki bili*sel, duyu*sal ya da devini*sel geli*imi i*aret etti i için bu çalf*mada geli*im kavramfnfn kullanfmf tercih edilmi*tir. 535

3 suretiyle ortalamalardaki de i*imin test edildi i görülmektedir. Ancak her iki ölçme uygulamasf arasfndaki puan farklarf kazanfm puanf (gain score) olarak kullanflfp kullanflmayaca F ya da bu ölçme sonuçlarfnfn güvenirli i, ölçme literatüründe tartf*ma konusu olmu*tur (Bkz: Bereiter, 1963, Lohman, 1999). Çünkü güvenirlik ölçme aracfnfn kararlflf Fna ili*kin bir özelliktir. Bununla birlikte ö renci ba*arf puanlarfnfn çözümlenmesinde kullanflan klasik test kuramfnfn bu tür büyüme modellerinde kullanflamayaca F ara*tfrmacflar taraffndan bir tartf*ma ba*latflmf*tfr (Rogosa, 1988; Witmann, 1988). TartF*manFn güvenirlik boyutunda olmasfnfn en önemli nedenlerinden birisi; güvenirli in genel varyansfn ayrf*tfrflmasf ile elde edilmesidir. Büyüme puanlarfnfn ise yine varyans ayrf*masf üzerinde modellenmesi varyans analizi (ANOVA) üzerine kurulu tekrarlf ölçümler modeli ile kullanflmaktadfr. Bu konudaki di er bir tartf*ma ise; Duncan vd. (006) ve Bollen ve Curan (006), her bir zaman kesitinde yapflan ölçmeleri dalga (wave) olarak nitelendirmi* ve -dalga ölçümlerinin büyümeyi göstermedeki yetersizli ini vurgulamf*lardfr. Ba*arF Ba*arF Ba*arF Zaman Zaman Zaman T 0 T 1 T T 0 T 1 T T 0 T 1 T Çizim 1: Ö rencinin geli*im yörüngesi Boylamsal veriler zamana göre elde edildi inden dolayf bu tür verilerin analizinde kullanflan istatistiksel modeller sfkça ili*kili ölçme hatalarf (correlated errors) üretir. Bu nedenle de i*imin analizinin modellenmesinde alf*flagelmi* do rusal istatistiksel modellerin kullanflmasf uygun de ildir. Günümüze kadar boylamsal verilerin analizinde ARMA/ARIMA gibi zaman serilerini içeren otoregresif modeller, Cox regresyon modeli, ba FmlF örneklem t testi (paired sample t test) üzerine kurulu öntest-sontest deneysel modelleri ya da ANOVA üzerine kurulu tekrarlf ölçüm modelleri (repeated measurement model) kullanflmaktaydf. Ancak bu tür modellerin en önemli olumsuzluklarf; a) zamanf sürekli bir de i*ken olarak de il, aksine kategorik birer de i*ken olarak ele almalarf, b) psiko-e itsel yapfdaki (örne in matematik yetene i, okudu unu anlama becerisi, problem çözme becerisi, grafik yorumlama becerisi vb.) de i*imden daha çok verisel de i*imi (varyans) modellemeleri, c) yapfsal modellemelere uygun olmamasf, d) genellikle do rusal model ile çalf*malarf ve e) modellerde az sayfda ba FmlF ve ba FmsFz de i*kene yer vermeleridir. Genel olarak; e itim amaçlf yapflan ölçmeler psiko-e itsel yapflarf belirlemeye yöneliktir. Bununla birlikte geliimin (büyüme) kendisi de ayn zamanda bir psiko-eitsel yapdr. Bu nedenle ö rencilerin özellikle e itim alanfndaki bili*sel, duyu*sal ya da devini*sel geli*imlerinin modellenmesi yapfsal de i*kenlere dayalf büyüme modeli kapsamfnda ele alfnan örtük büyüme modelleri (latent growth model) ile yapflandfrfldf Fnda daha anlamlf sonuçlar elde edilebilir. Örtük büyüme modelleri, yapfsal e*itlik modellerinin (örne in do rulayfcf faktör analitik modeli) boylamsal veriler için geli*tirilmi* biçimi olarak da ifade edilebilir. Geli*imin belirlenmesi örtük büyüme modellerinin di er model ve çözümlemelere (ba FmlF örneklem t-testi, ANOVA, ANCOVA vd) göre daha güçlü ve sa lam sonuçlar üretti i (Fan ve Fan, 005) ve daha iyi özelliklere sahip oldu u yapflan ara*tfrmalar ile ifade edilmi*tir (Fan, 003; Fan ve Fan, 005; Muthén ve Curran, 1997; Duncan vd., 00). Boylamsal verilerin yapfsal çözümlemeleri Lisrel, Amos, EQS ve HLM gibi paket programlar ile olanaklfdfr. 536

4 Örtük Büyüme (Geli*im) Modelleri Büyümeyi ve/veya geli*imi bir örtük yapf olarak ele alan örtük büyüme modelleri psikoloji, sosyoloji, biyoloji gibi uygulama alanlarfnda sfkça kullanflmaktadfr. Bu alanlarda ele alfnan kavramlarfn bir kfsmf zamana göre artan ya da azalan yörüngelere sahiptir. Ancak e itimde kullanflan örtük büyüme modellerinde genellikle ele alfnan özelliklerin geli*imiyle ilgilenilir. Çünkü e itim ö renme ürünlerindeki geli*im ile ilgilenir. Bununla birlikte; e itim alanfnda büyüme ve geli*im kavramlarf çok sfk ele alfnmasfna kar*fn e itim konusunda ÖBM üzerine çalf*malar ise çok sfnfrlfdfr. Xu ana kadar yapflan çalf*malara örnek olarak; Muthén ve Khoo (1998), Hess (000), Fan (001), Kaplan (00) Newmann, Smith, Allensworth ve Bryk (001), Byrne ve Crombie (003), Hong ve Ho (005), Yin, Schmidt ve Besag (006), Grimm (007) taraffndan yapflan çalf*malar verilebilir. ÖBM zaman üzerinden elde edilen verilerin geli*imini ortaya çfkarmak üzere yapfsal bir yakla*fmdfr. Bu yakla*fm iç içe iki farklf modellemeyi gerektirir. Bunlardan ilki Düzey I (level 1) olarak ele alfnan ö renenin kendisine ili*kin geli*imi, di eri ise Düzey II (level ) olarak adlandfrflan ö renenler arasf de i*imin modellenmesidir. Düzey I modeli, bir tek ö rencinin zamana göre geli*im yörüngesini ortaya koyar (Bollen ve Curan, 006;. Duncan vd., 006; Byrne ve Crombie, 003). Bu model; Y it = i + i T i +E i (1) *eklindedir. Burada Y it ; i. ö rencinin t. zamandaki ba*arf puanfnf, i ; i. ö rencinin t 0 zamanfndaki puanfnf yani Çizim 1 deki geli*im yörüngesinin sabit de erini ve i ise i. ö rencinin bili*sel geli*im yörüngesinin eimini göstermektedir. i de erleri aynf zamanda geli*im/büyüme/de i*im hfzfnf gösteren trend de erleridir. E*itlik 1 ile verilen ifade tek bir ö renciye ili*kin modeldir. Ö rencinin içinde bulundu u grubun (Düzey II) modeli ise; tüm ö renciler üzerinden sabit ve e im katsayflarfnfn ortalamalarfnf içermektedir: i =µ + () i =µ + (3) E*itlik ve E*itlik 3 ile verilen ifadeler E*itlik 1 ile verilen ifadede yerine konulursa birle*ik modele ula*flmaktadfr: Y it =( µ + )+( µ + )T i +E i (4) ÖBM ni di er benzer modellerden ayfran bir di er özellik ise E*itlik ve 3 ile verilen sabit ve e im de i*kenlerini örtük faktör (latent factors) olarak tanfmlamasf ve bu örtük faktörleri göre do rulayfcf faktör analizi (DFA) ile çözümlenmesidir. Bununla beraber, ÖBM 4 farklf modelden olu*abilmektedir (Bollen ve Curan, 006;. Duncan vd., 006). Bunlar sfrasfyla; A-Tekde i*kenli Örtük Büyüme Modelleri (Univariate Latent Growth Models) a) ko*ulsuz örtük büyüme modeli (Uncontidional Latent Growth Models) b) ko*ullu örtük büyüme modeli (Contidional Latent Growth Models) B- Çokde i*kenli Örtük Büyüme Modelleri (Multivariate Latent Growth Models) a) li*kisel örtük büyüme modelleri (Associative Latent Growth Models) b) Hiyerar*ik örtük büyüme modelleri (Second Order Latent Growth Models) i) Büyüme e rileri faktörü (factor-of-curves) ii) Büyüme faktörleri e risi (curve-of-factors) A-Tekde)i*kenli Örtük Büyüme Modelleri Tekde i*kenli örtük büyüme modelleri, ölçmeye konu olan tek bir özelli e ili*kin tekrarlf ölçümlerin yer aldf F modelleri içermektedir. Bu modeller tekde i*kene ba lf olarak büyümeyi tanfmlamakta kullanflabilece i gibi, büyümenin alt gruplarda nasfl gerçekle*ti ini belirlemede kullanflabilmektedir. Bu çalf*mada sabit kavramf, önsel ba*arf düzeyi ve eim kavramf ise ba*arfdaki büyüme olarak ele alfnmf*tfr. 537

5 a) Ko*ulsuz örtük büyüme modeli Bu model, E*itlik 1, ve 3 ile verilen ifadelerden olu*ur ve Düzey II modelinin yapfsal e*itlik modeliyle çözümlenmesini konu olarak ele alfr. BazF kaynaklarda ko*ulsuz ÖBM, iki faktörlü büyüme modeli olarak da adlandfrflmaktadfr. Buna göre ko*ulsuz örtük büyüme modeli Çizim de gösterilmi*tir. µ Sabit Eim µ Y 1 Y Y 3 Y 4 Y 1 Y Y 3 Y 4 Çizim : Ko*ulsuz örtük büyüme modeli Burada Y 1, Y, Y 3 ve Y 4 aynf yapfyf ölçmek üzere uygulanmf* 4 farklf zamanda yapflan ölçmeleri göstermektedir. ÖBM nin do rulayfcf faktör çözümlemesinde, faktör yükleri önbelirli (fixed) de erler ile çözümlenmektedir. Örne in konu edilen büyüme do rusal ve ölçümler e*it zaman aralfklarfnda yapflmf* ise; yapfsal sabit faktörünün yükleri her bir ölçme için 1 ve e im faktörünün yükleri ise 0, 1,, 3, *eklindedir (Çizim ). E er ölçüm aralfklarf ya da büyüme/geli*im hfzf do rusal de il ise sabit faktörünün yükleri yine 1 olarak ele alfnfrken e im faktörünün yükleri ise farklf önbelirli de erler alabilmektedir (Bollen ve Curan, 006;. Duncan vd., 006; Hancock, Kuo ve Lawrence, 001; Sayer ve Cumsille, 001). Örne in karesel büyümeler için bu de erler 0, 1, 4 ve 9 *eklinde olacaktfr. Bununla birlikte e im faktörünün tüm faktör yüklerinin önbelirli olmasf zorunlu de ildir, bazf faktör yükleri serbest bfrakflabilir. Meredith ve Tisak (1990) ise ÖBM nin çözümlenmesinde en az iki faktörün önbelirli olmasf gerekti ini ifade etmi*tir. E im faktörüne ili*kin faktör yükleri her ne kadar önbelirli olsa da bu yükler standartla*tfrfldf Fnda elde edilen de erler regresyon analizindeki etki geni*likleri olarak kullanflabilmektedir (Yin, Schmidt & Besag; 006). ÖBM Parametreleri Tekde i*kenli ÖBM nde 5 adet parametre ön plana çfkmaktadfr. Bunlar Çizim de gösterildi i gibi; sabit faktörün ortalamasf (µ ) ve varyansf ( ), aynf *ekilde e im faktörünün ortalamasf (µ ) ve varyans ( ); bunlardan farklf olarak sabit ve e im faktörleri arasfndaki kovaryans ve/veya korelasyonlardfr (). Bu modelde; µ ; ö rencilerin ba*langfçtaki bili*sel düzeyinin (özellikle e itimdeki öntest kapsamfndaki önsel ba*arf düzeyleri) ortalamasfdfr ve ise ö rencilerin ba*langfç düzeyindeki (ölçmeye konu olan özellik bakfmfndan) bireysel farklflfklarf gösterir. Sabit faktörünün varyansf bir bakfma, grubun ilgili ö renme alanfndaki önsel ba*arf düzeyinin homojenli inin bir göstergesidir. Bununla birlikte, µ ; birim zamanda ö rencilerin (ölçmeye konu olan özellik bakfmfndan) geli*imindeki ortalama artf*fnf ve ise bu artf*taki bireysel farklflfklarf belirtir. Özellikle ve parametreleri bireysel farkllklar parametreleri olarak adlandfrflabilir. Kovaryans/korelasyon katsayfsf ()] ise önsel ba*arf düzeyi ile ö renme ürünündeki artf* arasfndaki ili*kiyi belirtir. Bu parametrenin negatif de er almasf; dü*ük önsel ba*arfya sahip ö rencilerin daha hfzlf geli*im gösterdi ini, yüksek önsel ba*arf düzeyine sahip ö rencilerin ise daha yava* geli*im gösterdi ini ifade eder. Di er taraftan, parametresinin pozitif de er almasf; yüksek önsel ba*arf düzeyine sahip ö rencilerin daha hfzlf geli*im gösterdi ini ve dü*ük önsel ba*arf düzeyine sahip 538

6 ö rencilerin ise daha yava* geli*im gösterdi ini ifade eder. ÖBM ndeki bu 5 adet parametrenin istatistiksel anlamlflfklarf t testi ile test edilir. Uyum katsayflarf Hipotez edilen ÖBM ile verilerin uyumunun test edilmesi özellikle yapfsal e*itlik modeline özgü ve model geçerli i için zorunlu bir uygulamadfr. Bunun temel nedeni; açfklayfcf (exploratory) faktör modellerinde gözlemlerden (görgül/ampirik) modele do ru bir yönelim varken; do rulayfcf (confirmatory) faktör modellerinde (hipotez edilen) modelden verilere do ru bir yönelim olmasfdfr. ÖBM de özünde yapfsal e*itlik kuramfnda yer alan birer do rulayfcf faktör çözümlemesidir ve öncelikle verilerin hipotetik modele uygunlu u test edilmelidir. Veri-model ba FntFsFna ili*kin uyum iyili i testleri (goodness-of-fit) aynf zamanda model parametrelerinin bir geçerlik göstergesi olarak ele alfnabilir. Model-veri uyumuna ili*kin geli*tirilmi* ki-kare test istatisti inin yanf sfra çok sayfda da uyum iyili i indeksi geli*tirilmi*tir. Ki-kare test istatisti inin de eri küçüldükçe modelin uyumunun o denli iyi oldu unun aksi durumda ise; ki-kare de eri arttfkça da model uyumunun olumsuz oldu unun i*aretidir. Ki-kare de erinin anlamlflfk düzeyi ise p olasflf F ile gösterilir ve p<0,05 ise modelin uyumunun kötü oldu unu i*aret eder. Bu durum uyum eksikli i (lack-of-fit) olarak adlandfrflfr. Ancak ki-kare de eri ölçmelerin da FlFmFnFn normal olup olmamasfndan ve örneklem geni*li inden a*frf derecede etkilenir (Hu, Bentler ve Kano,199; Schumacker ve Lomax, 004; Yurdugül, 007). Bu indekslerden bazflarf uyum iyili ininin ölçüsü di erleri ise uyum eksikli inin ölçüsü olarak kullanflmaktadfr. Uyum iyili i indekslerine örnek olarak; uyum iyili i indeksi, GFI (Goodness of Fit Index), kar*fla*tfrmalf uyum indeksi, CFI (comparative fit index), normla*tfrflmf* uyum indeksi, NFI (Normed fit index) ve normla*tfrflmamf* uyum indeksi, NNFI (Non-normed fit index, NNFI) sayflabilir. Bentler (1990), uyum iyili i indekslerinden özellikle CFI ve NNFI de erlerinin 0,95 ten büyük olmasfnfn model uyumunun çok iyi bir kanftf oldu unu ifade etmektedir. Uyum eksikli i indekslerinden ise yakla*fklfk hata kareler ortalamasf karekökü, RMSEA (root mean square error of approximation) ve hata kareler ortalamasf karekökü, RMR (root mean square residual) ve standartla*tfrflmf* RMR indeksleri ifade edilmektedir. Browne ve Cudeck, (1993) özellikle RMSEA indeksinin 0,05 ve daha küçük bir de er olmasfnfn model-veri uyumunun bir kanftf oldu unu ancak bu de erin 0,08 e kadar esnetilebilece ini ifade etmektedir. Bununla birlikte NNFI, CFI ve RMSEA indeksleri örneklem geni*li inden en az etkilenen indeksler olarak rapor edilmi* (Anderson ve Gerbing, 1984; Marsh, Balla ve McDonald, 1988) olmasfna kar*fn Coffman ve Millsap (005) RMSEA indisinin veri-model uyumunu sa lam olarak kestirmede yetersiz kaldf F bulgusuna ula*mf*lardfr. Duncan vd. (006) ise özellikle hiyerar*ik ÖBM inde Akaike bilgi ölçütünün (AIC) kullanflmasfnf önermektedir. AIC bir modelin veri-model uyumunun iyi ya da kötü oldu una ili*kin bilgi içermez, kar*fla*tfrflan modellerden hangisinin daha uygun oldu u bilgisini sunar. Buna göre, daha küçük AIC de erine sahip model tercih edilir (Blozis vd, 007). KFsaca; uyum iyili i indekslerinin 1 e yakla*masf; uyum eksikli i indekslerinin ise 0 a yakla*masf durumunda iyi bir model-veri uyumundan bahsedilebilir. Ancak en iyi uyum ya da uyum eksikli i indeksi olmadf Fndan çalf*malarda tek bir indeks yerine birden fazla indeks rapor edilmelidir (Steiger, 1990; Yurdugül, 007). Örneklem Geni*li i YapFsal e*itlik modelinde ve do rulayfcf faktör analizi için gerekli minimum örneklem geni*li i konusunda farklf öneriler vardfr. Örne in Anderson ve Gerbing, (1988) minimum örneklem geni*li ini 150 olarak ifade ederken Jackson (003) ise en az 00 gözlem gerekti ini önermi*tir. Di er taraftan mutlak örneklem geni*li i yerine modelde kestirilen parametre sayfsf (k) ba*fna dü*en gözlem sayfsf (N) olarak yapflan önerilerde söz konusudur. Örne in Kline (1998) N:k oranfnfn en az 10:1 gözlem ve ideal olarak da 0:1 olmasf gerekti ini savunmu*tur. Bentler (1995) ise ölçmeler normal da FlFm gösterdi inde bu oranf 5:1 *eklinde önermi*tir. YapFsal e*itlik modellerine ili*kin öneriler çok sayfda iken, ÖBM için bu tür çalf*malar henüz yenidir. Hamilton, Gagne ve Hancock (003) ile Fan (003) tekde i*kenli örtük büyüme modelleri 539

7 için minimum örneklem geni*li inin 100 ile 00 arasfnda olmasf gerekti ini ifade etmi*lerdir. Ancak her iki çalf*mada da örneklem geni*li i için 50 gözlemin %90 oranfnda yansfz kestirimde bulundu u bulgusu da söz konusudur. Leite (007) ise tekrarlf ölçüm sayfsfnfn 5 ten küçük oldu u durumlarda ikinci sfralf faktör modellerinin sa lam kestirimi için örneklem geni*li inin 500 den dü*ük olabilece ini ifade etmi*tir. MacCallum vd. (1999), faktör analizinde bu *ekilde mutlak örneklem geni*likleri önermenin birer yanflgf oldu unu çünkü örneklem geni*li i kadar ölçmelerin kalitesinin de (ortak varyanscommunality) önemli oldu unu ifade etmi*lerdir. Buna paralel olarak, Leite (007) ÖGM için yapflan ölçümlerin e*biçimli (essentially tau-equvalent) oldu u durumlarda kestirimlerin daha sa lam (robust) elde edildi i, aksi halde ölçmelerin konjenerik (congeneric) oldu u durumlarda ise sa lam kestirimler için daha çok örneklem gerekti ini ifade etmi*tir. b) Ko*ullu örtük büyüme modeli Bu model, ko*ulsuz ÖBM nin bir uzantfsf olarak ele alfnabilir. E er üzerinde çalf*flan ö renme alanfna ili*kin ö rencilerde bireysel farklflfklar söz konusu ise; bu de i*im ya*, cinsiyet, sosyoekonomik düzey ya da e itim düzeyi gibi kategorik (sfnfflanmf* ya da sfralanmf*) de i*kenlere göre nasfl davranmaktadfr? Ö rencilerin bili*sel, duyu*sal ya da devini*sel geli*imlerinin df*sal bir kategorik de i*ken ko*ulu altfnda nasfl gerçekle*ti inin irdelenmesi ancak ko*ullu ÖBM ile olanaklfdfr. Ko*ullu ÖBM, Çizim 3 te verilmi*tir. Kategorik de i*kenlerde yer alan gruplara (cinsiyet için; kfz=0, erkek=1 ve SED için; dü*ük=0, orta=1, yüksek=) göre sabit ve e im faktörlerindeki de i*imlere ili*kin katsayflar verilmi*tir. Örne in C-S ve SED-S parametreleri önsel ba*arf düzeylerindeki farklflfklarfn kfz ve erkek ö rencilere göre nasfl de i*ti inin göstermektedir. E er bu parametreler t testine göre anlamlf bulunmaz ise; ö rencilerin cinsiyeti ve sosyo-ekonomik düzeylerine göre önsel ba*arf düzeylerinde bir farklflfk olmadf FnF göstermektedir. E er C-S parametresi istatistiksel olarak anlamlf ve C-S >0 ise; erkek ö rencilerin önsel ba*arf düzeyleri kfz ö rencilere göre daha yüksek oldu u anlamfnda yorumlanmaktadfr. Benzer olarak C-E parametresi istatistiksel olarak anlamlf ve C-E>0 ise; erkek ö rencilerin ölçmeye konu olan özellik bakfmfnda geli*im oranlarf kfz ö rencilere göre daha yüksek oldu unu göstermektedir. C-S<0 ve C-E <0 olmasf durumunda ise önsel ba*arf düzeyleri ve geli*im oranlarfndaki farklflfk kfz ö renciler lehinedir. Cinsiyet Sosyo-Ekonomik Durum C-S C-E SED-S SED-E µ Sabit Eim µ Y 1 Y Y 3 Y 4 Y 1 Y Y 3 Y 4 Çizim 3: Ko*ullu örtük büyüme modeli Di er taraftan SED-S >0 ve SED-E >0 ve istatistiksel olarak anlamlf parametreler ise; bu durumda çokgruplu ÖBM (multi-group latent growth model) çözümlemelerine ihtiyaç vardfr. Özellikle çokgruplu ÖBM lerinin uygun kullanfm alanlarfndan bir tanesi de e itim ara*tfrmalarfnda sfkça ele alfnan; farklf yöntemlerin ö rencilerin ba*arf düzeyleri üzerine etkilili inin ve/veya deney-kontrol ara*tfrma desenlerindeki büyümenin ara*tfrflmasfnda kullanflmasf uygundur. 540

8 A-Çokde)i*kenli Örtük Büyüme Modelleri (Multivariate Latent Growth Model) Psikoloji ve e itim alanfnda ele alfnan yapflar genellikle birbirleriyle ili*ki gösterirler. Bu ili*kiler örüntüsü Cronbach ve Meehl (1955) taraffndan nomolojik a (nomological network) olarak adlandfrflmaktadfr. Bu yapflar arasfndaki ili*ki aynf zamanda ö rencilerin bu yapflara yönelik geli*imleriyle de ili*kili olabilmektedir. Örne in Grimm (007) çocuklarfn depresyon düzeylerindeki artf* ile akademik ba*arflarfndaki geli*im arasfndaki ili*kiyi ara*tfrmf*tfr. li*kili yapflardaki birlikte büyüme ya da ili*kili büyüme kavramlarf çokde i*kenli büyüme modelleri ile test edilebilmektedir. a) /li*kisel Örtük Büyüme Modeli (Associative Latent Growth Model) Birden fazla tekde i*kenli ÖBM söz konusu oldu unda bu ÖBM de yer alan sabit (önsel ba*arf düzeyleri) ve e im (ba*arfdaki de i*im oranlarf) örtük faktörleri arasfndaki ba FntFlarFn belirlenmesi ve anlamlflfklarfnfn sfnanmasf olanaklfdfr. Bu durumda yapflandfrflan model ili*kisel örtük büyüme modeli olarak adlandfrflmaktadfr. Çizim 4 te, verilen (A ve B olarak belirtilen) iki örtük de i*kenli ÖBM modelinin örtük faktörler arasfndaki ili*ki örüntüsü verilmi*tir S A E A S B E B X 1 X X 3 X 1 X X 3 Y 1 Y Y 3 Y 1 Y Y 3 Çizim 4: li*kili (associative) örtük büyüme modeli E itimde ö renme yapflarf birbirlerinin geli*imleri ile ili*kili olabilmektedir. Örne in ö rencilerin sözel matematik becerilerinin geli*imi aynf zamanda ö rencilerin Türkçe önsel ba*arflarf ile ili*kili olabilir. Bu tür ili*kileri sfnamak için ili*kili ÖBM ne ihtiyaç vardfr. li*kili ÖBM nin yanf sfra, her bir örtük de i*kendeki örtük faktörlerin kategorik de i*kenler ile temsil edilen ö renci gruplarfna göre ili*kileri test edilebilmektedir. Cinsiyet Sosyo-ekonomik Durum S A E A S B E B X 1 X X 3 X 1 X X 3 Y 1 Y Y 3 Y 1 Y Y 3 Çizim 5: li*kili (associative) örtük büyüme modelinin ko*ullu olarak çözümlenmesi 541

9 Çizim 5 te verildi i gibi; i parametreleri örtük faktörler ile cinsiyet de i*keni arasfndaki ili*kiyi ve i parametreleri ise örtük faktörler ile sosyo-ekonomik durum de i*keni arasfndaki ili*kiyi/ba FntFyF ifade etmektedir. b) Hiyerar*ik Örtük Büyüme Modelleri (Higher Order Latent Growth Models) li*kisel ÖBM inde örtük faktörler arasfndaki ili*ki örüntüsünün ikinci sfralf de i*kenleri yordayfp yormadf F konusunda McArdle (1988) taraffndan alternatif model geli*tirilmi*tir. Bu modeller sfrasfyla; eriler faktörü (factor-of-curves) ve faktörler erisi (curve-of-factors) modelleridir. E riler Faktörü (factor-of-curves) li*kili örtük büyüme modeli örtük faktörler arasfndaki ili*kileri ortaya koymaktadfr. Bu ili*kilerin ikinci sfralf örtük büyüme yapflarfyla (second-order latent growth construct) ili*kili olup olmadf FnF belirlemek için geli*im e rileri faktörüne ihtiyaç vardfr. Bu model ikinci sfralf faktörlerin (genel faktörler-common factors) birinci sfralf geli*im faktörleri arasfndaki ili*kileri tanfmlayfp tanfmlamadf FnF test etmektir. Geli*im e rileri faktör modelinin ili*kili örtük büyüme modelinden en önemli farklflf F ise; ili*kili örtük büyüme modelinde örtük faktörler arasfnda ili*kiler model kestiriminden elde edilen birer bulgu niteli inde iken bu ili*kiler ikinci sfralf örtük büyüme modelinde sfnanmak üzere yapflandfrflmf*tfr (Duncan vd, 006; Duncan ve Duncan, 004). Çizim 6 da A ve B gibi iki örtük de i*kene ili*kin geli*im e rileri faktör modeli verilmi*tir. X i ölçmeleri A yapfsf için, Y i ölçmeleri ise B yapfsf için farklf zamanlarda yapflan ölçmeleri göstermektedir. Genel Sabit Genel Eim 1 Y b 1 Y b S A E A S B E B X 1 X X 3 X 1 X X 3 Y 1 Y Y 3 Y 1 Y Y 3 Çizim 6: Geli*im E rileri Faktörü (Factor-of-curves) Çizim 6 da görüldü ü gibi e riler faktörü; A ve B yapflarfna ili*kin birinci sfralf önsel ba*arflar genel önsel ba*arflarf, yine birinci sfralf ba*arfdaki de i*im faktörlerinin ise genel ba*arfdaki de i*im faktörünün birer kestiricisi olup olmadf FnF test etmek üzere yapflandfrflmf*tfr. E riler faktör modelinde, ikinci sfralf faktör yüklerinden bir tanesi önbelirli (fixed) olarak 1 e e*itlenmektedir. Bunun temel nedeni; di er faktör yüklerini üzerinde çalf*flan faktör yükü ile aynf ölçe e ta*fmaktfr. Bu gösterimde A olayf temel alfnan örtük yapf oldu u dü*ünülürse faktör yükü önbelirli olarak tayin edilmi* ve B olayfnfn faktör yükü serbest (free parameter) bfrakflmf*tfr (Bollen ve Curan, 006;. Duncan vd., 006; Grimm, 007; Hancock vd, 001; Sayer ve Cumsille, 001). Faktörler E risi (curve-of-factors) Faktörler e risi modeli, yapf itibariyle e riler faktör modelinden farklf olsa da her iki model yakla*fk sonuçlar üretir. Her iki modelin en önemli farklflf F ise birinci sfralf örtük faktör yapflarfnda görülmektedir. Örne in e riler faktör modelinde birinci sfralf örtük yapflar sfrasfyla önsel ba*arf ve 54

10 ba*arfdaki de i*im olarak ele alfnfrken; geli*im faktörleri e risinde ise birinci sfralf örtük yapflar faktör Buna göre; genel önsel ba*arf düzeyleri ve genel geli*im olarak adlandfrflan ikinci sfralf örtük faktörler zamandan olu*maktadfr. Örne in X, Y ve Z gibi 3 farklf ö renme alanfndaki geli*im ele alfnfyor ise; birinci periyotta yapflan X 1, Y 1 ve Z 1 ölçümlerinin Zaman 1 olarak adlandfrflan örtük faktörü yordadf F hipotez edilmektedir. SABT E M Zaman 1 Zaman Zaman 3 Zaman 4 1 Y a Y b 1 Y a Y b 1 Y a Y b 1 Y a Y b X 1 Y 1 Z 1 X Y Z X 3 Y 3 Z 3 X 4 Y 4 Z 4 Çizim 7: Geli*im faktörleri E risi (curve-of-factors) ÖRNEK UYGULAMA: Önsel verileri gerçek olan simülasyon verileri Örtük büyüme modellerinin kullanfmfna ili*kin örnek uygulama olarak ö rencilerin Türkçe, matematik ve fen bilgisi derslerindeki geli*im süreci ele alfnmf*tfr. Uygulamada örnek olarak kullanflan veri kümesi, 001 yflfndaki Ortaö retim KurumlarF Ö renci Seçme ve Yerle*tirme SFnavF nda basit rasgele örneklem yöntemi ile seçilen 300 ö rencinin Türkçe alt testindeki yer alan okudu unu anlama, matematik alt testindeki sözel problem maddeleri ve fen bilgisi alt testindeki 4 er maddeye ili*kin puanlarf ele alfnmf*tfr. Ö rencilerin bu üç farklf ö renme alanfna ili*kin puanlarf bir ö renme sürecinin birinci ölçme de erleri olarak ele alfnmf* ve do rusal büyüme yörüngelerine uygun olarak asimptotik veri üretme tekni ine dayalf simülasyon yöntemi ile ikinci ve üçüncü periyotlardaki tekrarlf ölçme de erleri üretilmi*tir. Elde edilen verilere ili*kin korelasyonlar ve betimsel istatistikler Tablo 1 de verilmi*tir. Tablo 1: TekrarlF ölçmelere ili*kin korelasyon ve betimsel istatistikler Türkçe Matematik Fen Bilgisi X1 X X3 Y1 Y Y3 Z1 Z Z3 X1 1,00 X 0,73 1,00 X3 0,59 0,71 1,00 Y1 0,5 0,67 0,80 1,00 Y 0,63 0,36 0,35 0,67 1,00 Y3 0,71 0,7 0,35 0,55 0,78 1,00 Z1 0,58 0,48 0,41 0,45 0,33 0,4 1,00 Z 0,73 0,47 0,50 0,34 0,44 0,65 0,66 1,00 Z3 0,74 0,71 0,85 0,8 0,4 0,73 0,55 0,7 1,00 Ortalama 1,4 1,43,9 0,87 1,39 1,85 0,55 0,91 1,1 St. Sapma 1,31 1,35 1,51 1,69 1,93,1 1,1 1,43 1,6 Buna göre; X 1, Y 1 ve Z 1, sürecin ba*langfcfnda yapflan sfrasfyla Türkçe, Matematik ve Fen bilgisi alanlarfndaki ölçme sonuçlarfnf göstermektedir. DolayFsFyla bu ölçme sonuçlarf ö rencilerin 543

11 önsel ba*arf puanlarf olarak ele alfnmf*tfr. Sürecin ba*langfcfndan belirli bir periyot sonrasfnda her bir ö renme alanfna ili*kin. ölçümler (X, Y, Z ) ve sürecin sonunda da 3. ölçmeler (X 3, Y 3, Z 3 ) yapflmf*tfr. Aratrma Sorular; 1) Türkçe, matematik ve fen bilgisindeki bili*sel geli*imleri anlamlf mfdfr? ) Türkçe, matematik ve fen bilgisindeki bili*sel geli*imleri ö rencilerin cinsiyetine göre anlamlf bir fark gösteriyor mu? 3) Her üç ö renme alanfndaki bili*sel geli*imleri ili*kili midir? 3a) Ö rencilerin Türkçe dersindeki önsel ba*arf düzeyleri matematik dersindeki bili*sel geli*imi ile ili*kili midir? 3b) Ö rencilerin Türkçe dersindeki önsel ba*arf düzeyleri fen bilgisi dersindeki bili*sel geli*imi ile ili*kili midir? 3c) Ö rencilerin matematik dersindeki önsel ba*arf düzeyleri fen bilgisi dersindeki bili*sel geli*imi ile ili*kili midir? 3d) Ö rencilerin Türkçe dersindeki bili*sel geli*imi matematik dersindeki bili*sel geli*im ile ili*kili midir? 3e) Ö rencilerin Türkçe dersindeki bili*sel geli*imi fen bilgisi dersindeki bili*sel geli*im ile ili*kili midir? 4) Ö rencilerin genel ö renmelerine ili*kin genel bili*sel geli*imleri anlamlf mfdfr? Not: Bu çalf*mada sürecin ba*fndaki ö renme düzeyleri (sabit faktörü) önsel ba*arf, ba*arfdaki büyüme (e im) ise bili*sel geli*im olarak ele alfnmf*tfr. BULGULAR Aratrma Sorusu 1: Türkçe, matematik ve fen bilgisindeki bilisel geliimleri anlaml mdr? Tekde)i*kenli Örtük Büyüme Modelleri Çizim 8 de tüm ö renci grubunun Türkçe dersindeki ba*arflarfnfn de i*imine ili*kin bili*sel geli*im yörüngeleri verilmi*tir. Çizim 8 de görüldü ü gibi tüm ö rencilerin bili*sel geli*imleri artan yönelimlidir. Ba"ar# Zaman Çizim 8: Ö rencilerin kavramsal bilgi geli*imlerine ili*kin geliim yörüngeleri Bu geli*im yörüngelerinden elde edilen bulgularfn nicel de erleri ancak örtük büyüme modelinin kestirimi ile olanaklfdfr. Ko*ulsuz örtük büyüme modelinde yer alan parametreler; önsel 544

12 ba*arf düzeyleri, önsel ba*arf düzeyinin gruba göre homojenli i, ba*arfdaki büyüme ortalamasf (geli*im yörüngelerinin e imi) ve ba*arfdaki büyüme oranlarfnfn gruba göre homojenli i üzerine kuruludur. a) Ko*ulsuz Örtük Büyüme Modelleri Çizim 9 da Türkçe dersinde ö rencilerin ba*arf puanlarfndaki geli*im konu edilmi* ve sürecin ba*fnda (X 1 ), ortasfnda (X ) ve sonunda (X 3 ) olmak üzere 3 farklf ölçmeler gerçekle*tirilmi*tir. Tablo : Türkçe dersindeki ba*arfya ili*kin korelasyon ve betimsel istatistikler X 1 X X 3 X 1 1,00 X 0,73 1,00 X 3 0,59 0,71 1,00 Ortalama 1,4 1,43,9 Std. Sapma 1,31 1,35 1,51 Ö rencilerin Türkçe dersindeki ko*ulsuz örtük büyüme modelinin kestiriminde model-veri uyumu indisleri GFI=0,96, CFI=1,00, NFI=0,96 ve RMSEA=0,000 olarak elde edilmi*tir. Buna göre model-veri uyumu istenilen düzeydedir. Bu uyum aynf zamanda geli*imin do rusal oldu unun da bir göstergesidir. =-0,10 µ=1,16 * µ=0,49 * =1,37 * Sabit Eim =0,17 * X 1 X X 3 X 1 X X 3 Çizim 9: Ko*ulsuz örtük büyüme modelinin kestirimi Çizim 9 da verilen modelin kestirimi ile elde edilen 5 adet parametre Tablo 3 te verilmi*tir. Elde edilen de erlere göre ö rencilerin Türkçe dersindeki önsel ba*arf ile bili*sel geli*im (ba*arfdaki artf*) parametreleri (ortalama ve varyans de erleri) istatistiksel olarak anlamlf (P<0,05) iken önsel ba*arf ile bili*sel geli*im arasfndaki korelasyon istatistiksel olarak anlamlf bulunmamf*tfr.. Tablo 3: Türkçe ö renme alanfna ili*kin ko*ulsuz ÖBM nin parametre kestirim de erleri Kestirim t De eri Önsel Ba*arF (sabit) OrtalamasF 1,16 * 0,05 Önsel Ba*arF (sabit) VaryansF 1,37 * 10,0 Ba*arFdaki Büyüme (e im) OrtalamasF 0,49 * 17, Ba*arFdaki Büyüme (e im) VaryansF 0,17 *,94 Kovaryans(Önsel Ba*arF, Ba*arFdaki Büyüme) -0,10-1,41 ki yönlü t sfnamasfnfn anlamlflfk düzeyi 1,96 olarak alfnmf*tfr (P<0,05) Ko*ulsuz örtük büyüme modelinin kestirilmesi ile elde edilen de erlerin yorumlanmasf sfrasfyla verilmi*tir: a) Ö rencilerin Türkçe ö renme alanfndaki önsel ba*arf (sabit faktörü) ortalamasf 1,16 de erine sahip oldu u ve 0 de erinden anlamlf farklflfk gösterdi i görülmektedir (P<0,05). Bu durum ö rencilerin Türkçe dersindeki önsel ba*arf düzeyi olarak ö rencilerin ö renmeye konu olan özelli e sahip olma ortalamasfnf göstermektedir. 545

13 b) Ö rencilerin Türkçe ö renme alanfndaki önsel ba*arf (sabit faktörü) varyansf 1,37 (P<0,05) olarak elde edilmi*tir. Bu de er, sürecin ba*langfcfnda ö rencilerin ölçmeye konu olan özelli e sahip olma düzeylerinin homojen olmadf FnF, ba*langfçta Türkçe ö renme ürünlerine ili*kin bireysel farklflfklar oldu unu göstermektedir. c) Ö rencilerin Türkçe ö renme alanfndaki ba*arf artf*fnfn (e im faktörü) ortalamasf 0,49 (P<0,05) olarak elde edilmi*tir. Buna göre birim zamanda ö rencilerin Türkçe ö renme ürünlerindeki ba*arf artf*fnfn ortalama oranf 0,49 olarak ifade edilebilir. d) Ö rencilerin Türkçe ö renme alanfndaki ba*arf artf*fnfn (e im faktörü) varyansf ise 0,17 (P<0,05) olarak bulunmu*tur. Bu de er, ö rencilerdeki Türkçe ö renme ba*arflarfnfn homojen olmadf FnF, ba*arfdaki artf* oranf açfsfndan ö renciler arasfnda farklflfklar oldu unu göstermektedir. Sabit ve e im de i*kenleri arasfndaki kovaryans de eri ise negatif yönde ve çok dü*ük bulunmu* ve bu de erin istatistiksel olarak anlamlf olmadf F (=-0,10; P>0,05) gözlenmi*tir. Buna göre; sürecin ba*fndaki ö rencilerin önsel ba*arflarf ile ba*arfdaki artf* oranlarf birbirinden ba FmsFz gerçekle*mi*tir. Her üç ö renme alanf için kurulan tekde i*kenli örtük büyüme modelinin birbirinden ba FmsFz olarak çözümlemeleri Tablo 4 te kestirim sonuçlarf ise Ek 1 de verilmi*tir. Tablo 4: Tüm ö renme alanlarfna göre tekde i*kenli örtük büyüme modellerinin parametre kestirim de erleri Kestirim t De)eri Türkçe Önsel Ba*arF (sabit) OrtalamasF 1,16 * 0,05 Önsel Ba*arF (sabit) VaryansF 1,37 * 10,0 Ba*arFdaki Büyüme (e im) OrtalamasF 0,49 * 17, Ba*arFdaki Büyüme (e im) VaryansF 0,17 *,94 Kovaryans(Önsel Ba*arF, Ba*arFdaki Büyüme) -0,10-1,41 Matematik Önsel Ba*arF (sabit) OrtalamasF 0,88 * 11,67 Önsel Ba*arF (sabit) VaryansF,40 * 10,79 Ba*arFdaki Büyüme (e im) OrtalamasF 0,49 * 11,85 Ba*arFdaki Büyüme (e im) VaryansF 0,7 * 7, Kovaryans(Önsel Ba*arF, Ba*arFdaki Büyüme) -0,1 * -,08 Fen Bilgisi Önsel Ba*arF (sabit) OrtalamasF 0,56 * 10,45 Önsel Ba*arF (sabit) VaryansF 1,0 * 9,80 Ba*arFdaki Büyüme (e im) OrtalamasF 0,9 * 9,5 Ba*arFdaki Büyüme (e im) VaryansF 0,33 * 5,56 Kovaryans(Önsel Ba*arF, Ba*arFdaki Büyüme) -0,06-1,00 Ö renciler her üç ö renme alanfndaki önsel ba*arf ve ba*arfdaki büyüme faktörlerinin ortalama de erlerinin istatistiksel olarak anlamlf bir düzeye sahip olduklarf görülmektedir (P<0,05). Di er taraftan bu önsel ba*arf ve ba*arf büyümelerindeki artf* düzeyi olarak ö rencilerin homojen olmadf F gözlenmi*tir. Türkçe ve fen bilgisi ö renme alanlarfndaki ba*arf büyümelerinin ö rencilerin ilgili alanlardaki önsel ba*arflarfndan ba FmsFz gerçekle*mektedir (P>0,05). YalnFzca matematik alanfnda önsel ba*arflarf dü*ük ö rencilerin yüksek ba*arf artf*f, yine önsel ba*arflarf yüksek ö rencilerin ise dü*ük ba*arf artf*f gözlenmi*tir. Bu bulgular 1. ara*tfrma sorusunun yanftfna ili*kin olarak yorumlanabilir. Buna göre; her üç ö renme alanfna ili*kin ö rencilerdeki bili*sel geli*imler istatistiksel olarak anlamlfdfr. Aratrma Sorusu : Türkçe, matematik ve fen bilgisindeki bilisel geliimleri örencilerin cinsiyetine göre anlaml bir fark gösteriyor mu? b) Ko*ullu Örtük Büyüme Modelleri Tablo 4 te dikkati çeken bir di er bulgu da önsel ba*arf düzeylerinin varyanslarfna göre her üç ö renme alanfnda ö rencilerin sürecin ba*fndaki önsel ba*arf düzeyleri bakfmfndan homojen 546

14 olmadfklarfdfr. Bu durumda heterojenli in nereden kaynaklandf FnF bulmak için iki seçenek söz konusudur; a) olasf ko*ullu de i*kenlerden yararlanmak (cinsiyet, ya* vs.) ve b) denek gruplarf (cohort) de i*kenlerinden yararlanmaktfr. Bu çalf*mada örnek olarak (Türkçe ö renme alanf için) de i*imin ö rencilerin cinsiyetinden kaynaklanfp kaynaklanmadf F ara*tfrflmf*tfr. Ko*ullu ÖBM nin kestirimi ve elde edilen parametre kestirimleri Çizim 10 da verilmi*tir. Ko*ullu ÖBM nin veri-uyum indisleri GFI=0,98, CFI=0,96, NFI=0,96 ve RMSEA=0,040 olarak elde edilmi*tir. Cinsiyet µ=0,34 * =1,41 * Sabit 0,0 * 0,00 Egim µ=1,8 * =0,0 * X 1 X X 3 X 1 X X 3 Çizim 10: Ko*ullu örtük büyüme modelinin kestirimi Modelin kestirilen parametrelerine göre; ö rencilerin önsel ba*arf düzeyleri ö rencilerin cinsiyetlerine göre kfz ö rencilerin lehine farklflfk göstermekte iken (0,0; P<0,05) Türkçe dersindeki ba*arf artf*f erkek veya kfzlarda aynf gerçekle*mi*tir (0,0; P<0,05). Veri kümesinde erkek ö renciler 0, kfz ö renciler ise 1 olarak kodlanmf*tfr. Bu nedenle katsayflarfn pozitif olarak elde edilmesi ba*arf farklflf F açfsfndan kfz ö rencilerin lehine, negatif çfkmasf ise erkek ö rencilerin lehine yorumlanmaktadfr. Matematik dersi için yapflan çözümleme de ise; cinsiyet-önsel ba*arf katsayfsf 0,5 (P<0,05) ve cinsiyet-ba*arf artf*f katsayfsf ise 0,31 (P<0,05) olarak elde edilmi*tir. Buna göre matematik ö renme önsel ba*arfsf ve ba*arfdaki artf* kfz ö rencilerin lehine farklf elde edilmi*tir. AynF *ekilde fen bilgisi dersi için; cinsiyet-önsel ba*arf katsayfsf 0,0 (P<0,05) ve cinsiyetba*arf artf*f katsayfsf ise 0,01 (P>0,05) olarak elde edilmi*tir. Bu durumda fen bilgisindeki ba*arf artf*f cinsiyetten ba FmsFz gerçekle*mi*tir. Ko*ullu örtük büyüme modellerinin model kestirimleri Ek de verilmi*tir. Aratrma Sorusu 3: Her üç örenme alanndaki bilisel geliimleri ilikili midir? Çokde)i*kenli Örtük Büyüme Modelleri a) li*kisel Büyüme Modelleri Psiko-e itsel yapflar genellikle ili*kili yapflardfr. Bu nedenle hem ölçülmek istenilen yapflar arasfnda hem de yapflara ili*kin ölçmeler ili*ki ortaya çfkmaktadfr. Çokde i*kenli örtük büyüme modellerinde de benzer durumlar söz konusudur. Örne in matematik becerisindeki bili*sel geli*im Türkçe bilgisine ili*kin önsel ba*arf ile pozitif kovaryans/korelasyon gösterebilir ya da matematik becerisindeki bili*sel geli*im ile fen bilgisindeki bili*sel geli*im ile yüksek korelasyon/kovaryans de erleri üretebilir. Bu çalf*mada; Türkçe, matematik ve fen bilgisi ö renme alanlarfndaki bili*sel geli*im oranlarfnfn ili*kili olup olmadf Fna ili*kin hipotezlerin sfnanmasf için çokde i*kenli tekrarlf ölçmelere ve ili*kisel örtük büyüme modellerine ihtiyaç vardfr. ÇalF*manFn bu a*amasfnda ö rencilerin Türkçe, matematik ve fen bilgisindeki bili*sel geli*imleri arasfndaki ili*kinin test edilmesi amaçlanmf*tfr. Çizim 11 de bu sfnamalara ili*kin model çözümleri verilmi*tir. 547

15 Bu modelin kestiriminde model-veri uyumu indisleri GFI=0.99, CFI=0.98, NFI=0.98 ve RMSEA=0,040 olarak elde edilmi*tir. Bu de erlere göre model-veri uyumu yeterli düzeydedir. Çizim 11: li*kisel örtük büyüme modeli li*kisel ÖBM ndeki örtük faktörler sfrasfyla; Türkçe dersindeki önsel ba*arf (SabitT) ve ba*arf puanlarfndaki artf* (EgimT), matematik dersindeki önsel ba*arf (SabitM) ve ba*arf puanlarfndaki artf* (EgimM), fen bilgisi dersindeki önsel ba*arf (SabitF) ve ba*arf puanlarfndaki artf* (EgimF) *eklindedir. Bu örtük faktörler arasfndaki kovaryans de erleri Tablo 5 de verilmi*tir. Tablo 5: li*kisel örtük büyüme modelindeki örtük faktörler arasfndaki kovaryans de erleri Türkçe Ba*ar+s+ Matematik Ba*ar+s+ Fen Bilgisi Ba*ar+s+ Sabit Eim Sabit Eim Sabit Eim Türkçe Ba*ar+s+ Sabit - Eim -0,31 - Matematik Ba*ar+s+ Sabit 1,14 * 0,38 * - Eim 0,33 * -0,48 * -0,40 - Fen Bilgisi Ba*ar+s+ Sabit 0,93 * -0,14 0,91-0,10 - Eim 0,31 * 0,14 * -0,11 0,5 * -0,07-548

16 Tablo 5 e göre, ö rencilerin matematik ve fen bilgisindeki ba*arf büyümeleri (bili*sel geli*imleri) sürecin ba*fndaki ö rencilerin Türkçe dersindeki ba*arf düzeyleri ile do rudan ba FntFlFdFr [kov(sabitt,eimm)=0,33 P<0,05 ve kov(sabitt,eimf)=0,31 P<0,05]. Benzer olarak Türkçedeki bili*sel geli*im ile matematik ve fen bilgisi derslerindeki bili*sel geli*im oranlarf da ba FntFlFdFr [kov(eimt,eimm)=-0,48 P<0,05 ve kov(eimt,eimf)=0,14 P<0,05]. Ancak burada vurgulanmasf gereken bir di er bulgu ise Türkçede önsel ba*arflarf dü*ük olan ö rencilerin matematikte hfzlf bir büyüme gösterdi i, yine Türkçede önsel ba*arflarf yüksek olan ö rencilerin ise matematikte yava* geli*im gösterdi idir. Matematik alanfndaki önsel ba*arflarfn, fen bilgisindeki bili*sel geli*ime etkisi olmadf F [kov(sabitm,eimf)=-0,11 P>0,05], ancak matematik alanfndaki bili*sel geli*im ile fen bilgisi alanfndaki bili*sel geli*imin ba FntFlF oldu u bulgusuna ula*flmf*tfr [kov(eimm,eimf)=0,5 P<0,05]. Aratrma Sorusu 4: Örencilerin genel örenmelerine ilikin genel bilisel geliimleri anlaml mdr? b) Hiyerar*ik Örtük Büyüme Modelleri li*kisel örtük büyüme modelinden elde edilen ve Tablo 5 de verilen örtük faktörler arasfndaki kovaryans ya da korelasyonlarfn birer üst faktörleri yordayfp yordamadf FnF test edebilmek için e riler faktörü ve faktörler e risi modelleri yapflandfrflarak çözümlenmi*tir. Bu modellerin kestiriminde model-veri uyumu indisleri GFI=0.94, CFI=0.90, NFI=0.9 ve RMSEA=0,07 olarak elde edilmi*tir. Bu uyum indisleri de erlerine göre model-veri uyumu yeterli düzeydedir. Model kestirim sonuçlarf Tablo 6 da, grafiksel gösterimler ise Ek 3 ve Ek 4 de verilmi*tir. Tablo 6: kinci sfralf örtük büyüme modelindeki örtük faktörler arasfndaki kovaryans de erleri Geli*im E rileri Faktörü Geli*im Faktörleri E risi KatsayF t De eri KatsayF t De eri Ortalamalar Önsel Ba*arF (Genel Sabit) 0,88 * 8,75 0,88 * 8,70 Ba*arFdaki ArtF* (Genel E im) 0,49 * 6,76 0,48 * 6,59 Varyanslar Önsel Ba*arF (Genel Sabit) 1,14 * 5,68 0,8 * 3,87 Ba*arFdaki ArtF* (Genel E im) 0,09 1,76 0,07 0,65 Kovaryans 0,10 1,63 0,17 1,59 E riler faktörü ve faktörler e risi modelleri benzer sonuçlar üretmi*tir. Buna göre; Türkçe, matematik ve fen bilgisi derslerinin olu*turdu u genel ö renmeler ele alfndf Fnda; ba*langfçtaki önsel ba*arflarfn anlamlf oldu u (0,88 P<0,05) ve bu ortalama de ere göre grubun homojen olmadf F (1,14 P<0,05) gözlenmi*tir. Süreçte genel ö renmelerdeki bili*sel geli*imlerin anlamlf oldu u (0,49 P<0,05) ve bu bili*sel geli*imin gruba göre homojen gerçekle*ti i (0,09, P>0,05) ve bu geli*im düzeyinin ö rencilerin önsel ba*arflarfndan ba FmsFz gerçekle*ti i (0,10 P>0,05) görülmü*tür. SONUÇ VE ÖNER/LER Örtük büyüme modellerinin e itimde kullanfmfnfn en önemli nedenlerinden birisi sabit ve e imi birer örtük yapf olarak ele almasfdfr. Çünkü e itimin temelinde de i*im ve geli*im vardfr. Bir di er neden ise; ö renenin kendi bireysel geli*iminin yanf sfra bireyler arasf farklflfklarf da (sabit ve e im faktörlerinin varyansfnfn bireysel farklflfklar parametresi olarak ele alfndf FnF göz önüne alfnfrsa) ortaya koymasf olarak gösterilebilir. Tekde i*kenli örtük büyüme modelleri, bir ö renme alanfndaki ö renmelerinin hangi oranda geli*ti ini ve bu geli*imdeki bireysel farklflfklarf ortaya koyabilece i gibi bu bireysel farklflfklarf cinsiyet, sosyo-ekonomik düzey gibi df*sal de i*kenlere göre nasfl davrandf F belirlenebilir. Di er taraftan aynf sfnama df*sal de i*kenler yerine belirli denek gruplarfna (cohort) göre geli*im farklflfklarf test edilebilmektedir. Çokde i*kenli örtük büyüme modelleri, tekde i*kenli ÖGM ne göre daha karma*fk olmasfna kar*fn birden fazla alandaki ö renmelerin örtük faktörleri arasfndaki ili*kileri belirlemede kullanf*lf bir 549

17 çözümleme yöntemi oldu u açfktfr. Birinci sfralf faktörlere ili*kin bu tür ili*kilerin sfnanmasfnda da ikinci sfralf örtük büyüme modelleri ile olanaklfdfr. E itim alanfndaki ara*tfrmacflarfn yaygfn olarak ele aldfklarf deneysel tasarfmlardan bir tanesi de farklf ö retim tekniklerinin, yöntemlerinin ya da ortamlarfnfn etkilili ini ara*tfrmak üzere yapflandfrflmf* deney-kontrol grubu düzenekleridir. Bu tür ara*tfrmalarda, çoklugrup-örtük büyüme modellerinin kullanfmf, ara*tfrmaya konu olan süreç hakkfnda daha ayrfntflf bir bilgiler verecektir. KAYNAKÇA Anderson, J. C., & Gerbing, D. W. (1984). The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis. Psychometrika, 49, Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), Bentler, P. M. (1995). EQS structural equations program manual. Encino, CA: Multivariate Software. Bentler, P.M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, Bereiter, C. (1963). Some persisting dilemmas in the measurement of change. In C. W. Harris (Ed.), Problems in the measurement of change (3-0). Madison, WI: University of Wisconsin Press. Blozis, S. A., Conger, K.J., & Harring, J. R. (007). Nonlinear latent curve models for multivariate longitudinal data, International Journal of Behavioral Development, 31(4), Bollen, K. A., & Curran, P. J. (006). Latent curve models: A structural equation approach.hoboken, NJ: Wiley. Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In Bollen, K., and Long, S. (eds.), Testing Structural Equation Models. Sage, Beverly Hills, CA, Byrne, B. M., & Crombie, G. (003). Modeling and testing change: An introduction to the latent growth curve model. Understanding Statistics, (3), Coffman, D. L., & Millsap, R. E. (005). Evaluating latent growth curve models using individual fit statistics. Structural Equation Modeling, 13, 1 7. Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. Psychological Bulletin, 5, Duncan, T. E., & Duncan, S. C. (004). An Introduction to Latent Growth Curve Modeling. Behavior Therapy 35, Duncan, T. E., Duncan, S. C., Strycker, L. A., Li, F., & Alpert, A. (006). An introduction to latent variable growth curve modeling: Concepts, issues, and applications. nd Edition. Mahwah, NJ: Erlbaum. Duncan, T. E., Duncan, S. C., Strycker, L. A., & Li, F. (00). A latent variable framework for power estimation within intervention contexts. Journal of Psychopathology & Behavioral Assessment,4(1), 1-1. Fan, X. (001). Parental involvement and students' academic achievement: A growth modeling analysis. The Journal of Experimental Education, 70, Fan, X. (003). Power of latent growth modeling for detecting group differences in linear growth trajectory parameters. Structural Equation Modeling, 10, Fan, X., & Fan, X. (005). Power of latent growth modeling for detecting linear growth: Number of measurements and comparison with other analytic approaches. Journal of Experimental Education, 73, Grimm, K. J. (007). Multivariate longitudinal methods for studying developmental relationships between depression and academic achievement. International Journal of Behavioral Development, 31(4), Hamilton, J., Gagne, P. E., & Hancock, G. R. (003). The effect of sample size on latent growth models. Paper presented at the annual meeting of the American Educational Research Association, Chicago. Hancock, G. R., Kuo, W. L., & Lawrence, F. R. (001). An illustration of second-order latent growth models. Structural Equation Modeling, 8,

18 Hess, B. (000). Assessing program impact using latent growth modeling: a primer for the evaluator. Evaluation and Program Planning, 3, Hong, S., & Ho, H.Z. (005). Direct and indirect longitudinal effects of parental involvement on student achievement: second order latent growth modeling across ethnic groups. Journal of Educational Psychology, 97, 3-4. Hu, L., Bentler, P.M., & Kano, Y. (199). Can test statistics in covariance structure analysis be trusted? Psychological Bulletin, 11, Jackson, D. L. (003). Revisiting sample size and number of parameter estimates: Some support for the N:q hypothesis. Structural Equation Modeling, 10(1), Kaplan, D. (00). Methodological advances in the analysis of individual growth with relevance to education policy. Peabody Journal of Education, 77, Kline, R. B. (1998). Principles and practice of structural equation modeling. New York: Guilford Press. Leite, W. L. (007). A comparison of latent growth models for constructs measured by multiple items. Structural Equation Modeling, 14(4), Lohman, D. F. (1999). Minding our p's and q's: On finding relationships between learning and intelligence. In P. L. Ackerman, P. C. Kyllonen, & R. D. Roberts (Eds.), The future of learning and individual differences: Process, traits, and content (55f7). Washington, DC: American Psychological Association. Marsh, H. W., Balla, J. R., & McDonald, R. P. (1988). Goodness-of-fit indexes in confirmatory factor analysis: The effect of sample size. Psychological Bulletin, 103, McArdle, J. J. (1988). Dynamic but structural equation modeling of repeated measures data. In R. B. Cattell & J. Nesselroade (Eds.), Handbook of multivariate experimental psychology (nd ed., ). New York: Plenum Press. MacCallum, R. C., Widaman, K. F., Zhang, S. & Hong, S., (1999), Sample size in factor analysis, Psychological Methods, 4, Meredith,W., & Tisak, J. (1990). Latent curve analysis. Psychometrika 55: Muthén, B., & Curran, P. (1997). General growth modeling of individual differences in experimental designs: A latent variable framework for analysis and power estimation. Psychological Methods,, Muthén, B. O., & Khoo, S. T. (1998). Longitudinal studies of achievement growth using latent variable modeling. Learning and individual differences, 10(), Newmann, F. M., Smith, B., Ainsworth, E., & Bryk, A. S. (001). Instructional program coherence: What it is and why it should guide school improvement policy. Educational Evaluation and Policy Analysis, 3, Rogosa, D. (1988). Myths about longitudinal research. In K. W. Schaie, R. T. Campbell, W. Meredith, & S. C, Rawlings (Eds.), Methodological issues in aging research, New York: Springer. Sayer, A. G., & Cumsille, P. E. (001). Second-order latent growth models. In L. M. Collins, & A. G. Sayer (Eds.), New methods for the analysis of change, Schumacker R.E., & Lomax, R.G. (004). A beginner s guide to structural equation modeling, Lawrence Erlbaum, Mahwah, NJ. Steiger, J. H. (1990). Structural model evaluation and modification: an interval estimation approach. Multivariate Behavioral Research, 5 (), Wittmann, W. W. (1988). Multivariate reliability theory. Principles of symmetry and successful validation strategies. In J. R. Nesselroade & R.B. Cattell (Eds.), Handbook of multivariate experimental psychology (505f560). New York: Plenum Press. Yin, R. K., Schmidt, R. C, & Besag, F. (006). Aggregating student achievement trends across states with different tests: Using standardized slopes as effect sizes. Peabody Journal of Education, 81(), Yurdugül, H. (007). Çoktan seçmeli test sonuçlarfndan elde edilen farklf korelâsyon türlerinin birinci ve ikinci sfralf faktör analizlerindeki uyum indekslerine etkisi. Flköretim Online, 6(1)

19 Ek 1: Tekde i*kenli Ko*ulsuz Örtük Büyüme Modellerinin Ketsimi 55

20 Ek : Tekde i*kenli Ko*ullu Örtük Büyüme Modellerinin Ketsimi (Cinsiyete göre) 553

Çok Göstergeli Örtük Gelişme Modelleri

Çok Göstergeli Örtük Gelişme Modelleri Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi, Yaz 2010, 1(1), 29-36 Çok Göstergeli Örtük Gelişme Modelleri Seda DURAL * Oya SOMER ** Mediha KORKMAZ *** Ege Üniversitesi Seda CAN **** İzmir Ekonomi

Detaylı

Güdülenme ve Öðrenme Stratejileri Ölçeðinin Türkçe Formunun Geçerlik ve Güvenirlik Çalýþmasý

Güdülenme ve Öðrenme Stratejileri Ölçeðinin Türkçe Formunun Geçerlik ve Güvenirlik Çalýþmasý Güdülenme ve Öðrenme Stratejileri Ölçeðinin Türkçe Formunun Geçerlik ve Güvenirlik Çalýþmasý Þener BÜYÜKÖZTÜRK *, Özcan Erkan AKGÜN **, Özden ÖZKAHVECÝ ***, Funda DEMÝREL **** Özet Bu çalýþmanýn amacý

Detaylı

Tekrarlı Ölçümler ANOVA

Tekrarlı Ölçümler ANOVA Tekrarlı Ölçümler ANOVA Repeated Measures ANOVA Aynı veya ilişkili örneklemlerin tekrarlı ölçümlerinin ortalamalarının aynı olup olmadığını test eder. Farklı zamanlardaki ölçümlerde aynı (ilişkili) kişiler

Detaylı

T.C. Hitit Üniversitesi. Sosyal Bilimler Enstitüsü. İşletme Anabilim Dalı

T.C. Hitit Üniversitesi. Sosyal Bilimler Enstitüsü. İşletme Anabilim Dalı T.C. Hitit Üniversitesi Sosyal Bilimler Enstitüsü İşletme Anabilim Dalı X, Y, Z KUŞAĞI TÜKETİCİLERİNİN YENİDEN SATIN ALMA KARARI ÜZERİNDE ALGILANAN MARKA DENKLİĞİ ÖĞELERİNİN ETKİ DÜZEYİ FARKLILIKLARININ

Detaylı

1998-2001 ORTAÖĞRETİM KURUMLARI ÖĞRENCİ SEÇME VE YERLEŞTİRME SINAVLARI NDA ÇIKAN BİYOLOJİ SORULARININ İÇERİK ANALİZİ

1998-2001 ORTAÖĞRETİM KURUMLARI ÖĞRENCİ SEÇME VE YERLEŞTİRME SINAVLARI NDA ÇIKAN BİYOLOJİ SORULARININ İÇERİK ANALİZİ XIII. Ulusal Eğitim Bilimleri Kurultayı, 6-9 Temmuz 2004 İnönü Üniversitesi, Eğitim Fakültesi, Malatya 1998-2001 ORTAÖĞRETİM KURUMLARI ÖĞRENCİ SEÇME VE YERLEŞTİRME SINAVLARI NDA ÇIKAN BİYOLOJİ SORULARININ

Detaylı

Pazarlama Araştırması Grup Projeleri

Pazarlama Araştırması Grup Projeleri Pazarlama Araştırması Grup Projeleri Projeler kapsamında öğrencilerden derlediğiniz 'Teknoloji Kullanım Anketi' verilerini kullanarak aşağıda istenilen testleri SPSS programını kullanarak gerçekleştiriniz.

Detaylı

Çok Düzeyli Yapısal Eşitlik Modelleri Üzerine Örnek Bir Uygulama

Çok Düzeyli Yapısal Eşitlik Modelleri Üzerine Örnek Bir Uygulama Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi, Yaz 2010, 1(1), 9-15 Çok Düzeyli Yapısal Eşitlik Modelleri Üzerine Örnek Bir Uygulama Seda CAN * İzmir Ekonomi Üniversitesi Oya SOMER **, Mediha

Detaylı

Dumlupınar Üniversitesi Sosyal Bilimler Dergisi Sayı 38 Ekim 2013

Dumlupınar Üniversitesi Sosyal Bilimler Dergisi Sayı 38 Ekim 2013 MODEL BELİRLEMESİ, ÖRNEKLEM HACMİ VE TAHMİN YÖNTEMİNİN YAPISAL EŞİTLİK MODELLERİ UYUM ÖLÇÜTLERİNE ETKİSİ 1 Rana ŞEN Arş. Gör. Eskişehir Osmangazi Üniversitesi, Fen-Edebiyat Fakültesi, ranasen@ogu.edu.tr

Detaylı

Eğitim ve Bilim. Cilt 39 (2014) Sayı 176 171-182. Anahtar Kelimeler. Giriş

Eğitim ve Bilim. Cilt 39 (2014) Sayı 176 171-182. Anahtar Kelimeler. Giriş Eğitim ve Bilim Cilt 39 (2014) Sayı 176 171-182 Derse Katılım Envanterinin Türk Kültürüne Uyarlanması Mustafa Sever 1 Öz Bu çalışmanın amacı, Wang, Bergin ve Bergin (2014) tarafından geliştirilmiş Derse

Detaylı

ÖZGEÇMİŞ. Derece Alan Üniversite Yıl. OrtaöğretimMatematikEğitimi BoğaziciÜniversitesi 2007

ÖZGEÇMİŞ. Derece Alan Üniversite Yıl. OrtaöğretimMatematikEğitimi BoğaziciÜniversitesi 2007 ÖZGEÇMİŞ 1. AdıSoyadı: Rukiye Didem Taylan 2. DoğumTarihi: 25 Temmuz 1984 3. Unvanı: Yrd. Doç. Dr. 4. ÖgrenimDurumu: Derece Alan Üniversite Yıl Lisans OrtaöğretimMatematikEğitimi BoğaziciÜniversitesi 2007

Detaylı

KULLANILAN MADDE TÜRÜNE GÖRE BAĞIMLILIK PROFİLİ DEĞİŞİKLİK GÖSTERİYOR MU? Kültegin Ögel, Figen Karadağ, Cüneyt Evren, Defne Tamar Gürol

KULLANILAN MADDE TÜRÜNE GÖRE BAĞIMLILIK PROFİLİ DEĞİŞİKLİK GÖSTERİYOR MU? Kültegin Ögel, Figen Karadağ, Cüneyt Evren, Defne Tamar Gürol KULLANILAN MADDE TÜRÜNE GÖRE BAĞIMLILIK PROFİLİ DEĞİŞİKLİK GÖSTERİYOR MU? Kültegin Ögel, Figen Karadağ, Cüneyt Evren, Defne Tamar Gürol 1 Acibadem University Medical Faculty 2 Maltepe University Medical

Detaylı

THE IMPACT OF AUTONOMOUS LEARNING ON GRADUATE STUDENTS PROFICIENCY LEVEL IN FOREIGN LANGUAGE LEARNING ABSTRACT

THE IMPACT OF AUTONOMOUS LEARNING ON GRADUATE STUDENTS PROFICIENCY LEVEL IN FOREIGN LANGUAGE LEARNING ABSTRACT THE IMPACT OF AUTONOMOUS LEARNING ON GRADUATE STUDENTS PROFICIENCY LEVEL IN FOREIGN LANGUAGE LEARNING ABSTRACT The purpose of the study is to investigate the impact of autonomous learning on graduate students

Detaylı

EĞİTİM Doktora Orta Doğu Teknik Üniversitesi, Ankara 1997 2005 Eğitim Fakültesi, Bilgisayar Öğretimi ve Teknolojileri Bölümü

EĞİTİM Doktora Orta Doğu Teknik Üniversitesi, Ankara 1997 2005 Eğitim Fakültesi, Bilgisayar Öğretimi ve Teknolojileri Bölümü HAKKIMDA Dr. Erhan Şengel, yüksek lisans eğitimi yıllarında başlamış olduğu öğretim teknolojileri ile ilgili çalışmalarına 1994 yılından beri devam etmektedir. Online eğitim, Bilgisayar Destekli Eğitim,

Detaylı

daha çok göz önünde bulundurulabilir. Öğrencilerin dile karşı daha olumlu bir tutum geliştirmeleri ve daha homojen gruplar ile dersler yürütülebilir.

daha çok göz önünde bulundurulabilir. Öğrencilerin dile karşı daha olumlu bir tutum geliştirmeleri ve daha homojen gruplar ile dersler yürütülebilir. ÖZET Üniversite Öğrencilerinin Yabancı Dil Seviyelerinin ve Yabancı Dil Eğitim Programına Karşı Tutumlarının İncelenmesi (Aksaray Üniversitesi Örneği) Çağan YILDIRAN Niğde Üniversitesi, Sosyal Bilimler

Detaylı

KAMU PERSONELÝ SEÇME SINAVI PUANLARI ÝLE LÝSANS DÝPLOMA NOTU ARASINDAKÝ ÝLÝÞKÝLERÝN ÇEÞÝTLÝ DEÐÝÞKENLERE GÖRE ÝNCELENMESÝ *

KAMU PERSONELÝ SEÇME SINAVI PUANLARI ÝLE LÝSANS DÝPLOMA NOTU ARASINDAKÝ ÝLÝÞKÝLERÝN ÇEÞÝTLÝ DEÐÝÞKENLERE GÖRE ÝNCELENMESÝ * Abant Ýzzet Baysal Üniversitesi Eðitim Fakültesi Dergisi Cilt: 8, Sayý: 1, Yýl: 8, Haziran 2008 KAMU PERSONELÝ SEÇME SINAVI PUANLARI ÝLE LÝSANS DÝPLOMA NOTU ARASINDAKÝ ÝLÝÞKÝLERÝN ÇEÞÝTLÝ DEÐÝÞKENLERE

Detaylı

ÖĞRETMEN ADAYLARININ PROBLEM ÇÖZME BECERİLERİ

ÖĞRETMEN ADAYLARININ PROBLEM ÇÖZME BECERİLERİ ÖĞRETMEN ADAYLARININ PROBLEM ÇÖZME BECERİLERİ Doç. Dr. Deniz Beste Çevik Balıkesir Üniversitesi Necatibey Eğitim Fakültesi Güzel Sanatlar Eğitimi Bölümü Müzik Eğitimi Anabilim Dalı beste@balikesir.edu.tr

Detaylı

READING 1 3 0 3 5 WRITING 1 3 0 3 5 ORAL COMMUNICATIO N SKILLS 3 0 3 5 BASIC INFORMATION TECHNOLOGIES 3 0 3 3 INTRODUCTION TO EDUCATION 3 0 3 3

READING 1 3 0 3 5 WRITING 1 3 0 3 5 ORAL COMMUNICATIO N SKILLS 3 0 3 5 BASIC INFORMATION TECHNOLOGIES 3 0 3 3 INTRODUCTION TO EDUCATION 3 0 3 3 1 FLE103 İLERİ DİNLEME 1 LISTENING 1 3 0 3 5 1 FLE105 İLERİ OKUMA 1 READING 1 3 0 3 5 1 FLE107 İLERİ YAZMA 1 WRITING 1 3 0 3 5 1 FLE109 SÖZLÜ İLETİŞİM BECERİLERİ ORAL COMMUNICATIO N SKILLS 3 0 3 5 1 TBT101

Detaylı

Hacer ÖZYURT¹, Özcan ÖZYURT 2, Hasan KARAL 3

Hacer ÖZYURT¹, Özcan ÖZYURT 2, Hasan KARAL 3 999 PERMÜTASYON- - E- Hacer ÖZYURT¹, Özcan ÖZYURT 2, Hasan KARAL 3 1 hacerozyurt@ktu.edu.tr 2 oozyurt@ktu.edu.tr 3 Yrd.Doç.Dr. hasankaral@ktu.edu.tr Özet: - - de - Anahtar kelimeler: e- Abstract: Conducted

Detaylı

TÜRKiYE'DEKi ÖZEL SAGLIK VE SPOR MERKEZLERiNDE ÇALIŞAN PERSONELiN

TÜRKiYE'DEKi ÖZEL SAGLIK VE SPOR MERKEZLERiNDE ÇALIŞAN PERSONELiN Spor Bilimleri Dergisi Hacettepe]. ofsport Sciences 2004 1 15 (3J 125-136 TÜRKiYE'DEKi ÖZEL SAGLIK VE SPOR MERKEZLERiNDE ÇALIŞAN PERSONELiN ış TATMiN SEViYELERi Ünal KARlı, Settar KOÇAK Ortadoğu Teknik

Detaylı

ORTAÖĞRETİM KURUMLARI ÖĞRENCİ SEÇME SINAVININ TÜRKÇE DİL YETERLİLİKLERİ AÇISINDAN MODELLENMESİ 1

ORTAÖĞRETİM KURUMLARI ÖĞRENCİ SEÇME SINAVININ TÜRKÇE DİL YETERLİLİKLERİ AÇISINDAN MODELLENMESİ 1 Ekim 2006 Cilt:14 No:2 Kastamonu Eğitim Dergisi 403-412 ORTAÖĞRETİM KURUMLARI ÖĞRENCİ SEÇME SINAVININ TÜRKÇE DİL YETERLİLİKLERİ AÇISINDAN MODELLENMESİ 1 Cem GÜZELLER Akdeniz Üniversitesi, Eğitim Fakültesi,

Detaylı

LISREL ve AMOS Programları Kullanılarak Gerçekleştirilen Yapısal Eşitlik Modeli (YEM) Analizlerine İlişkin Sonuçların Karşılaştırılması

LISREL ve AMOS Programları Kullanılarak Gerçekleştirilen Yapısal Eşitlik Modeli (YEM) Analizlerine İlişkin Sonuçların Karşılaştırılması Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi ISSN: 1309-6575 LISREL ve AMOS Programları Kullanılarak Gerçekleştirilen Yapısal Eşitlik Modeli (YEM) Analizlerine İlişkin Sonuçların Karşılaştırılması

Detaylı

Ölçek Geli tirme Çal malarnda Kapsam Geçerlik ndeksinin Kullanm

Ölçek Geli tirme Çal malarnda Kapsam Geçerlik ndeksinin Kullanm Ölçek Geli tirme Çal malarnda Kapsam Geçerlik ndeksinin Kullanm Dr. Halil Yurdugül Hacettepe Üniversitesi Eitim Fakültesi yurdugul@hacettepe.edu.tr Motivasyon: Proje tabanl bir öretim sürecinde örencilerin

Detaylı

Principles of Atatürk & History of the Turkish Atatürk İlkeleri ve İnkılâp Tarihi I revolution I

Principles of Atatürk & History of the Turkish Atatürk İlkeleri ve İnkılâp Tarihi I revolution I I I. YIL HAFTALIK DERS SAATI FBÖ 101 Z Genel Fizik I General Physics I (4+0) -4 6 FBÖ 151 Z Genel Fizik Lab. I General Physics Lab. I (0+2) -1 2 FBÖ 103 Z Genel Kimya I General Chemistry I (4+0) -4 6 FBÖ

Detaylı

ÜÇÜNCÜ ULUSLARARASI MATEMATİK VE FEN ÇALIŞMASINDA TÜRK ÖĞRENCİLERİN BAŞARI DÜZEYLERİNİ ETKİLEYEN ETMENLER

ÜÇÜNCÜ ULUSLARARASI MATEMATİK VE FEN ÇALIŞMASINDA TÜRK ÖĞRENCİLERİN BAŞARI DÜZEYLERİNİ ETKİLEYEN ETMENLER ÜÇÜNCÜ ULUSLARARASI MATEMATİK VE FEN ÇALIŞMASINDA TÜRK ÖĞRENCİLERİN BAŞARI DÜZEYLERİNİ ETKİLEYEN ETMENLER Prof.Dr. Giray Berberoğlu Araş.Gör. Özgür Çelebi Araş.Gör.Ertuğrul Özdemir Araş.Gör. Emel Uysal

Detaylı

Saygın Ölüm İlkelerine İlişkin Tutumları Değerlendirme Ölçeği nin Geçerlik ve Güvenirlik Çalışması

Saygın Ölüm İlkelerine İlişkin Tutumları Değerlendirme Ölçeği nin Geçerlik ve Güvenirlik Çalışması Değerlendirme Ölçeği nin Geçerlik ve Güvenirlik Çalışması Veli Ankara Üniversitesi Sağlık Bilimleri Fakültesi Sosyal Hizmet Bölümü ÖZET Değerlendirme Ölçeği nin Geçerlik ve Güvenirlik Çalışması Türkiye,

Detaylı

Yrd.Doç.Dr. Özlem Çakır

Yrd.Doç.Dr. Özlem Çakır Yrd.Doç.Dr. Özlem Çakır Bölümü/Anabilim Dalı Bilgisayar ve Öğretim Teknolojileri Eğitimi Bölümü Bilgisayar ve Öğretim Teknolojileri Eğitimi Ana Bilim Dalı İletişim Bilgileri Ankara Üniversitesi Eğitim

Detaylı

KİMYA ÖĞRETMEN ADAYLARININ ÖĞRENME VE ÖĞRETME ANLAYIŞLARI İLE ÖĞRENME STİLLERİNİN YAPILANDIRMACILIK FELSEFESİ İLE OLAN UYUMU

KİMYA ÖĞRETMEN ADAYLARININ ÖĞRENME VE ÖĞRETME ANLAYIŞLARI İLE ÖĞRENME STİLLERİNİN YAPILANDIRMACILIK FELSEFESİ İLE OLAN UYUMU KİMYA ÖĞRETMEN ADAYLARININ ÖĞRENME VE ÖĞRETME ANLAYIŞLARI İLE ÖĞRENME STİLLERİNİN YAPILANDIRMACILIK FELSEFESİ İLE OLAN UYUMU Filiz KABAPINAR OYA AĞLARCI M.Ü. Atatürk Eğitim Fakültesi OFMA Eğitimi Böl.

Detaylı

SPOR TÜKETIMINDE PAZARLAMA BILEŞENLERI: ÖLÇEK GELIŞTIRME

SPOR TÜKETIMINDE PAZARLAMA BILEŞENLERI: ÖLÇEK GELIŞTIRME Spor Bilinileri Dergisi Hacettepe J. ofsport Sdences 20041 15 (4)1219-232 SPOR TÜKETIMINDE PAZARLAMA BILEŞENLERI: ÖLÇEK GELIŞTIRME Hasan Biral YALÇIN*, Bekir YÜKTAŞIR*, Zafer DO~RU** Abant Izzet Baysal

Detaylı

Ceyhan Çiğdemoğlu, PhD Flipped Classroom (FC) çalışmalarını incelemek, Hangi alanlarda çalışılmış Nasıl çalışmalar yapılmış Durumu değerlendirip Üniversitemizde yapılmakta olan ya da yapılacak çalışmalara

Detaylı

ÖZET Amaç: Yöntem: Bulgular: Sonuçlar: Anahtar Kelimeler: ABSTRACT Rational Drug Usage Behavior of University Students Objective: Method: Results:

ÖZET Amaç: Yöntem: Bulgular: Sonuçlar: Anahtar Kelimeler: ABSTRACT Rational Drug Usage Behavior of University Students Objective: Method: Results: ÖZET Amaç: Bu araştırma, üniversite öğrencilerinin akılcı ilaç kullanma davranışlarını belirlemek amacı ile yapılmıştır. Yöntem: Tanımlayıcı-kesitsel türde planlanan araştırmanın evrenini;; bir kız ve

Detaylı

Anahtar Sözcükler: Okul öncesi, Sosyal beceriler, Sosyal beceri ölçme araçları

Anahtar Sözcükler: Okul öncesi, Sosyal beceriler, Sosyal beceri ölçme araçları 1 2 3 4 5 6 7 8 9 10 11 12 13 Özet: Bu çalışmada Okul Öncesi Sosyal Beceri Değerlendirme Ölçeği nin (OSBED) öğretmen formunun geliştirilmesi amaçlanmıştır. Ölçeğin faktör yapısının incelenmesine ve güvenirlik

Detaylı

T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ISPARTA İLİ KİRAZ İHRACATININ ANALİZİ

T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ISPARTA İLİ KİRAZ İHRACATININ ANALİZİ T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ISPARTA İLİ KİRAZ İHRACATININ ANALİZİ Danışman Doç. Dr. Tufan BAL YÜKSEK LİSANS TEZİ TARIM EKONOMİSİ ANABİLİM DALI ISPARTA - 2016 2016 [] TEZ

Detaylı

PSİKOLOJİ BÖLÜMÜ 2014-2015 EĞİTİM-ÖĞRETİM YILI GÜZ DÖNEMİ PROGRAMI

PSİKOLOJİ BÖLÜMÜ 2014-2015 EĞİTİM-ÖĞRETİM YILI GÜZ DÖNEMİ PROGRAMI ANADAL EĞİTİM PROGRAMI ZORUNLU DERSLERİ 1.Sınıf/1.Yarıyıl in ön koşulu var mı? *** in önceki eğitim programında eşdeğer bir dersi var mı? **** 1 YDİ101 YDF101 YDA101 2 ATA101 Temel Yabancı Dil (İngilizce)

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Resim ÖZGEÇMİŞ 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Telefon : 386 280 45 50 Mail : kskula@ahievran.edu.tr

Detaylı

FEN BİLGİSİ ÖĞRETMEN ADAYLARININ ÖĞRENME STİLLERİ, CİNSİYET ÖĞRENME STİLİ İLİŞKİSİ VE ÖĞRENME STİLİNE GÖRE AKADEMİK BAŞARI 1

FEN BİLGİSİ ÖĞRETMEN ADAYLARININ ÖĞRENME STİLLERİ, CİNSİYET ÖĞRENME STİLİ İLİŞKİSİ VE ÖĞRENME STİLİNE GÖRE AKADEMİK BAŞARI 1 Mayıs 2011 Cilt:19 No:2 Kastamonu Eğitim Dergisi 379-386 FEN BİLGİSİ ÖĞRETMEN ADAYLARININ ÖĞRENME STİLLERİ, CİNSİYET ÖĞRENME STİLİ İLİŞKİSİ VE ÖĞRENME STİLİNE GÖRE AKADEMİK BAŞARI 1 Hüseyin Hüsnü BAHAR

Detaylı

Ortaö retim Alan Ö retmenli i Tezsiz Yüksek Lisans Programlar nda Akademik Ba ar n n Çe itli De i kenlere Göre ncelenmesi: Mersin Üniversitesi Örne i

Ortaö retim Alan Ö retmenli i Tezsiz Yüksek Lisans Programlar nda Akademik Ba ar n n Çe itli De i kenlere Göre ncelenmesi: Mersin Üniversitesi Örne i Ortaö retim Alan Ö retmenli i Tezsiz Yüksek Lisans Programlar nda Akademik Ba ar n n Çe itli De i kenlere Göre ncelenmesi: Mersin Üniversitesi Örne i Devrim ÖZDEM R ALICI * Özet Bu ara t rmada 2002-2003

Detaylı

ANAOKULU ÇOCUKLARlNDA LOKOMOTOR. BECERiLERE ETKisi

ANAOKULU ÇOCUKLARlNDA LOKOMOTOR. BECERiLERE ETKisi Spor Bilimleri Dergisi Hacettepe 1. ofsport Sciences 2004, 15 (2), 76-90 GELişTiRiLMiş OYUN-EGZERSiZ PROGRAMıNıN ANAOKULU ÇOCUKLARlNDA LOKOMOTOR. BECERiLERE ETKisi Fabna KERKEZ ÖZET Bu çalışmanın amacı

Detaylı

Akademisyenlerin İnternet Bankacılığı Kullanımını Etkileyen Faktörlerin Yapısal Eşitlik Modeli İle İncelenmesi

Akademisyenlerin İnternet Bankacılığı Kullanımını Etkileyen Faktörlerin Yapısal Eşitlik Modeli İle İncelenmesi Akademisyenlerin İnternet Bankacılığı Kullanımını Etkileyen Faktörlerin Yapısal Eşitlik Modeli İle İncelenmesi Çiğdem TATAR *, Özlem EGE ORUÇ Dokuz Eylül Üniversitesi, Fen Fakültesi İstatistik Bölümü,

Detaylı

ÖZET YENİ İLKÖĞRETİM II. KADEME MATEMATİK ÖĞRETİM PROGRAMININ İSTATİSTİK BOYUTUNUN İNCELENMESİ. Yunus KAYNAR

ÖZET YENİ İLKÖĞRETİM II. KADEME MATEMATİK ÖĞRETİM PROGRAMININ İSTATİSTİK BOYUTUNUN İNCELENMESİ. Yunus KAYNAR ÖZET YENİ İLKÖĞRETİM II. KADEME MATEMATİK ÖĞRETİM PROGRAMININ İSTATİSTİK BOYUTUNUN İNCELENMESİ Yunus KAYNAR AFYON KOCATEPE ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EĞİTİM BİLİMLERİ ANA BİLİM DALI Ağustos

Detaylı

The Study of Relationship Between the Variables Influencing The Success of the Students of Music Educational Department

The Study of Relationship Between the Variables Influencing The Success of the Students of Music Educational Department 71 Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, Yıl 9, Sayı 17, Haziran 2009, 71-76 Müzik Eğitimi Anabilim Dalı Öğrencilerinin Başarılarına Etki Eden Değişkenler Arasındaki İlişkinin İncelenmesi

Detaylı

Üniversite Öğrencilerinin Akademik Başarılarını Etkileyen Faktörler Bahman Alp RENÇBER 1

Üniversite Öğrencilerinin Akademik Başarılarını Etkileyen Faktörler Bahman Alp RENÇBER 1 Çankırı Karatekin Üniversitesi Sosyal Bilimler Enstitüsü Dergisi 3(1): 191-198 Üniversite Öğrencilerinin Akademik Başarılarını Etkileyen Faktörler Bahman Alp RENÇBER 1 Özet Bu çalışmanın amacı, üniversite

Detaylı

SANAYİ İŞÇİLERİNİN DİNİ YÖNELİMLERİ VE ÇALIŞMA TUTUMLARI ARASINDAKİ İLİŞKİ - ÇORUM ÖRNEĞİ

SANAYİ İŞÇİLERİNİN DİNİ YÖNELİMLERİ VE ÇALIŞMA TUTUMLARI ARASINDAKİ İLİŞKİ - ÇORUM ÖRNEĞİ , ss. 51-75. SANAYİ İŞÇİLERİNİN DİNİ YÖNELİMLERİ VE ÇALIŞMA TUTUMLARI ARASINDAKİ İLİŞKİ - ÇORUM ÖRNEĞİ Sefer YAVUZ * Özet Sanayi İşçilerinin Dini Yönelimleri ve Çalışma Tutumları Arasındaki İlişki - Çorum

Detaylı

İŞLETMELERDE KURUMSAL İMAJ VE OLUŞUMUNDAKİ ANA ETKENLER

İŞLETMELERDE KURUMSAL İMAJ VE OLUŞUMUNDAKİ ANA ETKENLER ANKARA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ HALKLA İLİŞKİLER VE TANITIM ANA BİLİM DALI İŞLETMELERDE KURUMSAL İMAJ VE OLUŞUMUNDAKİ ANA ETKENLER BİR ÖRNEK OLAY İNCELEMESİ: SHERATON ANKARA HOTEL & TOWERS

Detaylı

1 9 1 4 1 0 1 6 1 9 1 1-2012

1 9 1 4 1 0 1 6 1 9 1 1-2012 1 3 1 4 1 9 1 1 1 2 1 9 1 4 1 1 1 2 1 9 1 7 1 4 1 9 1 4 1 7 1 1 1 8 1 9 1 0 1 4 1 9 1 7 1 1 1 7 1 9 1 8 1 7 1 8 1 2 1 9 1 9 1 8 1 2 1 9 1 0 1 2 1 4 1 1 1 6 1 1 1 9 1 9 1 8 1 8 1 8 1 1 1 9 1 8 1 7 1 9 1

Detaylı

Educational On-line Programmes for Teachers and Students

Educational On-line Programmes for Teachers and Students Educational On-line Programmes for Teachers and Students Hamit İVGİN - İstanbul Provincial Directorate of National Education ICT Coordinator & Fatih Project Coordinator in İstanbul Kasım 2014 - İSTANBUL

Detaylı

KIRIKKALE ÜNİVERSİTESİEĞİTİM FAKÜLTESİ SINIF ÖĞRETMENLİĞİ PROGRAMI 2013 2014 EĞİTİM-ÖĞRETİM YILI LİSANS PROGRAMI ÖĞRETİM PLANI.

KIRIKKALE ÜNİVERSİTESİEĞİTİM FAKÜLTESİ SINIF ÖĞRETMENLİĞİ PROGRAMI 2013 2014 EĞİTİM-ÖĞRETİM YILI LİSANS PROGRAMI ÖĞRETİM PLANI. I. YARIYIL KIRIKKALE ÜNİVERSİTESİEĞİTİM FAKÜLTESİ SINIF ÖĞRETMENLİĞİ PROGRAMI 2013 2014 EĞİTİM-ÖĞRETİM YILI LİSANS PROGRAMI ÖĞRETİM PLANI 0801101 Temel Matematik I 2+0 General Mathematics I 6 0801102 Genel

Detaylı

Tekrar ve Düzeltmenin Erişiye Etkisi Fusun G. Alacapınar

Tekrar ve Düzeltmenin Erişiye Etkisi Fusun G. Alacapınar Journal of Language and Linguistic Studies Vol.2, No.2, October 2006 Tekrar ve Düzeltmenin Erişiye Etkisi Fusun G. Alacapınar Öz Problem durumu:tekrar, düzeltme ile başarı ve erişi arasında anlamlı bir

Detaylı

KANSER HASTALARINDA ANKSİYETE VE DEPRESYON BELİRTİLERİNİN DEĞERLENDİRİLMESİ UZMANLIK TEZİ. Dr. Levent ŞAHİN

KANSER HASTALARINDA ANKSİYETE VE DEPRESYON BELİRTİLERİNİN DEĞERLENDİRİLMESİ UZMANLIK TEZİ. Dr. Levent ŞAHİN T.C. SAĞLIK BAKANLIĞI İZMİR KATİP ÇELEBİ ÜNİVERSİTESİ ATATÜRK EĞİTİM VE ARAŞTIRMA HASTANESİ AİLE HEKİMLİĞİ KLİNİĞİ KANSER HASTALARINDA ANKSİYETE VE DEPRESYON BELİRTİLERİNİN DEĞERLENDİRİLMESİ UZMANLIK TEZİ

Detaylı

Okul Öncesi (5-6 Yaş) Cimnastik Çalışmasının Esneklik, Denge Ve Koordinasyon Üzerine Etkisi

Okul Öncesi (5-6 Yaş) Cimnastik Çalışmasının Esneklik, Denge Ve Koordinasyon Üzerine Etkisi Okul Öncesi (5-6 Yaş) Cimnastik Çalışmasının Esneklik, Denge Ve Koordinasyon Üzerine Etkisi Kadir KOYUNCUOĞLU, Onsekiz Mart Üniversitesi, Beden Eğitimi ve Spor Yüksek Okulu, Çanakkale, Türkiye. koyuncuoglu45@gmail.com

Detaylı

YÜKSEKÖĞRETİMDE HİZMET KALİTESİ ÖLÇEĞİ: GÜVENİLİRLİK VE GEÇERLİLİK ANALİZİ

YÜKSEKÖĞRETİMDE HİZMET KALİTESİ ÖLÇEĞİ: GÜVENİLİRLİK VE GEÇERLİLİK ANALİZİ Ekonometri ve İstatistik Sayı:18 2013 116-133 İSTANBUL ÜNİVERSİTESİ İKTİSAT FAKÜLTESİ EKONOMETRİ VE İSTATİSTİK DERGİSİ YÜKSEKÖĞRETİMDE HİZMET KALİTESİ ÖLÇEĞİ: GÜVENİLİRLİK VE GEÇERLİLİK ANALİZİ Hakan BEKTAŞ

Detaylı

7.1. Uluslararası hakemli dergilerde yayınlanan makaleler (SCI & SSCI & Arts and Humanities)

7.1. Uluslararası hakemli dergilerde yayınlanan makaleler (SCI & SSCI & Arts and Humanities) ÖZGEÇMİŞ 1. Adı Soyadı: Mikail YALÇIN 2. Doğum Tarihi: 1985 3. Unvanı: Araştırma Görevlisi 4. Öğrenim Durumu: Derece Bölüm/Program Üniversite Yıl Lisans İlköğretim Matematik Öğretmenliği Cumhuriyet Üniversitesi

Detaylı

Gruplararası Karşılaştırmalarda Ölçme Değişmezliğinin Test Edilmesi: PISA Öğrenci Anketi Örneği

Gruplararası Karşılaştırmalarda Ölçme Değişmezliğinin Test Edilmesi: PISA Öğrenci Anketi Örneği Hacettepe Üniversitesi Eğitim Fakültesi Dergisi (H. U. Journal of Education) 30(4): 80-90 [2015] Gruplararası Karşılaştırmalarda Ölçme Değişmezliğinin Test Edilmesi: PISA Öğrenci Anketi Örneği Examination

Detaylı

Diyabette Öz-Yönetim Algısı Skalası nın (DÖYAS) Türkçe Versiyonu: Geçerlik ve Güvenirlik Değerlendirme

Diyabette Öz-Yönetim Algısı Skalası nın (DÖYAS) Türkçe Versiyonu: Geçerlik ve Güvenirlik Değerlendirme Diyabette Öz-Yönetim Algısı Skalası nın (DÖYAS) Türkçe Versiyonu: Geçerlik ve Güvenirlik Değerlendirme Yrd. Doç. Dr. Ayfer Bayındır Çevik Doç. Dr. Şeyda Özcan Recep Tayyip Erdoğan Üniversitesi Sağlık Yüksekokulu

Detaylı

BOĞAZİÇİ UNIVERSITY KANDİLLİ OBSERVATORY and EARTHQUAKE RESEARCH INSTITUTE GEOMAGNETISM LABORATORY

BOĞAZİÇİ UNIVERSITY KANDİLLİ OBSERVATORY and EARTHQUAKE RESEARCH INSTITUTE GEOMAGNETISM LABORATORY Monthly Magnetic Bulletin May 2015 BOĞAZİÇİ UNIVERSITY KANDİLLİ OBSERVATORY and EARTHQUAKE RESEARCH INSTITUTE GEOMAGNETISM LABORATORY http://www.koeri.boun.edu.tr/jeomanyetizma/ Magnetic Results from İznik

Detaylı

KLİNİK ARAŞTIRMALARDA İKİ ÖLÇÜM TEKNİĞİNİN UYUMUNU İNCELEMEDE KULLANILAN İSTATİSTİKSEL YÖNTEMLER

KLİNİK ARAŞTIRMALARDA İKİ ÖLÇÜM TEKNİĞİNİN UYUMUNU İNCELEMEDE KULLANILAN İSTATİSTİKSEL YÖNTEMLER ANKARA ÜNİVERSİTESİ TIP FAKÜLTESİ MECMUASI Cilt 56, Sayı 1, 2003 1-6 KLİNİK ARAŞTIRMALARDA İKİ ÖLÇÜM TEKNİĞİNİN UYUMUNU İNCELEMEDE KULLANILAN İSTATİSTİKSEL YÖNTEMLER Yasemin Genç* Durdu Sertkaya** Selda

Detaylı

THE ROLE OF GENDER AND LANGUAGE LEARNING STRATEGIES IN LEARNING ENGLISH

THE ROLE OF GENDER AND LANGUAGE LEARNING STRATEGIES IN LEARNING ENGLISH THE ROLE OF GENDER AND LANGUAGE LEARNING STRATEGIES IN LEARNING ENGLISH THESIS SUBMITTED TO THE GRADUATE SCHOOL OF SOCIAL SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY OKTAY ASLAN IN PARTIAL FULFILLMENT

Detaylı

Sınavlı ve Sınavsız Geçiş İçin Akademik Bir Karşılaştırma

Sınavlı ve Sınavsız Geçiş İçin Akademik Bir Karşılaştırma Sınavlı ve Sınavsız Geçiş İçin Akademik Bir Karşılaştırma Öğr. Gör. Kenan KARAGÜL, Öğr. Gör. Nigar KARAGÜL, Murat DOĞAN 3 Pamukkale Üniversitesi, Honaz Meslek Yüksek Okulu, Lojistik Programı, kkaragul@pau.edu.tr

Detaylı

YAPISAL EġĠTLĠK MODELLEMESĠNDE ÇOK DEĞĠġKENLĠ NORMALLĠK VARSAYIMI ALTINDA BĠR UYGULAMA

YAPISAL EġĠTLĠK MODELLEMESĠNDE ÇOK DEĞĠġKENLĠ NORMALLĠK VARSAYIMI ALTINDA BĠR UYGULAMA ISSN:306-3 e-journal of New World Sciences Academy 0, Volume: 6, Number: 4, Article Number: 3A004 H. Eray Çelik Sinan Saraçlı PHYSICAL SCIENCES Veysel Yılmaz 3 Received: March 0 Yuzuncu Yıl University

Detaylı

Yard. Doç. Dr. İrfan DELİ. Matematik

Yard. Doç. Dr. İrfan DELİ. Matematik Unvanı Yard. Doç. Dr. Adı Soyadı İrfan DELİ Doğum Yeri ve Tarihi: Çivril/Denizli -- 06.04.1986 Bölüm: E-Posta Matematik irfandeli20@gmail.com, irfandeli@kilis.edu.tr AKADEMİK GELİŞİM ÜNİVERSİTE YIL Lisans

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı : SEDA SARAÇ. 4. Öğrenim Durumu :!! İletişim Bilgileri. : Küçüksu Mah. 2001 Sitesi L4. Çengelköy/İstanbul

ÖZGEÇMİŞ. 1. Adı Soyadı : SEDA SARAÇ. 4. Öğrenim Durumu :!! İletişim Bilgileri. : Küçüksu Mah. 2001 Sitesi L4. Çengelköy/İstanbul ÖZGEÇMİŞ 1. Adı Soyadı : SEDA SARAÇ İletişim Bilgileri Adres Tel : 0 532 484 96 26 Eposta : sbiryan@yahoo.com 2. Doğum Tarihi : 09/02/1975 3. Unvanı : Dr. 4. Öğrenim Durumu : : Küçüksu Mah. 2001 Sitesi

Detaylı

Doç. Dr. Şener BÜYÜKÖZTÜRK

Doç. Dr. Şener BÜYÜKÖZTÜRK i Doç. Dr. Şener Büyüköztürk DENEYSEL DESENLER ISBN 975-6802-43-X Pegem A Yayınları, 2006 Bu kitabın basım, yayın ve satış hakları Pegem A Yayıncılık Tic. Ltd. Şti.'ne aittir. Anılan kuruluşun izni alınmadan

Detaylı

FEN BĠLGĠSĠ LABORATUARINA YÖNELĠK TUTUM ÖLÇEĞĠNĠN GELĠġTĠRĠLMESĠ: GEÇERLĠK VE GÜVENĠRLĠK ANALĠZLERĠ

FEN BĠLGĠSĠ LABORATUARINA YÖNELĠK TUTUM ÖLÇEĞĠNĠN GELĠġTĠRĠLMESĠ: GEÇERLĠK VE GÜVENĠRLĠK ANALĠZLERĠ FEN BĠLGĠSĠ LABORATUARINA YÖNELĠK TUTUM ÖLÇEĞĠNĠN GELĠġTĠRĠLMESĠ: GEÇERLĠK VE GÜVENĠRLĠK ANALĠZLERĠ Havva YAMAK 1 Nusret KAVAK 2. Sedef CANBAZOĞLU BĠLĠCĠ 3 ESRA BOZKURT 4 ZEYNEP BURCU PEDER 5 1 Gazi Üniversitesi,

Detaylı

EK: SENATO ONAYI ALMIŞ MEVCUT EKDAL PROGRAMLARI A) GENEL EKDALLAR Genel ekdallar tüm öğrencilere açıktır.

EK: SENATO ONAYI ALMIŞ MEVCUT EKDAL PROGRAMLARI A) GENEL EKDALLAR Genel ekdallar tüm öğrencilere açıktır. EK: SENATO ONAYI ALMIŞ MEVCUT EKDAL PROGRAMLARI A) GENEL EKDALLAR Genel ekdallar tüm öğrencilere açıktır. HUKUK EKDALI (Aşağıdaki derslerden 4/5 adet) LAW250 Main Concepts of Turkish Law/IR 263 Fundamental

Detaylı

Öğretmenlik Meslek Bilgisi ve Tezsiz Yüksek Lisans Programlarının Tutum ve Özyeterlik Açısından Değerlendirilmesi

Öğretmenlik Meslek Bilgisi ve Tezsiz Yüksek Lisans Programlarının Tutum ve Özyeterlik Açısından Değerlendirilmesi Öğretmenlik Meslek Bilgisi ve Tezsiz Yüksek Lisans Programlarının Tutum ve Özyeterlik Açısından Değerlendirilmesi Özler ÇAKIR, Adnan KAN, & Önder SÜNBÜL * Özet Bu çalışma, tezsiz yüksek lisans (TYL) ve

Detaylı

DERS KODU DERS ADI ZORUNLU TEORİ UYGULAMA LAB KREDİ AKTS Atatürk İlkeleri ve İnkılap AIT181 Tarihi I Zorunlu 2 0 0 2 2

DERS KODU DERS ADI ZORUNLU TEORİ UYGULAMA LAB KREDİ AKTS Atatürk İlkeleri ve İnkılap AIT181 Tarihi I Zorunlu 2 0 0 2 2 1.YARIYIL LERİ KODU ADI ZORUNLU TEORİ Atatürk İlkeleri ve İnkılap AIT181 Tarihi I Zorunlu 2 0 0 2 2 IKT101 İktisada Giriş I Zorunlu 3 0 0 3 6 IKT103 İktisatçılar İçin Matematik I Zorunlu 3 0 0 3 6 IKT105

Detaylı

ÖLÇÜM VARYASYONUNU BEL RLEMEK Ç N B R ÇALI MA

ÖLÇÜM VARYASYONUNU BEL RLEMEK Ç N B R ÇALI MA ÖLÇÜM VARYASYNUNU BL RLMK Ç N B R ÇALI MA Bahar SNNAR LU Marmara Üniversitesi Özlem YURTSVR Marmara Üniversitesi ÖZT lerin istenilen kalite özelliklerine uygunlu unu kontrol etmek için üretim hatlar ndan

Detaylı

Nimet ERYİĞİT İNSAN KAYNAKLARI YÖNETİMİ YENİLİK

Nimet ERYİĞİT İNSAN KAYNAKLARI YÖNETİMİ YENİLİK Nimet ERYİĞİT İNSAN KAYNAKLARI YÖNETİMİ VE YENİLİK Yay n No : 3084 İşletme-Ekonomi : 652 1. Baskı Mart 2014 İSTANBUL ISBN 978-605 - 333-111 - 7 Copyright Bu kitab n bu bas s n n Türkiye deki yay n haklar

Detaylı

İlişki İnançları Ölçeği nin Uyarlanması: Geçerlik ve Güvenirlik Çalışmaları

İlişki İnançları Ölçeği nin Uyarlanması: Geçerlik ve Güvenirlik Çalışmaları İlişki İnançları Ölçeği nin Uyarlanması: Geçerlik ve Güvenirlik Çalışmaları Cem Ali GİZİR 1 Özet: Bu araştırmanın amacı, Romans ve DeBord (1995) tarafından geliştirilen İlişki İnançları Ölçeği ni Türkçe

Detaylı

DERS PLANI VE AKTS FORMU

DERS PLANI VE AKTS FORMU DERS PLANI VE AKTS FORMU DERS BİLGİLERİ Ders Kodu Yarıyıl Saat (T-U) Kredi AKTS TÜRK EĞİTİM SİSTEMİ VE SORUNLARI 3+0 3 6 Dersin Dili Dersin Seviyesi Dersin Türü Dersin Koordinatörü Türkçe Doktora Seçmeli

Detaylı

1. YAPISAL KIRILMA TESTLERİ

1. YAPISAL KIRILMA TESTLERİ 1. YAPISAL KIRILMA TESTLERİ Yapısal kırılmanın araştırılması için CUSUM, CUSUMSquare ve CHOW testleri bize gerekli bilgileri sağlayabilmektedir. 1.1. CUSUM Testi (Cumulative Sum of the recursive residuals

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ - 1. Derece Bölüm/Program Üniversite Yıl Lisans Ortaöğretim Matematik Öğretmenliği

ÖZGEÇMİŞ VE ESERLER LİSTESİ - 1. Derece Bölüm/Program Üniversite Yıl Lisans Ortaöğretim Matematik Öğretmenliği ÖZGEÇMİŞ Adı Soyadı: Burçin GÖKKURT Doğum Tarihi: 01.06.1984 Öğrenim Durumu: Doktora ÖZGEÇMİŞ VE ESERLER LİSTESİ - 1 Derece Bölüm/Program Üniversite Yıl Lisans Ortaöğretim Öğretmenliği Karadeniz Teknik

Detaylı

ÖZGEÇMĐŞ. Derece Bölüm/Program Üniversite Yıl Lisans

ÖZGEÇMĐŞ. Derece Bölüm/Program Üniversite Yıl Lisans ÖZGEÇMĐŞ Adı Soyadı: Yeşim Özek Kaloti Doğum Tarihi: 1969 Öğrenim Durumu: Derece Bölüm/Program Üniversite Yıl Lisans Đngilizce DĐCLE ÜNĐVERSĐTESĐ 1988-1992 Öğretmenliği Y. Lisans TESOL University of Stirling

Detaylı

FEN BİLGİSİ LABORATUARI DERSİNDE BİLGİSAYAR DESTEKLİ ETKİNLİKLERİN ÖĞRENCİ KAZANIMLARI ÜZERİNE ETKİSİ; ASİT-BAZ KAVRAMLARI VE TİTRASYON KONUSU ÖRNEĞİ

FEN BİLGİSİ LABORATUARI DERSİNDE BİLGİSAYAR DESTEKLİ ETKİNLİKLERİN ÖĞRENCİ KAZANIMLARI ÜZERİNE ETKİSİ; ASİT-BAZ KAVRAMLARI VE TİTRASYON KONUSU ÖRNEĞİ FEN BİLGİSİ LABORATUARI DERSİNDE BİLGİSAYAR DESTEKLİ ETKİNLİKLERİN ÖĞRENCİ KAZANIMLARI ÜZERİNE ETKİSİ; ASİT-BAZ KAVRAMLARI VE TİTRASYON KONUSU ÖRNEĞİ G.KIYICI 1, A. YUMUŞAK 1 1 Celal Bayar Üniversitesi

Detaylı

FARKLI LiGLERDE MÜCADELE EDEN PROFESYONEL FUTBOL TAKıMLARı SPORCULARININ SOMATOTip ÖZELLIKLERi ÜZERiNE BiR INCELEME

FARKLI LiGLERDE MÜCADELE EDEN PROFESYONEL FUTBOL TAKıMLARı SPORCULARININ SOMATOTip ÖZELLIKLERi ÜZERiNE BiR INCELEME Spor Bilimleri Dergisi Hacettepe 1. ofspor! Sciences 2002,13 (4), 32-40 FARKLI LiGLERDE MÜCADELE EDEN PROFESYONEL FUTBOL TAKıMLARı SPORCULARININ SOMATOTip ÖZELLIKLERi ÜZERiNE BiR INCELEME Ferda RAMANU,

Detaylı

2001 ve 2008 Yılında Oluşan Krizlerin Faktör Analizi ile Açıklanması

2001 ve 2008 Yılında Oluşan Krizlerin Faktör Analizi ile Açıklanması 2001 ve 2008 Yılında Oluşan Krizlerin Faktör Analizi ile Açıklanması Mahmut YARDIMCIOĞLU Özet Genel anlamda krizler ekonominin olağan bir parçası haline gelmiştir. Sıklıkla görülen bu krizlerin istatistiksel

Detaylı

BOYLAMSAL VERİLERDE ÇOK DÜZEYLİ ANALİZLER: DİL GELİŞİMİNE İLİŞKİN BİR UYGULAMA

BOYLAMSAL VERİLERDE ÇOK DÜZEYLİ ANALİZLER: DİL GELİŞİMİNE İLİŞKİN BİR UYGULAMA Ekonometri ve İstatistik Sayı:19 2013 27-37 İSTANBUL ÜNİVERSİTESİ İKTİSAT FAKÜLTESİ EKONOMETRİ VE İSTATİSTİK DERGİSİ BOYLAMSAL VERİLERDE ÇOK DÜZEYLİ ANALİZLER: DİL GELİŞİMİNE İLİŞKİN BİR UYGULAMA Özlem

Detaylı

ULUDAĞ ÜNİVERSİTESİ EĞİTİM FAKÜLTESİ BEDEN EĞİTİMİ ve SPOR BÖLÜMÜ ÖĞRENCİLERİNİN ÖSS ve ÖZEL YETENEK SINAVI PUANLARINA GÖRE GENEL AKADEMİK BAŞARILARI

ULUDAĞ ÜNİVERSİTESİ EĞİTİM FAKÜLTESİ BEDEN EĞİTİMİ ve SPOR BÖLÜMÜ ÖĞRENCİLERİNİN ÖSS ve ÖZEL YETENEK SINAVI PUANLARINA GÖRE GENEL AKADEMİK BAŞARILARI Uludağ Üniversitesi Eğitim Fakültesi Dergisi Cilt: XVII, Sayı: 1, 2003 ULUDAĞ ÜNİVERSİTESİ EĞİTİM FAKÜLTESİ BEDEN EĞİTİMİ ve SPOR BÖLÜMÜ ÖĞRENCİLERİNİN ÖSS ve ÖZEL YETENEK SINAVI PUANLARINA GÖRE GENEL

Detaylı

Yabancı Dil Eğitiminde Aynı Davranışları Yoklayan Çoktan Seçmeli ve Kısa Cevaplı İki Testin Madde ve Test Özelliklerinin Karşılaştırılması

Yabancı Dil Eğitiminde Aynı Davranışları Yoklayan Çoktan Seçmeli ve Kısa Cevaplı İki Testin Madde ve Test Özelliklerinin Karşılaştırılması Eğitim ve Bilim 2006, Cilt 31, Sayı 142 (65-71) Education and Science 2006, Vol. 31, No 142 (65-71) Yabancı Dil Eğitiminde Aynı Davranışları Yoklayan Çoktan Seçmeli ve Kısa Cevaplı İki Testin Madde ve

Detaylı

Serap POYRAZ Celal Bayar Ü. Eğitim Fakültesi, İlköğretim Fen Bilgisi Eğitimi Bölümü, Manisa.

Serap POYRAZ Celal Bayar Ü. Eğitim Fakültesi, İlköğretim Fen Bilgisi Eğitimi Bölümü, Manisa. Ekim 2006 Cilt:14 No:2 Kastamonu Eğitim Dergisi 497-502 İLKÖĞRETİM FEN BİLGİSİ ÖĞRETİMİNDE İŞBİRLİKLİ ÖĞRENME YÖNTEMİNİN KULLANILDIĞI EĞİTİM ORTAMLARINDA BAŞARIYI ÖLÇMEDE ÇOKTAN SEÇMELİ TESTLERİN DİĞER

Detaylı

T.C. Hitit Üniversitesi. Sosyal Bilimler Enstitüsü. İşletme Anabilim Dalı

T.C. Hitit Üniversitesi. Sosyal Bilimler Enstitüsü. İşletme Anabilim Dalı T.C. Hitit Üniversitesi Sosyal Bilimler Enstitüsü İşletme Anabilim Dalı TURİZM PAZARLAMASINDA TÜKETİCİLERİN TURİSTİK SATIN ALMA KARARI ÜZERİNDE ETKİLİ OLAN WEB SİTESİ TASARIM ÖZELLİKLERİNİN NÖROGÖRÜNTÜLEME

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) Data Editör iki arayüzden oluşur. 1. Data View 2. Variable

Detaylı

ÖZGEÇMİŞ. Görev Kurum Yıl Dekan Yardımcısı Akdeniz Üniversitesi Eğitim Fakültesi 1999-2004 Bölüm Başkanı

ÖZGEÇMİŞ. Görev Kurum Yıl Dekan Yardımcısı Akdeniz Üniversitesi Eğitim Fakültesi 1999-2004 Bölüm Başkanı ÖZGEÇMİŞ Doç. Dr. Demet Erol Öngen Adres Akdeniz Üniversitesi Eğitim Fakültesi Eğitim Bilimler Bölümü Kampus 07058 E-posta demetongen@akdeniz.edu.tr Telefon 2423102072 Faks 2422261953 RESİM EKLENECEK 1.

Detaylı

ELEKTRONİK OYUNLARIN ALGORİTMA GELİŞTİRME KONUSUNDA AKADEMİK BAŞARIYA, KALICILIĞA VE MOTİVASYONA ETKİSİ

ELEKTRONİK OYUNLARIN ALGORİTMA GELİŞTİRME KONUSUNDA AKADEMİK BAŞARIYA, KALICILIĞA VE MOTİVASYONA ETKİSİ 5 th International Computer & Instructional Technologies Symposium, 22-24 September 2011, Fırat University, ELAZIĞ- TURKEY ELEKTRONİK OYUNLARIN ALGORİTMA GELİŞTİRME KONUSUNDA AKADEMİK BAŞARIYA, KALICILIĞA

Detaylı

ĐST 474 Bayesci Đstatistik

ĐST 474 Bayesci Đstatistik ĐST 474 Bayesci Đstatistik Ders Sorumlusu: Dr. Haydar Demirhan haydarde@hacettepe.edu.tr Đnternet Sitesi: http://yunus.hacettepe.edu.tr/~haydarde Đçerik: Olasılık kuramının temel kavramları Bazı özel olasılık

Detaylı

Derece Alan Üniversite Yıl. Lisans Psikoloji Hacettepe 1999

Derece Alan Üniversite Yıl. Lisans Psikoloji Hacettepe 1999 EK 3 ÖZGEÇMİŞ 1. Adı Soyadı: Ferzan Curun 2. Doğum Tarihi: 11.04.1975 3. Unvanı: :Yrd.Doç.Dr 4. Öğrenim Durumu: :Doktora Derece Alan Üniversite Yıl Lisans Psikoloji Hacettepe 1999 Yüksek Lisans Doktora

Detaylı

SINIF ÖĞRETMENLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN MATEMATİĞE YÖNELİK TUTUMLARININ ÇEŞİTLİ DEĞİŞKENLERE GÖRE İNCELENMESİ

SINIF ÖĞRETMENLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN MATEMATİĞE YÖNELİK TUTUMLARININ ÇEŞİTLİ DEĞİŞKENLERE GÖRE İNCELENMESİ Ekim 2005 Cilt:13 No:2 Kastamonu Eğitim Dergisi 427-436 SINIF ÖĞRETMENLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN MATEMATİĞE YÖNELİK TUTUMLARININ ÇEŞİTLİ DEĞİŞKENLERE GÖRE İNCELENMESİ Halil Coşkun ÇELİK, Recep BİNDAK Dicle

Detaylı

01.02.2013. Statistical Package for the Social Sciences

01.02.2013. Statistical Package for the Social Sciences Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

EĞİTSEL BİLGİSAYAR OYUNLARININ AKADEMİK BAŞARIYA ETKİSİ: Sosyal Bilgiler Dersi Örneği E. Polat 1, A. Varol 2

EĞİTSEL BİLGİSAYAR OYUNLARININ AKADEMİK BAŞARIYA ETKİSİ: Sosyal Bilgiler Dersi Örneği E. Polat 1, A. Varol 2 EĞİTSEL BİLGİSAYAR OYUNLARININ AKADEMİK BAŞARIYA ETKİSİ: Sosyal Bilgiler Dersi Örneği E. Polat 1, A. Varol 2 1 MEB, Karakoçan Fatih İlköğretim Okulu, Elazığ/ Türkiye 2 Fırat Üniversitesi, Teknoloji Fakültesi,

Detaylı

Kredi Kartı Tutum Ölçeği Üzerine Bir Yapısal Eşitlik Modeli Uygulaması

Kredi Kartı Tutum Ölçeği Üzerine Bir Yapısal Eşitlik Modeli Uygulaması Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi Haziran 011, 1(1), 17-30. Kredi Kartı Tutum Ölçeği Üzerine Bir Yapısal Eşitlik Modeli Uygulaması Nuray GİRGİNER, Arzum ERKEN ÇELİK, Nurullah UÇKUN

Detaylı

İLERİ ARAŞTIRMA TEKNİKLERİ ARAŞTIRMA DESENİ RESEARCH DESIGN

İLERİ ARAŞTIRMA TEKNİKLERİ ARAŞTIRMA DESENİ RESEARCH DESIGN İLERİ ARAŞTIRMA TEKNİKLERİ ARAŞTIRMA DESENİ RESEARCH DESIGN 4 Prof. Dr. Mustafa Ergün Araştırma Desenleri (modelleri) Araştırmanın alt problemlerine yanıt aramak veya denenceleri test etmek için yapılan

Detaylı

CS 553 INTELLIGENT DATA ANALYSIS PROJECT WORKSHOP ORHUN ALP ORAL

CS 553 INTELLIGENT DATA ANALYSIS PROJECT WORKSHOP ORHUN ALP ORAL 1 CS 553 INTELLIGENT DATA ANALYSIS PROJECT WORKSHOP ORHUN ALP ORAL 2 PROJECT OUTLINE 1. Domain Information 2. Dataset: Extraction, Features and possible values 3. Preprocessing: Statistics, missing values,

Detaylı

ÜNİVERSİTE ÖĞRENCİLERİNİN PROBLEM ÇÖZME BECERİLERİ VE AKADEMİK BAŞARILARININ ÇEŞİTLİ DEĞİŞKENLERE GÖRE İNCELENMESİ

ÜNİVERSİTE ÖĞRENCİLERİNİN PROBLEM ÇÖZME BECERİLERİ VE AKADEMİK BAŞARILARININ ÇEŞİTLİ DEĞİŞKENLERE GÖRE İNCELENMESİ M.Ü. Atatürk Eğitim Fakültesi Eğitim Bilimleri Dergisi Yıl : 2005, Sayı 21, Sayfa : 75-88 ÜNİVERSİTE ÖĞRENCİLERİNİN PROBLEM ÇÖZME BECERİLERİ VE AKADEMİK BAŞARILARININ ÇEŞİTLİ DEĞİŞKENLERE GÖRE İNCELENMESİ

Detaylı

KIRIKKALE ÜNİVERSİTESİ FEN-EDEBIYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI

KIRIKKALE ÜNİVERSİTESİ FEN-EDEBIYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI KIRIKKALE ÜNİVERSİTESİ FEN-EDEBIYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI Kırıkkale Üniversitesi Fen-Edebiyat Fakültesi İstatistik Bölümü Lisans Programı, Kırıkkale Üniversitesi Önlisans ve Lisans

Detaylı

YÜKSEKÖĞRETİM KURULU YARDIMCI DOÇENT 17.12.2014

YÜKSEKÖĞRETİM KURULU YARDIMCI DOÇENT 17.12.2014 AYHAN KARAMAN ÖZGEÇMİŞ YÜKSEKÖĞRETİM KURULU YARDIMCI DOÇENT 17.12.2014 Adres : Sinop Üniversitesi Eğitim Fakültesi İlköğretim Bölümü 57000 SİNOP Telefon : 3682715526-2079 E-posta : akaraman@sinop.edu.tr

Detaylı

E-ÖĞRENME ORTAMLARI İÇİN SOSYAL BULUNUŞLUK ÖLÇEĞİNİN UYARLAMA ÇALIŞMASI

E-ÖĞRENME ORTAMLARI İÇİN SOSYAL BULUNUŞLUK ÖLÇEĞİNİN UYARLAMA ÇALIŞMASI E-ÖĞRENME ORTAMLARI İÇİN SOSYAL BULUNUŞLUK ÖLÇEĞİNİN UYARLAMA ÇALIŞMASI Öğr. Gör. Yusuf Ziya OLPAK Ahi Evran Üniversitesi Mucur Meslek Yüksekokulu Bilgisayar Teknolojisi ve Programlama Programı yusufziyaolpak@gmail.com

Detaylı

The Validity and Reliability Study of The Turkish Version of Westside Test Anxiety Scale

The Validity and Reliability Study of The Turkish Version of Westside Test Anxiety Scale 95 Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, Yıl 9, Sayı 17, Haziran 2009, 95-109 Westside Sınav Kaygısı Ölçeğinin Türkçe Formunun Geçerlik ve Güvenirlik Çalışması The Validity and Reliability

Detaylı

Seviye Belirleme Sınavı (SBS-2009): 6. Sınıf İngilizce Alt Testinin Geçerlik ve Güvenirlik Çalışması

Seviye Belirleme Sınavı (SBS-2009): 6. Sınıf İngilizce Alt Testinin Geçerlik ve Güvenirlik Çalışması Seviye Belirleme Sınavı (SBS-2009): 6. Sınıf İngilizce Alt Testinin Geçerlik ve Güvenirlik Çalışması Level Determination Exam (LDE-2009): Validity and Reliability Study of 6th Grade English Sub-test Gökhan

Detaylı