ZAMAN SERİSİ REGRESYONLARINDA ARDIŞIK
|
|
|
- Belgin Akşit
- 9 yıl önce
- İzleme sayısı:
Transkript
1 ZAMAN SERİSİ REGRESYONLARINDA ARDIŞIK BAĞINTI ve DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge 25 Nisan 2013 Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 1
2 Zaman Serileri Verileriyle Regresyon Analizinde Ardışık Bağıntı ve Değişen Varyans Bölüm 11 de gördüğümüz gibi, herhangi bir modelin dinamik özellikleri doğru belirlendiği takdirde hata teriminde ardışık bağıntının (serial correlation) olmaması gerekir. Bununla beraber bazı statik modellerde ve FDLM modellerinde spesifikasyon hatası olmasa bile hata terimlerinde otokorelasyon olabileceğini gördük. Bu bölümde ardışık bağıntı nın (serial correlation) ne tür problemlere yol açacağını ve ne gibi önlemler alabileceğimizi öğreneceğiz. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 2
3 Bölüm Planı Hata teriminde ardışık bağıntı varken OLS tahmin edicilerin özellikleri Ardışık bağıntı testleri x değişkenleri kesin dışsal iken ardışık bağıntı probleminin giderilmesi Farkı alınmış seriler kullanıldığında ardışık bağıntının düzeltilmesi Ardışık bağıntı varken OLS standart hataları ve test istatistiklerinin düzeltilmesi Zaman serilerinde değişen varyans (ARCH, GARCH modelleri) Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 3
4 Hata terimlerinde ardışık bağıntı (serial correlation) varken OLS tahmin edicilerinin özellikleri nasıldır? CH 10 da TS.1-TS.3 varsayımları altında OLS nin sapmasız olduğunu gördük. Burada sapmasızlığı sağlayan x lerin kesin dışsal (strictly exogenous) oluşuydu. Hata teriminde otokorelasyon olması önemli değildi. Değişen varyans OLS t.e.nin sapmasızlığına zarar vermiyordu. Benzer şekilde kesin dışsallık altında serial correlation da sapmasızlığı zedelemez. CH 11 de kesin dışsallık varsayımının yerine verinin zayıf bağımlı (weakly dependent) olması koşulunu koyarak yumuşattık. Bu halde OLS sapmasız olmasa bile tutarlı (consistent) oluyordu ve bu sonuç ardışık bağımlılık tan etkilenmiyordu. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 4
5 Etkinlik (efficiency) ve hipotez testleri Teorem 10.4 (Gauss-Markov teoremi) BLUE için hem homoscedasticity hem de hatalarda ardışık bağıntı olmaması koşulunu getiriyordu. O halde, hata teriminde otokorelasyon olması durumunda OLS tahmin edicileri artık BLUE değildir. Test istatistikleri ve se ler asimptotik olarak bile geçerli değildir. Bunu, Gauss-Markov varsayımlarının ilk 4 ü geçerli ve artıklar AR(1) süreci izliyor iken OLS tahmin edicilerin varyansını hesaplayarak gösterebiliriz. u t = ρu t 1 + e t, t = 1, 2,..., n (1) ρ < 1 (2) Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 5
6 Etkinlik (efficiency) ve hipotez testleri e t, sıfır ortalamalı ve sabit varyanslı ilişkisiz bir rassal değişkendir (uncorrelated random variable). (2), daha önce gördüğümüz gibi kararlılık (stability) koşuludur. Basit bir regresyonda β 1 eğim katsayısının OLS tahmin edicisini şöyle yazabiliriz : y t = β 0 + β 1 x t + u t Formülü basitleştirmek adına, x t nin örneklem ortalamasının sıfır olduğunu varsayalım, x = 0. Buna göre β 1 in OLS tahmin edicisi ˆβ1 şöyle yazılabilir: ˆβ 1 = β 1 + SST 1 x n x t u t (3) Burada SST x = n t=1 x2 t. Şimdi, ˆβ 1 in (X e koşullu) varyansını hesaplarken, u t deki ardışık bağımlılığı göz önünde bulundurmalıyız. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 6 t=1
7 Etkinlik (efficiency) ve hipotez testleri ( n ) Var( ˆβ 1 ) = SSTx 2 Var x t u t = SST 2 x t=1 n n 1 n t x 2 t Var(u t ) + 2 x t x t+j E(u t u t+j ) t=1 ( = σ2 σ SST x SSTx 2 ) n 1 n t t=1 j=1 ρ j x t x t+j (4) t=1 j=1 Denklemde, σ 2 = Var(u t ) dir. Ayrıca E(u t u t+j ) = Cov(u t, u t+j ) = ρ j σ 2 olduğunu kullandık. (4) nolu denklemdeki ilk terim, σ 2 /SST x, ρ = 0 iken ˆβ 1 in varyansıdır ki Gauss-Markov varsayımları altında bildiğimiz OLS varyansına eşittir. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 7
8 Etkinlik (efficiency) ve hipotez testleri (4) de ilk terim Gauss-Markov varsayımları altında ρ = 0 durumunda ki standart OLS varyansıdır. Eğer serial correlation varsa (ρ 0 ), (4) de ikinci terimi ihmal etmemiz varyans tahmininde sapmaya yol açacaktır. Pek çok ekonomik seride ρ > 0 ve x ler zaman içinde kendi geçmişleriyle pozitif yönde ilişkili olduğu için (4) deki ikinci terimin ihmal edilmesi varyansın olduğundan daha düşük tahmin edilmesine (underestimation) yol açacaktır. ˆβ lerin se leri bu varyansların kare köküne eşit oluğu için varyansdaki sapma tüm test istatistiklerini (t, F, LM) geçersiz kılacaktır. Düşük hesaplanan varyans, daha yüksek t değerleri demek olduğu için, aslında sıfırdan farklı olmayan katsayıların anlamlı imiş gibi çıkmalarına sebep olacaktır. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 8
9 Bağımlı Değişkenin Gecikmesi Varken Ardışık Bağıntı Ekonometri kitapları çoğu kez regresyonda gecikmeli bağımlı değişken varsa ve hata terimleri otokorelasyon içeriyorsa OLS tutarsızdır şeklinde ifadeler içerir. Bu çok muğlak bir ifadedir ve doğru değildir. Daha kesin (precise) bir ifade bulmamız gerekir. Bunu göstermek için, y t 1 veriyken y t nin beklenen değerinin doğrusal olduğunu varsayalım: E(y t y t 1 ) = β 0 + β 1 y t 1 (5) Burada kararlılığı varsayıyoruz, yani β 1 < 1. Bu ifadeyi bir hata terimi ile yazabiliriz: y t = β 0 + β 1 y t 1 + u t (6) E(u t y t 1 ) = 0 (7) Kurulumumuz gereği bu model, OLS nin tutarlılığı için gerekli olan TS.3 varsayımını sağlar, böylece OLS tahmin edicileri, ˆβ 0 ve ˆβ 1, tutarlıdır. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 9
10 Bağımlı Değişkenin Gecikmesi Varken Ardışık Bağıntı Burada {u t } nin otokorelasyona sahip olmasını yasaklayan bir koşul yoktur. Koşul (7) u t ile y t 1 in ilişkisiz olması gerektiğini söylüyor, ancak u t ile y t 2 ilişkili olabilir. u t 1 = y t 1 β 0 β 1 y t 2 olduğu için Cov(u t, u t 1 ) = β 1 Cov(u t, y t 2 ) ye eşittir ve sıfır olması için bir zorunluluk yoktur. Yani, hata terimlerinin serial correlation içerdiği ve y t 1 in bağımsız değişken olduğu (6) daki regresyonda OLS ˆβ ları tutarlıdır (consistent). Çünkü bu β lar (5) deki koşullu beklenen değer denkleminin parametreleridir. Bu durumda serial correlation varyansın sapmalı çıkmasına ve test istatistiklerinin geçersiz olmasına yol açacak, ancak tutarlılığı (consistency) etkilemeyecektir. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 10
11 Bağımlı Değişkenin Gecikmesi Varken Ardışık Bağıntı Peki, y t 1 in açıklayıcı değişken olarak yer aldığı ve hata teriminin otokorelasyon içerdiği bir regresyonda ˆβ katsayıları ne zaman tutarsız (inconsistent) olacaktır? (6) daki regresyonda hata terimi u t nin (1) deki gibi bir AR(1) süreci izlemesi durumunda OLS ˆβ ları tutarsız olacaktır. E(e t u t 1, u t 2,...) = E(e t y t 1, y t 2,...) = 0 (8) e t, varsayım gereği y t 1 ile ilişkisiz olduğundan, Cov(y t 1, u t ) = ρcov(y t 1, u t 1 ) olur ki bu ifade ρ = 0 olmadıkça sıfıra eşit değildir. Bu ise y t nin y t 1 üzerine regresyonundan gelen β 0 ve β 1 in OLS tahmin edicilerinin tutarsız (inconsistent) olmasına neden olur. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 11
12 Bağımlı Değişkenin Gecikmesi Varken Ardışık Bağıntı Ancak, burada şu nokta gözden kaçmamalı : Eğer (6) da u t AR(1) süreci izliyorsa, bu, y t nin bir AR(2) süreci izlediğini, dolayısıyla da (6) modelinde spesifikasyon hatası olduğunu gösterir. Bunu (6) ile (1) i birleştirerek görebiliriz. u t 1 = y t 1 β 0 β 1 y t 2 ifadesini u t = ρu t 1 + e t içine koyarsak (6) şöyle yazılabilir: y t = β 0 + β 1 y t 1 + ρ(y t 1 β 0 β 1 y t 2 ) + e t = β 0 (1 ρ) + (β 1 + ρ)y t 1 ρβ 1 y t 2 + e t = α 0 + α 1 y t 1 + α 2 y t 2 + e t Denklemde α 0 = β 0 (1 ρ), α 1 = β 1 + ρ,ve α 2 = ρβ 1 dir. (8) veriyken, aşağıdaki ifade yazılabilir: E(y t y t 1, y t 2,...) = E(y t y t 1, y t 2 ) = α 0 +α 1 y t 1 +α 2 y t 2 (9) Buna göre, y nin bütün geçmiş değerleri veriyken, y t nin beklenen değeri iki gecikmesine bağlıdır. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 12
13 Bağımlı Değişkenin Gecikmesi Varken Ardışık Bağıntı AR(2) modelinin kararlılık (stability) koşulları (Section 12.3 de göreceğiz) altında, (9) un OLS tahminleri tutarlı (consistent) ve asimptotik olarak normal dağılmış tahmin edicilerdir. Demek ki, regresyona hem gecikmeli bağımlı değişken koyup hem de hataların belli bir model izlediğini varsaydığımız durumlarda çok dikkatli olmalıyız. Aksi halde, tutarsız tahmin ediciler elde edebiliriz. Dinamik modellerde hata teriminin serial correlation içermesi çoğu kez modelimizin eksik spesifikasyonuna delalet eder. Yukarıdaki örnekte (6) daki regresyona y t 2 değişkenini ekleyince sorun kalmadı. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 13
14 Otokorelasyon Testleri İlk önce x lerin kesin dışsal (strictly exogenous) olduğu durumda çoklu regresyonda hata terimlerinin serial correlation içerip içermediğini teşhise yönelik çeşitli testler göreceğiz. Kesin dışsallık, u t nin x lerin tüm dönemlere ait (geçmiş, şimdiki zaman ve gelecek) değerleriyle ilişkisiz olduğu anlamına geliyordu. Dolayısıyla, gecikmeli bağımlı değişken kullanılan modellere bu testler uygulanamaz. u t, AR(1) izlesin ve x ler kesin dışsal: Hata teriminde çeşitli biçimlerde ardışık bağıntı olabilir. En basit model, hata teriminin (1) ve (2) deki gibi AR(1) süreci izlemeleri halidir. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 14
15 Otokorelasyon Testleri Kesin dışsallık varsayımı dolayısıyla u t nin beklenen değeri x lerin tüm geçmiş, cari ve gelecek değerlerine koşullu olarak sıfırdır : E(e t u t 1, u t 2,...) = 0 (10) V ar(e t u t 1 ) = V ar(e t ) = σ 2 e (11) Bunlar AR(1) modelindeki standart varsayımlardır ( {e t } i.i.d bir seri olduğunda), ve bunlar Bölüm 11 deki büyük örneklem sonuçlarını dinamik regresyona uygulamamıza olanak sağlar. H 0 : ρ = 0. (12) Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 15
16 Kesin Dışsal Açıklayıcı Değişkenler Varken AR(1) Ardışık Bağıntı Testi 1 y t nin x t1,..., x tk üzerine regresyonundan t = 1, 2,..., n için OLS kalıntılarını, û t, elde edin. 2 Şu regresyonu tahmin edin û t nin û t 1 üzerine, t = 2,..., n (13) ve û t 1 in katsayısı ˆρ yu ve ilgili t istatistiğini hesaplayın, tˆρ. 3 H 0 : ρ = 0 boş hipotezini H 0 : ρ 0 alternatifine karşı test etmek için tˆρ yi kullanın.(aslında beklenen ρ > 0 olduğundan alternatif hipotez H 0 : ρ > 0 olabilir.) Karar ilgili p-değerine göre verilir. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 16
17 Example 12.1: Phillips Eğrisi için AR(1) Ardışık Bağıntı Testi Statik Phillips eğrisi için, (13) daki regresyondan ˆρ = ve t = 4.93, p-değeri= (48 gözlem) bulunur. Bu ise, 1. dereceden pozitif ardışık bağıntı lehinde güçlü kanıt sunar. Bunun bir sonucu, Bölüm 10 daki se ve t istatistiklerinin geçersiz olmasıdır. Tersine beklentilerle genişletilmiş Phillips eğrisi için ˆρ = ve t = 0.297, p-değeri= (47 gözlem) bulunur. Buna göre, beklentilerle genişletilmiş Phillips eğrisinde AR(1) ardışık bağıntı olduğu yönünde kanıt yoktur. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 17
18 Klasik Varsayımlar altında Durbin-Watson Testi AR(1) ardışık bağıntı için bir diğer test Durbin-Watson testidir. Durbin-Watson (DW) istatistiği OLS kalıntılarına dayanır: n t=2 DW = (û t û t 1 ) 2 n (14) t=1 û2 t Cebirsel olarak (13) deki ˆρ ile DW bağıntılıdır: DW 2(1 ˆρ) (15) Bunun tam eşitlik olmama nedeni ˆρ nun paydasında n t=2 û2 t 1 varken DW istatistiğinin paydasında OLS kalıntılarının kareleri toplamının olmasıdır. Ancak makul örneklem büyüklüklerinde (15) deki yakınsama geçerlidir. Bu durumda, DW testi ile ˆρ için t testi kavramsal olarak aynıdır. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 18
19 Durbin-Watson Testi Durbin-Watson (1950), CLM varsayımları altında DW istatistiğinin dağılımını türetti. Hata terimlerinin normal dağıldığı varsayımı da dahil tüm CLM varsayımlarının sağlanması gerekmektedir. Orjinal regresyonda sabit terim (intercept) olmak zorundadır. Yine, regresyonda açıklayıcı değişkenler arasında gecikmeli bağımlı değişkenler, y t 1, y t 2,..., olmamalıdır. Kritik değerler gözlem saysı n ve x sayısına (k) göre değişen alt (dl) ve üst (du) limitlerden oluşmaktadır. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 19
20 Durbin-Watson Testi DW testi, genellikle, aşağıdaki alternatif hipotez için uygulanır: H 1 : ρ > 0 (16) (15) deki yakınsama, ˆρ 0 iken DW 2 ve ˆρ > 0 iken DW < 2 olduğunu ifade eder. (12) deki boş hipotezi (16) lehine reddedebilmek için 2 den istatistiksel açıdan anlamlı olarak küçük olan bir DW değeri arıyoruz. DW nin boş hipotez altında dağılımını elde etmedeki sorunlar nedeniyle, DW yi iki kritik değer ile kıyaslamalıyız. Bunlar, du (üst limit) ve dl (alt limit) olarak gösterilir. DW < dl ise H 0 ı (16) lehine reddederiz; DW > du ise H 0 ı reddedemeyiz. dl DW du ise test kararsızdır. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 20
21 Durbin-Watson Testi Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 21
22 Kesin Dışsal Açıklayıcı Değişkenler Yokken AR(1) Ardışık Bağıntıyı Test Etme Açıklayıcı değişkenler kesin dışsal (strictly exogenous) değilse, bu durumda herhangi bir x tj, u t 1 ile ilişkili olabileceğinden ne (13) deki t testi ne de DW testi geçerli olacaktır. Hatta büyük örneklerde bile bunlar geçerli olmayacaktır. Kesin dışsallığın olmadığı modellere en iyi örnek gecikmeli bağımlı değişkenlerin, y t 1, bulunduğu modellerdir. Bu modelde y t 1 ile u t 1 açıktır ki ilişkili olacaklardır. x lerden bazılarının kesin dışsal olmadığı durumda Durbin in şu alternatif testi uygulanır : Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 22
23 Genel Açıklayıcı Değişkenlerle Ardışık Bağıntıyı Test Etme 1 y t nin x t1,..., x tk üzerine regresyonundan t = 1, 2,..., n için OLS kalıntılarını, û, elde edin. 2 Şu regresyonu tahmin edin û t nin x t1,..., x tk, û t 1 üzerine, t = 2,..., n (17) û t 1 in katsayısı ˆρ yı ve ilgili t istatistiğini hesaplayın, tˆρ. 3 H 0 : ρ = 0 boş hipotezini H 1 : ρ 0 alternatifine karşı test etmek için tˆρ yi kullanın (Veya tek taraflı alternatife karşı test edin). (17) de OLS kalıntılarının tüm açıklayıcı değişkenler, sabit ve kalıntıların gecikmesi üzerine regresyonunu hesapladık. Kalıntıların gecikmesi üzerindeki t istatistiği AR(1) modelinde (12) nin test edilmesinde geçerlidir (H 0 altında V ar(u t x t, u t 1 ) = σ 2 olduğunu varsayarsak). Bağımlı değişkenin gecikmeleri ve kesin dışsal olmayan açıklayıcı değişkenler de x tj ler arasında yer alabilir. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 23
24 Örnek 12.2: Asgari Ücret Denklemi için AR(1) Ardışık Bağıntı Testi Arkaplandaki stokastik süreçlerin zayıf bağımlı olduğunu varsayıyoruz, ancak doğrusal bir zaman trendi içermelerine izin veriyoruz. û t, OLS kalıntıları olmak üzere, 37 gözlemle aşağıdaki regresyon hesaplanmıştır. û t nin log(mincov t ), log(prgnp t ), log(usgnp t ), t, û t 1 üzerine, û t 1 nin katsayı tahmini ˆρ = ve t = 2.89, p-değeri= Buna göre hatalarda AR(1) ardışık bağıntı yönünde güçlü kanıt bulunmaktadır, yani, ˆβ j ya ait t istatistikleri geçersizdir, bunlara göre çıkarım yapılamaz. Hatırlarsak, u t ler açıklayıcı değişkenlerle cari olarak ilişkisiz ise ˆβ j lar hala tutarlıdır. Görülüyor ki, bunun yerine (13) deki regresyonu kullansaydık ˆρ = ve t = 2.63 elde edecektik, yani bu örnek için sonuçlar benzerdir. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 24
25 Yüksek Dereceden Ardışık Bağıntıları Test Etme (17) deki test kolaylıkla daha yüksek dereceden ardışık bağıntılar için geliştirilebilir. Aşağıdaki AR(2) Modelini ele alalım: u t = ρ 1 u t 1 + ρ 2 u t 2 + e t Bu model için aşağıdaki boş hipotezi test etmek istiyoruz: H 0 : ρ 1 = 0, ρ 2 = 0 (18) Bu alternatif model ikinci dereceden ardışık bağıntıyı test etmek için kullanılabilir. Her zaman ki gibi, önce OLS kalıntılarını, û t, elde edeceğiz. Sonrasında ise aşağıdaki regresyonu tahmin edeceğiz. û t nin x t1,..., x tk, û t 1, û t 2 üzerine, t = 3,..., n Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 25
26 Yüksek Dereceden Ardışık Bağıntıları Test Etme Buradan û t 1 ve û t 2 nin birlikte anlamlılığı için F istatistiğini elde edebiliriz. Eğer bu iki gecikme, makul anlamlılık düzeylerinde, anlamlılarsa, (18) i reddedebilir ve hataların ardışık bağımlı olduğuna karar verebiliriz. Genelleştirirsek, q. dereceden otoregresif modeldeki ardışık bağımlılığı da test edebiliriz: Boş hipotez ise: u t = ρ 1 u t 1 + ρ 2 u t ρ q u t q + e t (19) H 0 : ρ 1 = 0, ρ 2 = 0,..., ρ q = 0 (20) Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 26
27 AR(q) Ardışık Bağıntının Test Edilmesi 1 y t nin x t1,..., x tk üzerine regresyonundan t = 1, 2,..., n için OLS kalıntılarını, û, elde edin. 2 Şu regresyonu tahmin edin û tnin x t1,..., x tk, û t 1, û t 2,..., û t q uzerine, t = (q+1),..., n (21) 3 û t 1, û t 2,...,û t q nun birlikte anlamlılığını test etmek için F istatistiğini hesaplayın. Eğer x tj ler kesin dışsalsa, yani her x tj, u t 1, u t 2,..., u t q ile ilişkisizse, x tj ler (21) nolu regresyondan çıkarılabilir. Regresyona x tj leri eklemek kesin dışsallık varsayımı olsun veya olmasın testin geçerliliğini bozmaz. Test sabit varyans varsayımını gerektirmektedir: V ar(u t x t, u t 1,..., u t q ) = σ 2 (22) Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 27
28 AR(q) Ardışık Bağıntının Test Edilmesi F testini hesaplamanın bir alternatifi Lagrange Çarpanı (LM) istatistiğini kullanmaktır. (20) yi test için kullanılacak LM istatistiği şöyle hesaplanabilir: LM = (n q)r 2 û (23) Rû 2, (21) nolu regresyonun belirlilik katsayısıdır. Boş hipotez altında LM istatistiği χ 2 q dağılımını takip eder. Bu teste AR(q) ardışık bağıntı için Breusch-Godfrey testi denilmektedir. LM istatistiği de sabit varyans varsayımını gerektirmektedir, ancak değişen varyansa dirençli (robust) hale getirilebilir (Wooldridge (1991b)). Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 28
29 Kesin Dışsal Açıklayıcı Değişkenler Varken Ardışık Bağıntının Düzeltilmesi Hata terimi AR(1) süreci izliyor ve değişkenlerimiz kesin dışsal iseler ardışık bağıntı durumunda test istatistiklerinde bazı düzeltmeler yapabiliriz. Basitlik amacıyla, tek açıklayıcı değişken olan durumu düşünelim: y t = β 0 + β 1 x t + u t, t = 1, 2,..., n Denklemdeki sorun, u t deki ardışık bağıntı olduğundan, ardışık bağıntıyı ortadan kaldıracak şekilde denklemin dönüştürülmesi gerekmektedir. t 2 için : y t 1 = β 0 + β 1 x t 1 + u t 1 y t = β 0 + β 1 x t + u t Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 29
30 Kesin Dışsal Açıklayıcı Değişkenler Varken Ardışık Bağıntının Düzeltilmesi İlk denklemi ρ ile çarpıp ikincisinden çıkarırsak y t ρy t 1 = (1 ρ)β 0 + β 1 (x t ρx t 1 ) + e t, t 2 e t = u t ρu t 1 eşitliğini kullandık. Bu son denklemi aşağıdaki gibi yazabiliriz: ỹ t = (1 ρ)β 0 + β 1 x t + e t, t 2 (24) Bu dönüştürmede ise aşağıdakiler fark-benzeri seri adını alır (quasi-differenced data): ỹ t = y t ρy t 1, x t = x t ρx t 1 (25) Eğer ρ = 1 ise bunlar farkı alınmış serilerdir ancak ρ < 1 olduğunu varsayıyoruz. (24) deki hata terimleri ardışık olarak ilişkisizdir, gerçekten de, bu denklem bütün Gauss-Markov varsayımlarını sağlamaktadır. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 30
31 Kesin Dışsal Açıklayıcı Değişkenler Varken Ardışık Bağıntının Düzeltilmesi Yani ρ yu biliyorsak, ỹ t nin x t üzerine regresyonundan β 0 ve β 1 i tahmin edebiliriz (tahmin edilen sabiti (1 ρ) ile bölmek şartıyla). Daha fazla açıklayıcı değişken olması çok fazla şey değiştirmez. t 2 için aşağıdaki denklemi kullanabiliriz: ỹ t = (1 ρ)β 0 + β 1 x t β k x tk + e t, (26) Burada x tj = x tj ρx t 1,j. t = 1 için, ỹ 1 = (1 ρ 2 ) 0.5 y 1, x 1j = (1 ρ 2 ) 0.5 x 1j ve sabit (1 ρ 2 ) 0.5 β 0 olacaktır. ρ bilindiğinde veriyi dönüştürmek ve OLS uygulamak kolaydır. ρ = 0 olmadıkça, GLS tahmincisi, yani dönüştürülmüş veriye OLS tahmincisi, genellikle orjinal OLS tahmincisinden farklı olacaktır. GLS tahmincisi, dönüştürülen denklemin hataları ardışık ilişkisiz ve sabit varyanslı olduğu için, BLUE dur. Bu denklemin t ve F istatistikleri geçerlidir (en azından asimptotik olarak, ve e t normal dağılıyorsa daima). Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 31
32 AR(1) Hatalarla Feasible GLS Tahmini GLS tahmincisinin eksik yanı, pratikte ρ nun nadiren bilinmesidir. Ancak, ρ nun tutarlı bir tahmin edicisini elde edebiliriz. Öncelikle (13) de olduğu gibi, OLS kalıntılarının gecikmeleri üzerine regresyonunu hesaplamalıyız. Sonra, fark-benzeri (quasi-differenced) değişkenleri elde etmek için ρ yerine tahmin edicisi ˆρ yu kullanabiliriz. Sonrasında aşağıdaki denklemi OLS ile tahmin edebiliriz: ỹ t = β 0 x t0 + β 1 x t β k x tk + hata t, (27) Burada t 2 için x t0 = (1 ˆρ) ve x 10 = (1 ˆρ) 0.5. Böylece ˆβ j in feasible GLS (FGLS) tahmin edicisini elde etmiş olduk. (27) deki hata terimi e t yi içerdiği gibi ˆρ deki tahmin hatasını da içermektedir. ˆρ deki tahmin hatası FGLS tahmin edicilerinin asimptotik dağılımını etkilememektedir. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 32
33 AR(1) Modelinin Feasible GLS Tahmini 1 y t nin x t1,..., x tk üzerine regresyonundan t = 1, 2,..., n için OLS kalıntılarını, û t, elde edin. 2 (13) deki regresyonu hesaplayın ve ˆρ i elde edin. 3 β 0, β 1,..., β k yı tahmin etmek için (27) ye OLS uygulayın. Standart hatalar, t ve F istatistikleri asimptotik olarak geçerlidir. ρ yerine ˆρ yu kullanmanın getirdiği maliyet ise FGLS tahmin edicisinin istenen sonlu örneklem özelliklerine sahip olmamasıdır. Seriler zayıf bağımlı olduğunda tutarlı olmasına rağmen sapmasız değildir. Dahası, (26) daki e t normal dağılsa bile, ˆρ deki tahmin hatası yüzünden t ve F istatistikleri ancak asimptotik olarak t ve F dağılımlarına uyar. Bu nedenle küçük örneklemlerde daha dikkatli davranmalıyız. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 33
34 AR(1) Modelinin Feasible GLS Tahmini FGLS tahmin edicisi sapmasız olmadığından, BLUE değildir. Bununla birlikte, ardışık bağıntı için AR(1) modeli geçerliyken, OLS tahmin edicilerinden asimptotik olarak daha etkindir. Halen, zaman serilerinin zayıf bağımlı olduğunu varsayıyoruz. ρ nun tahmin edilmesindeki farklı yöntemlere göre FGLS farklı isimler almaktadır. Cochrane-Orcutt (CO) tahmini ilk gözlemi göz ardı eder ve (13) den ˆρ yu kullanır. Prais-Winsten (PW) tahmini önceki yolla ilk gözlemi kullanır. Asimptotik olarak ilk gözlemin kullanılıp kullanılmaması sonucu değiştirmez, ancak örneklem boyutu küçükse uygulamada farklılıklar görülebilir. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 34
35 AR(1) Modelinin Feasible GLS Tahmini OLS ve FGLS değişik tahmin yöntemleri olduğundan, aynı tahminleri vermesini bekleyemeyiz. Eğer β j için benzer tahminler elde ediyorsak, ardışık bağıntı durumunda FGLS tercih edilir. Çünkü daha etkindir ve FGLS test istatistikleri, en azından, asimptotik olarak geçerlidir. OLS ve FGLS tahminleri arasında farklar olduğunda, bu farkların istatistiksel olarak anlamlı olup olmadığını saptamak zordur (Hausman (1978) tarafından önerilen yöntem kullanılabilir). OLS ve FGLS in tutarlılık ve asimptotik normalliği, y t ve x jt nin zayıf bağımlı olmasına oldukça bağlıdır. Eğer seriler birim kök içeriyorsa bazı sorunlar ortaya çıkabilir ki bunlar Bölüm 18 de ele alınacaktır. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 35
36 Example 12.5: Statik Phillips Eğrisi Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 36
37 Fark Alma ve Ardışık Bağıntı Basit regresyon modelinde y t = β 0 + β 1 x t + u t, t = 1, 2,..., n (28) u t, AR(1) sürecini takip etsin. Bölüm 11.3 de bahsettiğimiz gibi, y t ve x t, 1. dereceden bütünleşikse, yani I(1) ise, OLS ile çıkarım yapmak yanıltıcı olacaktır. (28) deki hatalar, {u t }, random walk süreci takip ediyorsa, denklem anlamsızdır, çünkü u t nin varyansı zamanla birlikte, t ile, büyümektedir. Denklemin farkını almak gerekmektedir: y t = β 1 x t + u t, t = 2,..., n (29) u t random walk süreci takip ediyorsa, e t u t, sıfır ortalamalı, sabit varyansı ve ardışık olarak ilişkisizdir. Buradan da, e t ve u t nin ilişkisiz olduğunu varsayarsak, (29) u OLS ile tahmin edebiliriz (ilk gözlemi kaybederek). Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 37
38 Otokorelasyona Dirençli Standart Hatalar (Serial Correlation Robust Standard Errors) Değişen varyansa dirençli standart hataların nasıl hesaplandığını daha önce görmüştük. Benzer şekilde OLS tahmin edicileri betaşapkalar için otokorelasyona dirençli standart hatalar hesaplanabilir. Aslında standart hataları hem değişen varyansa hem de otokorelasyona dirençli hale getirmek mümkündür. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 38
39 Zaman Serilerinde Değişen Varyans Değişen varyans problemi genellikle kesit-veri analizlerinde karşımıza çıkar. Bu nedenle zaman serilerinde değişen varyans çoğu zaman göz ardı edilen bir problemdir. Ancak değişen varyans probleminin zaman serileri modellerinde de karşımıza çıkabileceği unutulmamalıdır. Bu nedenle zaman serilerinde değişen varyans probleminin yol açacağı problemleri gözden geçirmek faydalı olabilir. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 39
40 Zaman Serilerinde Değişen Varyans TS.1 -TS.2 -TS.3 ve TS.5 varsayımlarının sağlandığını ancak TS.4 varsayımının sağlanmadığını düşünelim. TS.1 : zayıf bağımlılık ve kovaryans-durağanlık koşulları sağlanıyor. TS.2 : modelde spesifikasyon hatası, dışlanmış değişkenler ve CEV ölçme hatalarının olmadığı anlamına geliyordu. TS.5 : hata teriminde otokorelasyon yok. TS.4 : hata teriminin varyansının sabit olduğunu söyleyen varsayım sağlanmıyor. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 40
41 Zaman Serilerinde Değişen Varyans Zaman serileri modellerinde değişen varyans olması durumunda OLS tahmin edicileri, önceki varsayımlar altında, hala tutarlıdır. Sapmasızlık varsayımları geçerliyse değişen varyans bu özelliğe de zarar vermez. Değişen varyansın varlığı durumunda izlenebilecek bir yok, kesit-veri analizinde olduğu gibi, değişen varyansa dirençli standart hatalar kullanmaktır. Diğer test istatistikleri de dirençli hale getirilebilir. Çoğu ekonometri programı bu dirençli standart hataları (robust standard errors) otomatik olarak hesaplamaktadır. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 41
42 Zaman Serilerinde Değişen Varyans Daha önce Bölüm 9 da gördüğümüz heteroskedasticity testleri zaman serilerinde de kullanılabilir. Örneğin Breusch-Pagan testi hesaplanabilir. Hatırlarsak bu testin ilk adımında OLS ile model tahmin ediliyor ve kalıntı terimleri hesaplanıyordu. İkinci adımda test regresyonu kuruluyordu. Yani kalıntıların karesinin modelde yer alan açıklayıcı değişkenler üzerine regresyon kuruluyordu. Daha sonra da bu regresyonun anlamlılığı test ediliyordu (F ya da LM testi ile) Değişen varyans yoktur boş hipotezi altında eğer anlamlı bir F ya da LM istatistiği bulunursa hata teriminde değişen varyans var demektir. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 42
43 Zaman Serilerinde Değişen Varyans Bu amaçla White testi de kullanılabilir. Bu testin adımları aynıdır. Modelin heteroskedastik olduğu bulunursa OLS yerine WLS yöntemi kullanılabilir. Ancak yan regresyonun hata teriminin otokorelasyonlu olması durumunda bu testler geçersiz olur. Zaman serilerinde bu durumla oldukça sık karşılaşılır. Hata varyansının zaman içindeki değişimi dinamik bir yapıya sahipse buna uygun modellerin kullanılması gerekir. Özellikle finansal zaman serilerinde oynaklığın zaman içindeki davranışı otoregresif bir yapıya sahiptir. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 43
44 Zaman Serilerinde Değişen Varyans Örnek: EMH return t = β 0 + β 1 return t 1 + u t t β1 = EMH aleyhinde kanıt olmadığı görünüyor??? BP testi için yardımcı regresyon û 2 t = 4.66 (0.043) (0.201) return t 1 + residual t n = 689 R 2 = t returnt 1 = 5.5. Değişen varyans yönünde güçlü kanıt vardır. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 44
45 Zaman Serilerinde Değişen Varyans Örnek: EMH û 2 t = 4.66 (0.043) (0.201) return t 1 + residual t n = 689 R 2 = Bu sonuçlara göre bir önceki dönemdeki hisse senedi getirisi yüksekse cari dönemdeki oynaklık (volatility) daha düşük olmaktadır. Getirinin beklenen değeri bir önceki döneme bağlı olmasa da (EMH t-testi buna işaret ediyor) varyansın getiriyle birlikte hareket ettiği görülmektedir. Bu birçok finansal getiri serisinde karşılaşılan bir özelliktir. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 45
46 Otoregressif Koşullu Değişen Varyans(Autoregressive Conditional Heteroskedasticity-ARCH) Basit regresyon modelini düşünelim: y t = β 0 + β 1 z t + u t Hata terimi için aşağıdaki modelin geçerli olduğunu düşünelim: E(u 2 t u t 1, u t 2,...) = E(u 2 t u t 1 ) = α 0 + α 1 u 2 t 1 u 2 t = α 0 + α 1 u 2 t 1 + v t ARCH(1) Modeli α 0 > 0, α 1 0, α 1 < 0 Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 46
47 Otoregressif Koşullu Değişen Varyans(Autoregressive Conditional Heteroskedasticity-ARCH) Eğer Gauss-Markov varsayımları sağlanıyorsa ARCH hata terimleri altında OLS sapmasız ve tutarlı bir tahmin çerçevesi sunar. Statik ve dağıtılmış gecikme modellerinde TS varsayımları sağlanıyorsa OLS tutarlıdır. Peki bu durumda ARCH etkisi ile ilgilenmemize gerek var mı? Evet. İki nedenden dolayı. Birincisi, OLS den daha etkin tahmin ediciler bulmak mümkündür, e.g. WLS (Asimptotik olarak) İkincisi, ARCH modeli varyansın (oynaklığın) zaman içindeki davranışını betimlemesi açısından önemlidir. Örneğin, finansal zaman serilerinde oynaklığın yüksek olduğu dönemleri yine yüksek oynaklık dönemlerinin takip ettiği görülmektedir. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 47
48 Otoregressif Koşullu Değişen Varyans(Autoregressive Conditional Heteroskedasticity-ARCH) Örnek Hisse senedi getirileri için ARCH(1) modeli tahmini û 2 t = (0.44) (0.036) û2 t 1 + residual t n = 688 R 2 = Yüksek t istatistiği güçlü ARCH etkisinin varlığına işaret etmektedir. Ekonometri II: Ardışık Bağıntı ve Değişen Varyans - H. Taştan 48
Ch. 12: Zaman Serisi Regresyonlarında Ardışık Bağıntı (Serial Correlation) ve Değişen Varyans
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri II Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 12: Zaman Serisi Regresyonlarında
Zaman Serileri Verileriyle Regresyon Analizinde Ardışık ZAMAN SERİSİ REGRESYONLARINDA
1 ZAMAN SERİSİ REGRESYONLARINDA ARDIŞIK BAĞINTI ve DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge
14 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi
DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri I: Değişen Varyans
OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler
1 SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge
YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri
YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri
Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 5: SEKK (OLS) nin Asimptotik
27 Mart Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi
ZAMAN SERİLERİ VERİLERİYLE REGRESYON ANALİZİNDE EK KONULAR Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge
SIRADAN EN KÜÇÜK KARELER (OLS)
SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge
Ekonometri I VARSAYIMLARI
Ekonometri I ÇOK DEĞİŞKENLİ REGRESYON MODELİNİN VARSAYIMLARI Hüseyin Taştan Temmuz 23, 2006 İçindekiler 1 Varsayım MLR.1: Parametrelerde Doğrusallık 1 2 Varsayım MLR.2: Rassal Örnekleme 1 3 Varsayım MLR.3:
3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1
3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki
Değişen Varyans (Heteroscedasticity) Sabit Varyans (Homoscedasticity) Varsayımı Altında Basit Regresyon Modeli
1 2 Değişen Varyans (Heteroscedasticity) DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14
Matris Cebiriyle Çoklu Regresyon Modeli
Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β
9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir?
9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? Ardışık bağımlılık sorunu, hata terimleri arasında ilişki olmadığı (E(u i,u j ) = 0, i j) varsayımının geçerli olmamasıdır.
Zaman Serileri Verileriyle Regresyon Analizinde Ek Konular. Durağan (Stationary) ve Durağan Olmayan (Nonstationary) Zaman Serileri
1 ZAMAN SERİLERİ VERİLERİYLE REGRESYON ANALİZİNDE EK KONULAR Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge
Zaman Serisi Verileriyle Regresyon Analizi
Zaman Serisi Verileriyle Regresyon Analizi Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi Iktisat Bölümü Textbook: Introductory Econometrics (4th ed.) J. Wooldridge 13 Mart 2013 Ekonometri II: Zaman Serisi
14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi
ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: ÇIKARSAMA Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri
YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama Doç.
Appendix C: İstatistiksel Çıkarsama
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama
İÇİNDEKİLER 1. GİRİŞ...
İÇİNDEKİLER 1. GİRİŞ... 1 1.1. Regresyon Analizi... 1 1.2. Uygulama Alanları ve Veri Setleri... 2 1.3. Regresyon Analizinde Adımlar... 3 1.3.1. Problemin İfadesi... 3 1.3.2. Konu ile İlgili Potansiyel
DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci
DOĞRUSAL ZAMAN SERİSİ MODELLERİ Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci Tek Değişkenli Zaman Serisi Modelleri Ekonomik verilerin analizi ile ekonomik değişkenlerin gelecekte alabilecekleri
Ch. 11: Zaman Serileri Verileriyle Regresyon Analizinde Ek Konular
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri II Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 11: Zaman Serileri
YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi
YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi
Appendix B: Olasılık ve Dağılım Teorisi
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım
DİNAMİK PANEL VERİ MODELLERİ. FYT Panel Veri Ekonometrisi 1
DİNAMİK PANEL VERİ MODELLERİ FYT Panel Veri Ekonometrisi 1 Dinamik panel veri modeli (tek gecikme için) aşağıdaki gibi gösterilebilir; y it y it 1 x v it ' it i Gecikmeli bağımlı değişkenden başka açıklayıcı
BASİT REGRESYON MODELİ
BASİT REGRESYON MODELİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri I: Basit Regresyon
Ch. 8: Değişen Varyans
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri II Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 8: Değişen Varyans
2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım
2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı
İstatistik ve Olasılık
İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel
Koşullu Öngörümleme. Bu nedenle koşullu öngörümleme gerçekleştirilmelidir.
Koşullu Öngörümleme Ex - ante (tasarlanan - umulan) öngörümleme söz konusu iken açıklayıcı değişkenlerin hatasız bir şekilde bilindiği varsayımı gerçekçi olmayan bir varsayımdır. Çünkü bazı açıklayıcı
İçindekiler. Ön Söz... xiii
İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1
17 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi
ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: TAHMİN Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 17 Ekim 2012 Ekonometri
KONULAR. 14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi
ÇOKLU REGRESYON ANALİZİNDE EK KONULAR Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri
ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ
ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ 1. ÇOKLU REGRESYON ANALİZİ VE VARSAYIMALARDAN SAPMALAR 1.1. Çoklu Regresyon modeli Varsayımları 1.2. Tahmincilerin anlamlılığının sınanması
Çok Değişkenli Regresyon Analizi (Multiple Regression Analysis) Çoklu Regresyon Modeli Örnekler. Sınav başarı notu ve aile geliri
1 ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: TAHMİN Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 17 Ekim 2012 2
MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI
ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6
Zaman Serisi Verileriyle Regresyon Analizi. Zaman Serisi Verileriyle Regresyon Analizi. İşsizlik Oranlarına Dair Kısmi Zaman
1 Zaman Serisi Verileriyle Regresyon Analizi Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi Iktisat Bölümü Textbook: Introductory Econometrics (4th ed.) J. Wooldridge 2 Zaman Serisi Verileriyle Regresyon
TABLO I: Bağımlı değişken; Tüketim,- bağımsız değişkenler; gelir ve fiyat olmak üzere değişkenlere ait veriler verilmiştir.
EKONOMETRİ II Uygulama - Otokorelasyon TABLO I: Bağımlı değişken; Tüketim,- bağımsız değişkenler; gelir ve fiyat olmak üzere Tuketim 58 Gelir 3959 Fiyat 312 değişkenlere ait veriler verilmiştir. 56 3858
A EKONOMETRİ. n iken de aynı sonuç geçerliyse, β hangi. A) β nın sabit olması. D) Xβ nın normal dağılımlı olması. E) n olması. dur?
EKONOMETRİ KPSS-AB-PÖ/007 1. 6. SORULARI AŞAĞIDAKİ BİLGİLERE β β β ( ) Y i = 1 + x + + i k x ik+ u i i = 1,, n denkleminin matrislerle ifadesi Y = X + u dur. Y( nx1 ), β ( kx1 ), X( nxk) ve β u nx1 boyutludur
TOBB Ekonomi ve Teknoloji Üniversitesi İKT352 Ekonometri II, Dönem Sonu Sınavı
TOBB Ekonomi ve Teknoloji Üniversitesi Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sınav toplam 100 puan değerinde 5 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm soruların
Basit Regresyon Modeli BASİT REGRESYON MODELİ. Basit Regresyon Modeli. Basit Regresyon Modeli: y = β 0 + β 1 x + u
1 2 Basit Regresyon Modeli BASİT REGRESYON MODELİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim
Yatırım Analizi ve Portföy Yönetimi 6. Hafta
Yatırım Analizi ve Portföy Yönetimi 6. Hafta Dr. Mevlüt CAMGÖZ 1 Dr. Mevlüt CAMGÖZ İçerik Karakteristik Doğru ve Beta Katsayısı Karakteristik Doğrunun Tahmini Beta Katsayısının Hesaplanması Agresif ve
7. Ders Genel Lineer Modeller Singüler Modeller, Yanlış veya Bilinmeyen Kovaryanslar, Đlişkili Hatalar
7. Ders Genel Lineer Modeller Singüler Modeller, Yanlış veya Bilinmeyen Kovaryanslar, Đlişkili Hatalar Y = X β + ε Lineer Modeli pekçok özel hallere sahiptir. Bunlar, ε nun dağılımına, Cov( ε ) kovaryans
MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
Ders 9: Kitle Ortalaması ve Varyansı için Tahmin
Ders 9: Kitle Ortalaması ve Varyansı için Tahmin Kitle ve Örneklem Örneklem Dağılımı Nokta Tahmini Tahmin Edicilerin Özellikleri Kitle ortalaması için Aralık Tahmini Kitle Standart Sapması için Aralık
4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ Katsayıların Yorumu
4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ 4.1. Katsayıların Yorumu Y i = β 0 + β 1 X 1i + β X i + + β k X ki + u i gibi çok açıklayıcı değişkene sahip bir modelde, anakütle regresyon fonksiyonu, E(Y i X
Eşanlı Denklem Modelleri
Eşanlı Denklem Modelleri Eşanlı Denklem Yöntemleri Ekonometri 2 Konu 23 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported (CC
MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
8. BÖLÜM: DEĞİŞEN VARYANS
8. BÖLÜM: DEĞİŞEN VARYANS Bu bölümde; Değişen Varyans Tespiti için Grafik Çizme Değişen Varyans Testi: Park Testi Değişen Varyans Testi: White Testi Değişen Varyans Probleminin Çözümü: Ağırlıklandırılmış
İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37
İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar
EME 3117 SİSTEM SIMÜLASYONU. Girdi Analizi. Özet İstatistikler ve Histogram (Minitab)(1) Örnek: Eczane İçin Servis Süreleri
EME 3117 1 2 Girdi Analizi SİSTEM SIMÜLASYONU Modellenecek sistemi (prosesi) dokümante et. Veri toplamak için bir plan geliştir. Veri topla. Verilerin grafiksel ve istatistiksel analizini yap. Girdi Analizi-I
MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
Ekonometrik Modelleme
Ekonometrik Modelleme Ekonometri 2 Konu 14 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) lisansı altında
Model Spesifikasyonu ve Veri Sorunları. MODEL KURMA HATALARI ve VERİ SORUNLARI
1 2 Model Spesifikasyonu ve Veri Sorunları MODEL KURMA HATALARI ve VERİ SORUNLARI Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach
4.2 Sayfa 159. Uygulama II Sayfa Sayfa 161
1 2 4.2 Sayfa 159 Uygulama II 1 Selçuk Gül Yildiz Teknik Üniversitesi [email protected] Asagidakilerden hangisi/hangileri, OLS t istatistiklerinin geçersiz olmasina (bos hipotez altinda t dagilimina sahip
DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR DOĞRUSAL OLMAYAN SINIRLAMALARIN TESTİ
DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR DOĞRUSAL SINIRLAMALARIN TESTİ t testi F testi Diğer testler: Chow testi MWD testi DOĞRUSAL OLMAYAN SINIRLAMALARIN TESTİ Benzerlik Oranı Testi Lagrange Çarpanı
7. BÖLÜM: ARDIŞIK BAĞIMLILIK
7. BÖLÜM: ARDIŞIK BAĞIMLILIK Bu bölümde; Regresyon Modelinden Artık Serileri Oluşturma Ardışık Bağımlılık Tespiti İçin Artıkların Grafiğini Çizme Regresyonu Kullanarak Birinci Sıra Ardışık Bağımlılık Katsayısını
İÇİNDEKİLER 1. BÖLÜM STATA PAKET PROGRAMINA GİRİŞ
3. BASKIYA ÖNSÖZ İleri Panel Veri Analizi kitabının 2012 yılında çıkan ilk baskısının çok hızlı tükenmesi üzerine, 2013 yılında çok daha fazla adetle ikinci baskısı yapılmıştır. Kitabın ikinci baskısı
Bir Normal Dağılım Ortalaması İçin Testler
Bir Normal Dağılım Ortalaması İçin Testler İÇERİK o Giriş ovaryansı Bilinen Bir Normal Dağılım Ortalaması İçin Hipotez Testler P-değerleri: II. Çeşit hata ve Örnekleme Büyüklüğü Seçimi Örnekleme Büyüklüğü
Örneklemden elde edilen parametreler üzerinden kitle parametreleri tahmin edilmek istenmektedir.
ÇIKARSAMALI İSTATİSTİKLER Çıkarsamalı istatistikler, örneklemden elde edilen değerler üzerinde kitleyi tanımlamak için uygulanan istatistiksel yöntemlerdir. Çıkarsamalı istatistikler; Tahmin Hipotez Testleri
BKİ farkı Standart Sapması (kg/m 2 ) A B BKİ farkı Ortalaması (kg/m 2 )
4. SUNUM 1 Gözlem ya da deneme sonucu elde edilmiş sonuçların, rastlantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HİPOTEZ TESTLERİ denir. Sonuçların rastlantıya bağlı
7.Ders Bazı Ekonometrik Modeller. Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla.
7.Ders Bazı Ekonometrik Modeller Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla. Kaynak: TÜĐK dönemler gayri safi yurt içi hasıla düzeyi 1987-1 8680793 1987-2 9929354 1987-3 13560135 1987-4
Çoklu Bağlanım Çıkarsama Sorunu
Çoklu Bağlanım Çıkarsama Sorunu Diğer Sınama ve Konular Ekonometri 1 Konu 27 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported
BİRDEN ÇOK BAĞIMLI DEĞİŞKENİ OLAN MODELLER
BİRDEN ÇOK BAĞIMLI DEĞİŞKENİ OLAN MODELLER Birden çok bağımlı değişkenin yer aldığı modelleri incelemek amacıyla kullanılan modeller Birden Çok Bağımlı Değişkenli Regresyon Modelleri ya da kısaca MRM ler
İki Değişkenli Bağlanım Çıkarsama Sorunu
İki Değişkenli Bağlanım Çıkarsama Sorunu Aralık Tahmini Ekonometri 1 Konu 15 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported
SEK Tahmincilerinin Türetilmesi. SEK Tahmincilerinin Türetilmesi. Ekonometri 1 Konu 8 Sürüm 2,0 (Ekim 2011)
İki Değişkenli Bağlanım Modeli SEK Tahmincilerinin Türetilmesi Ekonometri 1 Konu 8 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0
H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0
YTÜ-İktisat İstatistik II Hipotez Testi 1 HİPOTEZ TESTİ: AMAÇ: Örneklem bilgisinden hareketle anakütleye ilişkin olarak kurulan bir hipotezin (önsavın) geçerliliğinin test edilmesi Genel notasyon: anakütleye
İÇİNDEKİLER ÖN SÖZ...
İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN
ARALIK TAHMİNİ (INTERVAL ESTIMATION):
YTÜ-İktisat İstatistik II Aralık Tahmini I 1 ARALIK TAHMİNİ INTERVAL ESTIMATION): Nokta tahmininde ilgilenilen anakütle parametresine ilişkin örneklem bilgisinden hareketle tek bir sayı üretilir. Bir nokta
Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( )
İKİ DEĞİŞKENLİ OLASILIK Rassal bir deneme yapılmakta ve farklı iki olay ile ilgilenilmektedir. A 1, A 2,,A i olayları bağdaşmaz ve bütünü kapsayıcıdır. B 1, B 2,,B j olayları bağdaşmaz ve bütünü kapsayıcıdır.
15.433 YATIRIM. Ders 2: Menkul Kıymetler ve Wall Street de Rassal Yürüyüş. Bahar 2003
15.433 YATIRIM Ders 2: Menkul Kıymetler ve Wall Street de Rassal Yürüyüş Bahar 2003 İçerik Olasılık Teorisi Olasılık dağılımlarının kısa bir gözden geçirmesi Rassal olayları normal olaylarla değerlendirmek
MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
ZAMAN SERİLERİNDE REGRESYON ANALİZİ
ZAMAN SERİLERİNDE REGRESYON ANALİZİ 1 1. GİRİŞ Trent, serinin genelinde yukarıya ya da aşağıya doğru olan hareketlere denmektedir. Bu hareket bazen düz bir doğru şeklinde olmaktadır. Bu tür harekete sahip
Örneklem Dağılımları & Hipotez Testleri Örneklem Dağılımı
Örneklem Dağılımları & Hipotez Testleri Örneklem Dağılımı Ortalama veya korelasyon gibi istatistiklerin dağılımıdır Çıkarımsal istatistikte örneklem dağılımı temel fikirlerden biridir. Çıkarımsal istatistik
Ch. 9: Model Spesifikasyonu ve Veri Sorunları
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri II Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 9: Model Spesifikasyonu
Ekonometri II
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri II Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 9: Model Spesifikasyonu
YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 3: Çok Değişkenli Regresyon Analizi:
İstatistiksel Kavramların Gözden Geçirilmesi
İstatistiksel Kavramların Gözden Geçirilmesi İstatistiksel Çıkarsama Ekonometri 1 Konu 3 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike
Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT
Ünite 10: Regresyon Analizi Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT 10.Ünite Regresyon Analizi 2 Ünitede Ele Alınan Konular 10. Regresyon Analizi 10.1. Basit Doğrusal regresyon 10.2. Regresyon denklemi
OTOKORELASYON OTOKORELASYON
OTOKORELASYON OTOKORELASYON Y = α + βx + u Cov (u,u s ) 0 u = ρ u -1 + ε -1 < ρ < +1 Birinci dereceden Ookorelasyon Birinci Dereceden Ooregressif Süreç; A R(1) e = ρ e -1 + ε Σe e ˆ ρ = Σ 1 e KARŞILA ILAŞILAN
A. Regresyon Katsayılarında Yapısal Kırılma Testleri
A. Regresyon Katsayılarında Yapısal Kırılma Testleri Durum I: Kırılma Tarihinin Bilinmesi Durumu Kırılmanın bilinen bir tarihte örneğin tarihinde olduğunu önceden bilinmesi durumunda uygulanır. Örneğin,
Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ
I Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ II Yayın No : 2845 Teknik Dizisi : 158 1. Baskı Şubat 2013 İSTANBUL ISBN 978-605 - 377 868-4 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları BETA
Doğrusal Bağlanım Modeline Dizey Yaklaşımı
Doğrusal Bağlanım Modeline Dizey Yaklaşımı Yrd Doç Dr A Talha YALTA Ekonometri Ders Notları Sürüm,0 (Ekim 011) Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 30
UYGULAMALAR. Normal Dağılımlılık
UYGULAMALAR EKONOMETRİYE GİRİŞ 0.01.008 1 Normal Dağılımlılık Amerika da 195-1941 yılları arasında sığır eti fiyatı ile kişi başı sığır eti tüketimi arasındaki ilişki incelenmiş ve aşağıdaki sonuç bulunmuştur.
Eğitim / Danışmanlık Hizmetinin Tanımı
Eğitim / Danışmanlık Hizmetinin Tanımı 1. Proje Kapsamında Eğitim Talep Edilmiş ise, Eğitimin İçeriği Hakkında bilgi veriniz. Ekonometri alanı iktisat teorisi, işletme, matematik ve istatistiğin birleşmesiyle
MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009
MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.
YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU
Marmara Üniversitesi U.B.F. Dergisi YIL 2005, CİLT XX, SAyı 1 YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Yrd. Doç. Dr. Ebru ÇACLAYAN' Arş. Gör. Burak GÜRİş" Büyüme modelleri,
En Yüksek Olabilirlik Yöntemi. İstatistikte, tüm anakütleler kendilerine karşılık gelen bir olasılık dağılımı ile tanımlanırlar.
En Yüksek Olabilirlik Yöntemi İstatistikte, tüm anakütleler kendilerine karşılık gelen bir olasılık dağılımı ile tanımlanırlar. Basit(sıradan) en küçük kareler yöntemi, özünde olasılık dağılımları ile
Ekonometri II
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri II Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 10: Zaman Serileri
TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı
TOBB Ekonomi ve Teknoloji Üniversitesi Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklama ve uyarılar: Bu sınav toplam 100 puan değerinde 6 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm
TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı
TOBB Ekonomi ve Teknoloji Üniversitesi Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sınav toplam 100 puan değerinde 4 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm soruların
15.433 YATIRIM. Ders 7: CAPM ve APT. Bölüm 2: Uygulamalar ve Sınamalar
15.433 YATIRIM Ders 7: CAPM ve APT Bölüm 2: Uygulamalar ve Sınamalar Bahar 2003 Öngörüler ve Uygulamalar Öngörüler: - CAPM: Piyasa dengesinde yatırımcılar sadece piyasa riski taşıdıklarında ödüllendirilir.
Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş
Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Nokta Tahmini
Farklıserpilimsellik
Farklıserpilimsellik Hata Varyansı Sabit Değilse Ne Olur? Yrd. Doç. Dr. A. Talha YALTA Ekonometri 2 Ders Notları Sürüm 2,0 (Ekim 2011) Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial
İSTATİSTİKSEL DARALTICI (SHRINKAGE) MODEL VE UYGULAMALARI * A Statistical Shrinkage Model And Its Applications*
Ç.Ü. Fen Bilimleri Enstitüsü Yıl:010 Cilt:-1 İSTATİSTİKSEL DARALTICI (SHRINKAGE) MODEL VE UYGULAMALARI * A Statistical Shrinkage Model And Its Applications* Işıl FİDANOĞLU İstatistik Anabilim Dalı Fikri
Prof. Dr. Aydın Yüksel MAN 504T Yön. için Finansal Analiz & Araçları Ders: Risk-Getiri İlişkisi ve Portföy Yönetimi I
Risk-Getiri İlişkisi ve Portföy Yönetimi I 1 Giriş İşlenecek ana başlıkları sıralarsak: Finansal varlıkların risk ve getirisi Varlık portföylerinin getirisi ve riski 2 Risk ve Getiri Yatırım kararlarının
Çok Değişkenli Regresyon Analizi: Çıkarsama. OLS Tahmincilerinin Örnekleme Dağılımları (Sampling Distributions) Distributions)
Normallik varsayımı önceki varsayımlardan daha kuvvetli bir varsayımdır. MLR.6 varsayımı, MLR.3, Sıfır Koşullu Ortalama ve MLR.5 Sabit Varyans varsayımlarının yapıldığı anlamına gelir. 1 ÇOK DEĞİŞKENLİ
