Zaman Serisi Verileriyle Regresyon Analizi
|
|
|
- Hazan Toraman
- 8 yıl önce
- İzleme sayısı:
Transkript
1 Zaman Serisi Verileriyle Regresyon Analizi Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi Iktisat Bölümü Textbook: Introductory Econometrics (4th ed.) J. Wooldridge 13 Mart 2013 Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 1
2 Zaman Serisi Verileriyle Regresyon Analizi Bu bölümde zaman serilerinin kullanıldığı doğrusal regresyon modellerinde OLS tahmin edicilerinin özellikleri incelenecektir. Kesitler-arası ve zaman serisi verileri arasındaki farklar Yaygın olarak kullanılan zaman serileri modellerinden örnekler Klasik varsayımlar altında OLS tahmin edicilerinin sonlu örneklem özellikleri Hipotez testleri ve çıkarsama Zaman serilerinde trent ve mevsimsellik (seasonality) Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 2
3 Zaman Serisi Verilerinin Özellikleri Zaman serilerinde veriler, kesitler-arası veriden farklı olarak, belli bir zaman sıralaması izlemektedir. Zaman serileri analizinde geçmişin geleceği etkilediği, ancak bunun tersinin geçerli olmadığı unutulmamalıdır. Kesitler-arası veride örneklem ilgili anakütleden rassal örnekleme ile elde ediliyordu. Farklı örneklemler farklı gerçekleşmeler üreteciğinden, bu örneklemler yardımıyla ulaşılan OLS tahmin değerleri de farklılık sergileyebiliyordu. Bu yüzden OLS tahmin edicilerini rassal değişken olarak değerlendirebiliyorduk. Bu durumda zaman serilerindeki rassallığı (randomness) nasıl yorumlayacağız? Zaman serisi değişkenlerinin (GSMH, İMKB indeksi, vs) bir sonraki dönemde hangi değerleri alacaklarını öngöremediğimiz için bu değişkenleri rassal değişken olarak düşünebiliriz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 3
4 Zaman Serisi Verilerinin Özellikleri Zaman serilerinde veriler, kesitler-arası veriden farklı olarak, belli bir zaman sıralaması izlemektedir. Zaman serileri analizinde geçmişin geleceği etkilediği, ancak bunun tersinin geçerli olmadığı unutulmamalıdır. Kesitler-arası veride örneklem ilgili anakütleden rassal örnekleme ile elde ediliyordu. Farklı örneklemler farklı gerçekleşmeler üreteciğinden, bu örneklemler yardımıyla ulaşılan OLS tahmin değerleri de farklılık sergileyebiliyordu. Bu yüzden OLS tahmin edicilerini rassal değişken olarak değerlendirebiliyorduk. Bu durumda zaman serilerindeki rassallığı (randomness) nasıl yorumlayacağız? Zaman serisi değişkenlerinin (GSMH, İMKB indeksi, vs) bir sonraki dönemde hangi değerleri alacaklarını öngöremediğimiz için bu değişkenleri rassal değişken olarak düşünebiliriz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 3
5 Zaman Serisi Verilerinin Özellikleri Zaman serilerinde veriler, kesitler-arası veriden farklı olarak, belli bir zaman sıralaması izlemektedir. Zaman serileri analizinde geçmişin geleceği etkilediği, ancak bunun tersinin geçerli olmadığı unutulmamalıdır. Kesitler-arası veride örneklem ilgili anakütleden rassal örnekleme ile elde ediliyordu. Farklı örneklemler farklı gerçekleşmeler üreteciğinden, bu örneklemler yardımıyla ulaşılan OLS tahmin değerleri de farklılık sergileyebiliyordu. Bu yüzden OLS tahmin edicilerini rassal değişken olarak değerlendirebiliyorduk. Bu durumda zaman serilerindeki rassallığı (randomness) nasıl yorumlayacağız? Zaman serisi değişkenlerinin (GSMH, İMKB indeksi, vs) bir sonraki dönemde hangi değerleri alacaklarını öngöremediğimiz için bu değişkenleri rassal değişken olarak düşünebiliriz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 3
6 Zaman Serisi Verilerinin Özellikleri Zaman serilerinde veriler, kesitler-arası veriden farklı olarak, belli bir zaman sıralaması izlemektedir. Zaman serileri analizinde geçmişin geleceği etkilediği, ancak bunun tersinin geçerli olmadığı unutulmamalıdır. Kesitler-arası veride örneklem ilgili anakütleden rassal örnekleme ile elde ediliyordu. Farklı örneklemler farklı gerçekleşmeler üreteciğinden, bu örneklemler yardımıyla ulaşılan OLS tahmin değerleri de farklılık sergileyebiliyordu. Bu yüzden OLS tahmin edicilerini rassal değişken olarak değerlendirebiliyorduk. Bu durumda zaman serilerindeki rassallığı (randomness) nasıl yorumlayacağız? Zaman serisi değişkenlerinin (GSMH, İMKB indeksi, vs) bir sonraki dönemde hangi değerleri alacaklarını öngöremediğimiz için bu değişkenleri rassal değişken olarak düşünebiliriz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 3
7 Zaman Serisi Verilerinin Özellikleri Zaman serilerinde veriler, kesitler-arası veriden farklı olarak, belli bir zaman sıralaması izlemektedir. Zaman serileri analizinde geçmişin geleceği etkilediği, ancak bunun tersinin geçerli olmadığı unutulmamalıdır. Kesitler-arası veride örneklem ilgili anakütleden rassal örnekleme ile elde ediliyordu. Farklı örneklemler farklı gerçekleşmeler üreteciğinden, bu örneklemler yardımıyla ulaşılan OLS tahmin değerleri de farklılık sergileyebiliyordu. Bu yüzden OLS tahmin edicilerini rassal değişken olarak değerlendirebiliyorduk. Bu durumda zaman serilerindeki rassallığı (randomness) nasıl yorumlayacağız? Zaman serisi değişkenlerinin (GSMH, İMKB indeksi, vs) bir sonraki dönemde hangi değerleri alacaklarını öngöremediğimiz için bu değişkenleri rassal değişken olarak düşünebiliriz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 3
8 ABD de Enflasyon ve İşsizlik Oranlarına Dair Kısmi Zaman Serisi Verisi
9 Zaman Serisi Süreci ya da Stokastik Süreç Tanım: Stokastik Süreç / Zaman Serisi Süreci Zaman (t) endeksi taşıyan rassal değişkenlerin oluşturduğu diziye (sequence) stokastik süreç (stochastic process) ya da zaman serisi süreci (time series process) denir. Stokastik sözcüğü rassal (random) ile aynı anlamda kullanılmaktadır. Mevcut bir zaman serisi, stokastik sürecin olası bir gerçekleşmesi olarak görülebilir. Zamanda geriye gidip başka bir gerçekleşme elde edemeyeceğimiz için zaman serileri tek bir gerçekleşmenin sonuçlarıdır. Şüphesiz ilgilendiğimiz zaman serisi farklı tarihsel koşullar altında farklı olacaktı. Dolayısıyla, bir zaman serisi sürecinin bütün olası gerçekleşmelerinin oluşturacağı küme, burada, kesitler-arası verideki anakütlenin (population) rolünü üstlenecektir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 5
10 Zaman Serisi Süreci ya da Stokastik Süreç Tanım: Stokastik Süreç / Zaman Serisi Süreci Zaman (t) endeksi taşıyan rassal değişkenlerin oluşturduğu diziye (sequence) stokastik süreç (stochastic process) ya da zaman serisi süreci (time series process) denir. Stokastik sözcüğü rassal (random) ile aynı anlamda kullanılmaktadır. Mevcut bir zaman serisi, stokastik sürecin olası bir gerçekleşmesi olarak görülebilir. Zamanda geriye gidip başka bir gerçekleşme elde edemeyeceğimiz için zaman serileri tek bir gerçekleşmenin sonuçlarıdır. Şüphesiz ilgilendiğimiz zaman serisi farklı tarihsel koşullar altında farklı olacaktı. Dolayısıyla, bir zaman serisi sürecinin bütün olası gerçekleşmelerinin oluşturacağı küme, burada, kesitler-arası verideki anakütlenin (population) rolünü üstlenecektir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 5
11 Zaman Serisi Süreci ya da Stokastik Süreç Tanım: Stokastik Süreç / Zaman Serisi Süreci Zaman (t) endeksi taşıyan rassal değişkenlerin oluşturduğu diziye (sequence) stokastik süreç (stochastic process) ya da zaman serisi süreci (time series process) denir. Stokastik sözcüğü rassal (random) ile aynı anlamda kullanılmaktadır. Mevcut bir zaman serisi, stokastik sürecin olası bir gerçekleşmesi olarak görülebilir. Zamanda geriye gidip başka bir gerçekleşme elde edemeyeceğimiz için zaman serileri tek bir gerçekleşmenin sonuçlarıdır. Şüphesiz ilgilendiğimiz zaman serisi farklı tarihsel koşullar altında farklı olacaktı. Dolayısıyla, bir zaman serisi sürecinin bütün olası gerçekleşmelerinin oluşturacağı küme, burada, kesitler-arası verideki anakütlenin (population) rolünü üstlenecektir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 5
12 Zaman Serisi Süreci ya da Stokastik Süreç Tanım: Stokastik Süreç / Zaman Serisi Süreci Zaman (t) endeksi taşıyan rassal değişkenlerin oluşturduğu diziye (sequence) stokastik süreç (stochastic process) ya da zaman serisi süreci (time series process) denir. Stokastik sözcüğü rassal (random) ile aynı anlamda kullanılmaktadır. Mevcut bir zaman serisi, stokastik sürecin olası bir gerçekleşmesi olarak görülebilir. Zamanda geriye gidip başka bir gerçekleşme elde edemeyeceğimiz için zaman serileri tek bir gerçekleşmenin sonuçlarıdır. Şüphesiz ilgilendiğimiz zaman serisi farklı tarihsel koşullar altında farklı olacaktı. Dolayısıyla, bir zaman serisi sürecinin bütün olası gerçekleşmelerinin oluşturacağı küme, burada, kesitler-arası verideki anakütlenin (population) rolünü üstlenecektir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 5
13 Zaman Serisi Süreci ya da Stokastik Süreç Tanım: Stokastik Süreç / Zaman Serisi Süreci Zaman (t) endeksi taşıyan rassal değişkenlerin oluşturduğu diziye (sequence) stokastik süreç (stochastic process) ya da zaman serisi süreci (time series process) denir. Stokastik sözcüğü rassal (random) ile aynı anlamda kullanılmaktadır. Mevcut bir zaman serisi, stokastik sürecin olası bir gerçekleşmesi olarak görülebilir. Zamanda geriye gidip başka bir gerçekleşme elde edemeyeceğimiz için zaman serileri tek bir gerçekleşmenin sonuçlarıdır. Şüphesiz ilgilendiğimiz zaman serisi farklı tarihsel koşullar altında farklı olacaktı. Dolayısıyla, bir zaman serisi sürecinin bütün olası gerçekleşmelerinin oluşturacağı küme, burada, kesitler-arası verideki anakütlenin (population) rolünü üstlenecektir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 5
14 Zaman Serisi Süreci ya da Stokastik Süreç Tanım: Stokastik Süreç / Zaman Serisi Süreci Zaman (t) endeksi taşıyan rassal değişkenlerin oluşturduğu diziye (sequence) stokastik süreç (stochastic process) ya da zaman serisi süreci (time series process) denir. Stokastik sözcüğü rassal (random) ile aynı anlamda kullanılmaktadır. Mevcut bir zaman serisi, stokastik sürecin olası bir gerçekleşmesi olarak görülebilir. Zamanda geriye gidip başka bir gerçekleşme elde edemeyeceğimiz için zaman serileri tek bir gerçekleşmenin sonuçlarıdır. Şüphesiz ilgilendiğimiz zaman serisi farklı tarihsel koşullar altında farklı olacaktı. Dolayısıyla, bir zaman serisi sürecinin bütün olası gerçekleşmelerinin oluşturacağı küme, burada, kesitler-arası verideki anakütlenin (population) rolünü üstlenecektir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 5
15 Zaman Serisi Modellerine Örnekler Şimdi de sosyal bilimlerde kullanılan bazı modellere değinelim. Statik Model Eşanlı (contemporaneously) zaman endeksi taşıyan iki zaman serisi olsun : y ve z. y yi z ile ilişkilendiren statik bir model şöyle yazılabilir: y t = β 0 + β 1 z t + u t t = 1, 2,..., n Statik model, değişkenlerin birinci farkları (değişmeyi gösterir) arasında da formüle edilebilir: y t = β 1 z t + u t t = 1, 2,..., n Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 6
16 Statik Phillips Eğrisi Statik Phillips eğrisini statik modele bir örnek olarak verebiliriz: Statik Phillips Eğrisi inf t = β 0 + β 1 unemp t + u t inf t : enflasyon oranı ve unemp t : işsizlik oranı Bu model doğal işsizlik oranı (natural rate of unemployment) ve enflasyon beklentisinin sabit olduğunu varsayar. inf t ile unemp t değişkenleri arasındaki eşanlı ödünümü (contemporaneous tradeoff) bu model aracılığıyla inceleyebiliriz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 7
17 Statik Phillips Eğrisi Statik Phillips eğrisini statik modele bir örnek olarak verebiliriz: Statik Phillips Eğrisi inf t = β 0 + β 1 unemp t + u t inf t : enflasyon oranı ve unemp t : işsizlik oranı Bu model doğal işsizlik oranı (natural rate of unemployment) ve enflasyon beklentisinin sabit olduğunu varsayar. inf t ile unemp t değişkenleri arasındaki eşanlı ödünümü (contemporaneous tradeoff) bu model aracılığıyla inceleyebiliriz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 7
18 Statik Phillips Eğrisi Statik Phillips eğrisini statik modele bir örnek olarak verebiliriz: Statik Phillips Eğrisi inf t = β 0 + β 1 unemp t + u t inf t : enflasyon oranı ve unemp t : işsizlik oranı Bu model doğal işsizlik oranı (natural rate of unemployment) ve enflasyon beklentisinin sabit olduğunu varsayar. inf t ile unemp t değişkenleri arasındaki eşanlı ödünümü (contemporaneous tradeoff) bu model aracılığıyla inceleyebiliriz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 7
19 Statik Phillips Eğrisi Statik Phillips eğrisini statik modele bir örnek olarak verebiliriz: Statik Phillips Eğrisi inf t = β 0 + β 1 unemp t + u t inf t : enflasyon oranı ve unemp t : işsizlik oranı Bu model doğal işsizlik oranı (natural rate of unemployment) ve enflasyon beklentisinin sabit olduğunu varsayar. inf t ile unemp t değişkenleri arasındaki eşanlı ödünümü (contemporaneous tradeoff) bu model aracılığıyla inceleyebiliriz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 7
20 Statik Phillips Eğrisi Statik Phillips eğrisini statik modele bir örnek olarak verebiliriz: Statik Phillips Eğrisi inf t = β 0 + β 1 unemp t + u t inf t : enflasyon oranı ve unemp t : işsizlik oranı Bu model doğal işsizlik oranı (natural rate of unemployment) ve enflasyon beklentisinin sabit olduğunu varsayar. inf t ile unemp t değişkenleri arasındaki eşanlı ödünümü (contemporaneous tradeoff) bu model aracılığıyla inceleyebiliriz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 7
21 Sonlu Dağıtılmış Gecikme Modelleri (Finite Distributed Lag Models, FDL models) Sonlu dağıtılmış gecikme modellerinde (FDL models) y yi, yani bağımlı değişkeni, belli bir gecikme (lag) ile etkileyen bir çok değişken mevcuttur: Vergi Muafiyetinin Doğurganlığa Etkisi gfr t = α 0 + δ 0 pe t + δ 1 pe t 1 + δ 2 pe t 2 + u t gfr t : doğurganlık oranı (fertility rate), doğurganlık yaşındaki 1000 kadına düşen bebek sayısı. pe t : çocuk sahibi olmayı özendirmek için getirilen reel vergi muafiyeti. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 8
22 Sonlu Dağıtılmış Gecikme Modelleri (Finite Distributed Lag Models, FDL models) Sonlu dağıtılmış gecikme modellerinde (FDL models) y yi, yani bağımlı değişkeni, belli bir gecikme (lag) ile etkileyen bir çok değişken mevcuttur: Vergi Muafiyetinin Doğurganlığa Etkisi gfr t = α 0 + δ 0 pe t + δ 1 pe t 1 + δ 2 pe t 2 + u t gfr t : doğurganlık oranı (fertility rate), doğurganlık yaşındaki 1000 kadına düşen bebek sayısı. pe t : çocuk sahibi olmayı özendirmek için getirilen reel vergi muafiyeti. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 8
23 Sonlu Dağıtılmış Gecikme Modelleri (Finite Distributed Lag Models, FDL models) Sonlu dağıtılmış gecikme modellerinde (FDL models) y yi, yani bağımlı değişkeni, belli bir gecikme (lag) ile etkileyen bir çok değişken mevcuttur: Vergi Muafiyetinin Doğurganlığa Etkisi gfr t = α 0 + δ 0 pe t + δ 1 pe t 1 + δ 2 pe t 2 + u t gfr t : doğurganlık oranı (fertility rate), doğurganlık yaşındaki 1000 kadına düşen bebek sayısı. pe t : çocuk sahibi olmayı özendirmek için getirilen reel vergi muafiyeti. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 8
24 Sonlu Dağıtılmış Gecikme Modelleri (Finite Distributed Lag Models, FDL models) Sonlu dağıtılmış gecikme modellerinde (FDL models) y yi, yani bağımlı değişkeni, belli bir gecikme (lag) ile etkileyen bir çok değişken mevcuttur: Vergi Muafiyetinin Doğurganlığa Etkisi gfr t = α 0 + δ 0 pe t + δ 1 pe t 1 + δ 2 pe t 2 + u t gfr t : doğurganlık oranı (fertility rate), doğurganlık yaşındaki 1000 kadına düşen bebek sayısı. pe t : çocuk sahibi olmayı özendirmek için getirilen reel vergi muafiyeti. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 8
25 Sonlu Dağıtılmış Gecikme Modelleri (FDL models) Vergi muafiyetinin doğurganlığa etkisini ele alan bu model ikinci sıradan bir FDL modeline örnektir. İkinci sıradan bir FDL modeli y t = α 0 + δ 0 z t + δ 1 z t 1 + δ 2 z t 2 + u t Şimdi de z de t döneminde bir kerelik (geçici) bir birimlik bir değişme olduğunu düşünelim:..., z t 2 = c, z t 1 = c, z t = c + 1, z t+1 = c z t+2 = c,... Bu değişmenin y de yaratacağı ceteris paribus etkiye, etki çarpanı ya da etki çoğaltanı denir. (impact multiplier or impact propensity). Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 9
26 Sonlu Dağıtılmış Gecikme Modelleri (FDL models) Vergi muafiyetinin doğurganlığa etkisini ele alan bu model ikinci sıradan bir FDL modeline örnektir. İkinci sıradan bir FDL modeli y t = α 0 + δ 0 z t + δ 1 z t 1 + δ 2 z t 2 + u t Şimdi de z de t döneminde bir kerelik (geçici) bir birimlik bir değişme olduğunu düşünelim:..., z t 2 = c, z t 1 = c, z t = c + 1, z t+1 = c z t+2 = c,... Bu değişmenin y de yaratacağı ceteris paribus etkiye, etki çarpanı ya da etki çoğaltanı denir. (impact multiplier or impact propensity). Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 9
27 Sonlu Dağıtılmış Gecikme Modelleri (FDL models) Vergi muafiyetinin doğurganlığa etkisini ele alan bu model ikinci sıradan bir FDL modeline örnektir. İkinci sıradan bir FDL modeli y t = α 0 + δ 0 z t + δ 1 z t 1 + δ 2 z t 2 + u t Şimdi de z de t döneminde bir kerelik (geçici) bir birimlik bir değişme olduğunu düşünelim:..., z t 2 = c, z t 1 = c, z t = c + 1, z t+1 = c z t+2 = c,... Bu değişmenin y de yaratacağı ceteris paribus etkiye, etki çarpanı ya da etki çoğaltanı denir. (impact multiplier or impact propensity). Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 9
28 Sonlu Dağıtılmış Gecikme Modelleri (FDL models) Vergi muafiyetinin doğurganlığa etkisini ele alan bu model ikinci sıradan bir FDL modeline örnektir. İkinci sıradan bir FDL modeli y t = α 0 + δ 0 z t + δ 1 z t 1 + δ 2 z t 2 + u t Şimdi de z de t döneminde bir kerelik (geçici) bir birimlik bir değişme olduğunu düşünelim:..., z t 2 = c, z t 1 = c, z t = c + 1, z t+1 = c z t+2 = c,... Bu değişmenin y de yaratacağı ceteris paribus etkiye, etki çarpanı ya da etki çoğaltanı denir. (impact multiplier or impact propensity). Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 9
29 Etki Çarpanının (Impact Multiplier) Hesaplanması İkinci sıradan bir FDL modelinde etki çarpanının hesaplanması. y t 1 = α 0 + δ 0 c + δ 1 c + δ 2 c, y t = α 0 + δ 0 (c + 1) + δ 1 c + δ 2 c, y t+1 = α 0 + δ 0 c + δ 1 (c + 1) + δ 2 c, y t+2 = α 0 + δ 0 c + δ 1 c + δ 2 (c + 1), y t+3 = α 0 + δ 0 c + δ 1 c + δ 2 c, İlk iki denklemden y t y t 1 = δ 0 olduğu rahatlıkla görülebilir. Burada δ 0, t döneminde (cari) z deki bir birim artışın y üzerindeki ani etkisini gösterir. δ 0, etki çarpanı olarak adlandırılır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 10
30 Etki Çarpanının (Impact Multiplier) Hesaplanması İkinci sıradan bir FDL modelinde etki çarpanının hesaplanması. y t 1 = α 0 + δ 0 c + δ 1 c + δ 2 c, y t = α 0 + δ 0 (c + 1) + δ 1 c + δ 2 c, y t+1 = α 0 + δ 0 c + δ 1 (c + 1) + δ 2 c, y t+2 = α 0 + δ 0 c + δ 1 c + δ 2 (c + 1), y t+3 = α 0 + δ 0 c + δ 1 c + δ 2 c, İlk iki denklemden y t y t 1 = δ 0 olduğu rahatlıkla görülebilir. Burada δ 0, t döneminde (cari) z deki bir birim artışın y üzerindeki ani etkisini gösterir. δ 0, etki çarpanı olarak adlandırılır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 10
31 Etki Çarpanının (Impact Multiplier) Hesaplanması İkinci sıradan bir FDL modelinde etki çarpanının hesaplanması. y t 1 = α 0 + δ 0 c + δ 1 c + δ 2 c, y t = α 0 + δ 0 (c + 1) + δ 1 c + δ 2 c, y t+1 = α 0 + δ 0 c + δ 1 (c + 1) + δ 2 c, y t+2 = α 0 + δ 0 c + δ 1 c + δ 2 (c + 1), y t+3 = α 0 + δ 0 c + δ 1 c + δ 2 c, İlk iki denklemden y t y t 1 = δ 0 olduğu rahatlıkla görülebilir. Burada δ 0, t döneminde (cari) z deki bir birim artışın y üzerindeki ani etkisini gösterir. δ 0, etki çarpanı olarak adlandırılır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 10
32 Etki Çarpanının (Impact Multiplier) Hesaplanması İkinci sıradan bir FDL modelinde etki çarpanının hesaplanması. y t 1 = α 0 + δ 0 c + δ 1 c + δ 2 c, y t = α 0 + δ 0 (c + 1) + δ 1 c + δ 2 c, y t+1 = α 0 + δ 0 c + δ 1 (c + 1) + δ 2 c, y t+2 = α 0 + δ 0 c + δ 1 c + δ 2 (c + 1), y t+3 = α 0 + δ 0 c + δ 1 c + δ 2 c, İlk iki denklemden y t y t 1 = δ 0 olduğu rahatlıkla görülebilir. Burada δ 0, t döneminde (cari) z deki bir birim artışın y üzerindeki ani etkisini gösterir. δ 0, etki çarpanı olarak adlandırılır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 10
33 Etki Çarpanının (Impact Multiplier) Hesaplanması Benzer şekilde y de geçici değişmenin olduğu t döneminden bir dönem sonraki değişme y t+1 y t 1 = δ 1 e, iki dönem sonraki değişme de y t+2 y t 1 = δ 2 ye eşit olacaktır. t + 3 döneminde y eski değerine geri dönecektir: y t+3 = y t 1 Bunun nedeni şu an incelenen modelin sadece iki dönem gecikme barındıran ikinci sıradan bir FDL modeli olmasıdır. δ j lerin j endeksine göre çizilen grafiği gecikme dağılımını (lag distribution) verecektir. Bu grafik, z de meydana gelen geçici (temporary) bir artışın y üzerindeki dinamik etkisini gösterecektir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 11
34 Etki Çarpanının (Impact Multiplier) Hesaplanması Benzer şekilde y de geçici değişmenin olduğu t döneminden bir dönem sonraki değişme y t+1 y t 1 = δ 1 e, iki dönem sonraki değişme de y t+2 y t 1 = δ 2 ye eşit olacaktır. t + 3 döneminde y eski değerine geri dönecektir: y t+3 = y t 1 Bunun nedeni şu an incelenen modelin sadece iki dönem gecikme barındıran ikinci sıradan bir FDL modeli olmasıdır. δ j lerin j endeksine göre çizilen grafiği gecikme dağılımını (lag distribution) verecektir. Bu grafik, z de meydana gelen geçici (temporary) bir artışın y üzerindeki dinamik etkisini gösterecektir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 11
35 Etki Çarpanının (Impact Multiplier) Hesaplanması Benzer şekilde y de geçici değişmenin olduğu t döneminden bir dönem sonraki değişme y t+1 y t 1 = δ 1 e, iki dönem sonraki değişme de y t+2 y t 1 = δ 2 ye eşit olacaktır. t + 3 döneminde y eski değerine geri dönecektir: y t+3 = y t 1 Bunun nedeni şu an incelenen modelin sadece iki dönem gecikme barındıran ikinci sıradan bir FDL modeli olmasıdır. δ j lerin j endeksine göre çizilen grafiği gecikme dağılımını (lag distribution) verecektir. Bu grafik, z de meydana gelen geçici (temporary) bir artışın y üzerindeki dinamik etkisini gösterecektir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 11
36 Etki Çarpanının (Impact Multiplier) Hesaplanması Benzer şekilde y de geçici değişmenin olduğu t döneminden bir dönem sonraki değişme y t+1 y t 1 = δ 1 e, iki dönem sonraki değişme de y t+2 y t 1 = δ 2 ye eşit olacaktır. t + 3 döneminde y eski değerine geri dönecektir: y t+3 = y t 1 Bunun nedeni şu an incelenen modelin sadece iki dönem gecikme barındıran ikinci sıradan bir FDL modeli olmasıdır. δ j lerin j endeksine göre çizilen grafiği gecikme dağılımını (lag distribution) verecektir. Bu grafik, z de meydana gelen geçici (temporary) bir artışın y üzerindeki dinamik etkisini gösterecektir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 11
37 Etki Çarpanının (Impact Multiplier) Hesaplanması Benzer şekilde y de geçici değişmenin olduğu t döneminden bir dönem sonraki değişme y t+1 y t 1 = δ 1 e, iki dönem sonraki değişme de y t+2 y t 1 = δ 2 ye eşit olacaktır. t + 3 döneminde y eski değerine geri dönecektir: y t+3 = y t 1 Bunun nedeni şu an incelenen modelin sadece iki dönem gecikme barındıran ikinci sıradan bir FDL modeli olmasıdır. δ j lerin j endeksine göre çizilen grafiği gecikme dağılımını (lag distribution) verecektir. Bu grafik, z de meydana gelen geçici (temporary) bir artışın y üzerindeki dinamik etkisini gösterecektir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 11
38 Gecikme Dağılımı (Lag Distribution)
39 Uzun Dönem Çoğaltanı (Long Run Propensity, LRP) z deki sürekli (permanent) artışların y üzerindeki etkisini de bilmek isteriz. z, t döneminden önce z = c (sabit), t döneminden itibaren ise z = c + 1 olsun. Artık t döneminden başlamak üzere z de kalıcı bir değişiklik söz konusudur. y t 1 = α 0 + δ 0 c + δ 1 c + δ 2 c, y t = α 0 + δ 0 (c + 1) + δ 1 c + δ 2 c, y t+1 = α 0 + δ 0 (c + 1) + δ 1 (c + 1) + δ 2 c, y t+2 = α 0 + δ 0 (c + 1) + δ 1 (c + 1) + δ 2 (c + 1), Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 13
40 Uzun Dönem Çoğaltanı (Long Run Propensity, LRP) z deki sürekli (permanent) artışların y üzerindeki etkisini de bilmek isteriz. z, t döneminden önce z = c (sabit), t döneminden itibaren ise z = c + 1 olsun. Artık t döneminden başlamak üzere z de kalıcı bir değişiklik söz konusudur. y t 1 = α 0 + δ 0 c + δ 1 c + δ 2 c, y t = α 0 + δ 0 (c + 1) + δ 1 c + δ 2 c, y t+1 = α 0 + δ 0 (c + 1) + δ 1 (c + 1) + δ 2 c, y t+2 = α 0 + δ 0 (c + 1) + δ 1 (c + 1) + δ 2 (c + 1), Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 13
41 Uzun Dönem Çoğaltanı (Long Run Propensity, LRP) z deki sürekli (permanent) artışların y üzerindeki etkisini de bilmek isteriz. z, t döneminden önce z = c (sabit), t döneminden itibaren ise z = c + 1 olsun. Artık t döneminden başlamak üzere z de kalıcı bir değişiklik söz konusudur. y t 1 = α 0 + δ 0 c + δ 1 c + δ 2 c, y t = α 0 + δ 0 (c + 1) + δ 1 c + δ 2 c, y t+1 = α 0 + δ 0 (c + 1) + δ 1 (c + 1) + δ 2 c, y t+2 = α 0 + δ 0 (c + 1) + δ 1 (c + 1) + δ 2 (c + 1), Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 13
42 Uzun Dönem Çoğaltanı (Long Run Propensity, LRP) z deki kalıcı/sürekli bir artış, bir dönem sonra y nin δ 0 + δ 1 kadar artmasına yol açar. İki dönem sonra ise y deki artış δ 0 + δ 1 + δ 2 kadardır. İki dönemden sonra ise y de daha fazla artış meydana gelmez. Böylece cari ve gecikmeli z lerin katsayılarının toplamı, z deki kalıcı bir değişmenin y üzerindeki uzun dönemli etkisini gösterir. Bu uzun dönemli etkiye, uzun dönem çarpanı ya da uzun dönem çoğaltanı (long run multiplier or long run propensity, LRP) denir. Sonlu dağıtılmış gecikme (FDL) modellerinde, uzun dönem çoğaltanı ilginin ana odağıdır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 14
43 Uzun Dönem Çoğaltanı (Long Run Propensity, LRP) z deki kalıcı/sürekli bir artış, bir dönem sonra y nin δ 0 + δ 1 kadar artmasına yol açar. İki dönem sonra ise y deki artış δ 0 + δ 1 + δ 2 kadardır. İki dönemden sonra ise y de daha fazla artış meydana gelmez. Böylece cari ve gecikmeli z lerin katsayılarının toplamı, z deki kalıcı bir değişmenin y üzerindeki uzun dönemli etkisini gösterir. Bu uzun dönemli etkiye, uzun dönem çarpanı ya da uzun dönem çoğaltanı (long run multiplier or long run propensity, LRP) denir. Sonlu dağıtılmış gecikme (FDL) modellerinde, uzun dönem çoğaltanı ilginin ana odağıdır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 14
44 Uzun Dönem Çoğaltanı (Long Run Propensity, LRP) z deki kalıcı/sürekli bir artış, bir dönem sonra y nin δ 0 + δ 1 kadar artmasına yol açar. İki dönem sonra ise y deki artış δ 0 + δ 1 + δ 2 kadardır. İki dönemden sonra ise y de daha fazla artış meydana gelmez. Böylece cari ve gecikmeli z lerin katsayılarının toplamı, z deki kalıcı bir değişmenin y üzerindeki uzun dönemli etkisini gösterir. Bu uzun dönemli etkiye, uzun dönem çarpanı ya da uzun dönem çoğaltanı (long run multiplier or long run propensity, LRP) denir. Sonlu dağıtılmış gecikme (FDL) modellerinde, uzun dönem çoğaltanı ilginin ana odağıdır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 14
45 Uzun Dönem Çoğaltanı (Long Run Propensity, LRP) z deki kalıcı/sürekli bir artış, bir dönem sonra y nin δ 0 + δ 1 kadar artmasına yol açar. İki dönem sonra ise y deki artış δ 0 + δ 1 + δ 2 kadardır. İki dönemden sonra ise y de daha fazla artış meydana gelmez. Böylece cari ve gecikmeli z lerin katsayılarının toplamı, z deki kalıcı bir değişmenin y üzerindeki uzun dönemli etkisini gösterir. Bu uzun dönemli etkiye, uzun dönem çarpanı ya da uzun dönem çoğaltanı (long run multiplier or long run propensity, LRP) denir. Sonlu dağıtılmış gecikme (FDL) modellerinde, uzun dönem çoğaltanı ilginin ana odağıdır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 14
46 Uzun Dönem Çoğaltanı (Long Run Propensity, LRP) Vergi Muafiyetinin Doğurganlığa Etkisi gfr t = α 0 + δ 0 pe t + δ 1 pe t 1 + δ 2 pe t 2 + u t Yukarıdaki modelde δ 0, pe de 1 dolarlık artışın doğurganlık oranında yaratacağı eşanlı değişmeyi ölçer. Bu etki, davranışsal ve biyolojik nedenlerden ötürü, ya sıfır ya da çok küçük olacaktır. δ 1 ve δ 2, sırasıyla, bir dönem ve iki dönem önceki 1 dolarlık pe değişmelerinin etkilerini ölçmektedir. Bu katsayıların pozitif olmalarını bekleyebiliriz. Eğer pe, t döneminden itibaren kalıcı olarak c + 1 olursa, gfr, iki dönem sonra δ 0 + δ 1 + δ 2 kadar artacaktır. İki dönem sonrası ise gf r de değişme olmayacaktır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 15
47 Uzun Dönem Çoğaltanı (Long Run Propensity, LRP) Vergi Muafiyetinin Doğurganlığa Etkisi gfr t = α 0 + δ 0 pe t + δ 1 pe t 1 + δ 2 pe t 2 + u t Yukarıdaki modelde δ 0, pe de 1 dolarlık artışın doğurganlık oranında yaratacağı eşanlı değişmeyi ölçer. Bu etki, davranışsal ve biyolojik nedenlerden ötürü, ya sıfır ya da çok küçük olacaktır. δ 1 ve δ 2, sırasıyla, bir dönem ve iki dönem önceki 1 dolarlık pe değişmelerinin etkilerini ölçmektedir. Bu katsayıların pozitif olmalarını bekleyebiliriz. Eğer pe, t döneminden itibaren kalıcı olarak c + 1 olursa, gfr, iki dönem sonra δ 0 + δ 1 + δ 2 kadar artacaktır. İki dönem sonrası ise gf r de değişme olmayacaktır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 15
48 Uzun Dönem Çoğaltanı (Long Run Propensity, LRP) Vergi Muafiyetinin Doğurganlığa Etkisi gfr t = α 0 + δ 0 pe t + δ 1 pe t 1 + δ 2 pe t 2 + u t Yukarıdaki modelde δ 0, pe de 1 dolarlık artışın doğurganlık oranında yaratacağı eşanlı değişmeyi ölçer. Bu etki, davranışsal ve biyolojik nedenlerden ötürü, ya sıfır ya da çok küçük olacaktır. δ 1 ve δ 2, sırasıyla, bir dönem ve iki dönem önceki 1 dolarlık pe değişmelerinin etkilerini ölçmektedir. Bu katsayıların pozitif olmalarını bekleyebiliriz. Eğer pe, t döneminden itibaren kalıcı olarak c + 1 olursa, gfr, iki dönem sonra δ 0 + δ 1 + δ 2 kadar artacaktır. İki dönem sonrası ise gf r de değişme olmayacaktır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 15
49 Uzun Dönem Çoğaltanı (Long Run Propensity, LRP) Vergi Muafiyetinin Doğurganlığa Etkisi gfr t = α 0 + δ 0 pe t + δ 1 pe t 1 + δ 2 pe t 2 + u t Yukarıdaki modelde δ 0, pe de 1 dolarlık artışın doğurganlık oranında yaratacağı eşanlı değişmeyi ölçer. Bu etki, davranışsal ve biyolojik nedenlerden ötürü, ya sıfır ya da çok küçük olacaktır. δ 1 ve δ 2, sırasıyla, bir dönem ve iki dönem önceki 1 dolarlık pe değişmelerinin etkilerini ölçmektedir. Bu katsayıların pozitif olmalarını bekleyebiliriz. Eğer pe, t döneminden itibaren kalıcı olarak c + 1 olursa, gfr, iki dönem sonra δ 0 + δ 1 + δ 2 kadar artacaktır. İki dönem sonrası ise gf r de değişme olmayacaktır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 15
50 q.cu Sıradan Sonlu Dağıtılmış Gecikme Modeli FDL(q) q.cu sıradan sonlu bir dağıtılmış gecikme modeli (a finite distributed lag model of order q): FDL(q) y t = α 0 + δ 0 z t + δ 1 z t δ q z t q + u t FDL modelleri, bağımsız değişkenin (z) bağımlı değişken (y) üzerinde gecikmeli etkisinin (lagged effects) olup olmadığını görmemize yarar. Cari dönem değişkeni z t nin katsayısı, δ 0, etki çoğaltanı (impact multiplier or impact propensity) adını alır. Uzun dönem çoğaltanı (long-run propensity, LRP) tüm z t j katsayılarının toplamıdır: LRP = δ 0 + δ δ q Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 16
51 q.cu Sıradan Sonlu Dağıtılmış Gecikme Modeli FDL(q) q.cu sıradan sonlu bir dağıtılmış gecikme modeli (a finite distributed lag model of order q): FDL(q) y t = α 0 + δ 0 z t + δ 1 z t δ q z t q + u t FDL modelleri, bağımsız değişkenin (z) bağımlı değişken (y) üzerinde gecikmeli etkisinin (lagged effects) olup olmadığını görmemize yarar. Cari dönem değişkeni z t nin katsayısı, δ 0, etki çoğaltanı (impact multiplier or impact propensity) adını alır. Uzun dönem çoğaltanı (long-run propensity, LRP) tüm z t j katsayılarının toplamıdır: LRP = δ 0 + δ δ q Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 16
52 q.cu Sıradan Sonlu Dağıtılmış Gecikme Modeli FDL(q) q.cu sıradan sonlu bir dağıtılmış gecikme modeli (a finite distributed lag model of order q): FDL(q) y t = α 0 + δ 0 z t + δ 1 z t δ q z t q + u t FDL modelleri, bağımsız değişkenin (z) bağımlı değişken (y) üzerinde gecikmeli etkisinin (lagged effects) olup olmadığını görmemize yarar. Cari dönem değişkeni z t nin katsayısı, δ 0, etki çoğaltanı (impact multiplier or impact propensity) adını alır. Uzun dönem çoğaltanı (long-run propensity, LRP) tüm z t j katsayılarının toplamıdır: LRP = δ 0 + δ δ q Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 16
53 q.cu Sıradan Sonlu Dağıtılmış Gecikme Modeli FDL(q) q.cu sıradan sonlu bir dağıtılmış gecikme modeli (a finite distributed lag model of order q): FDL(q) y t = α 0 + δ 0 z t + δ 1 z t δ q z t q + u t FDL modelleri, bağımsız değişkenin (z) bağımlı değişken (y) üzerinde gecikmeli etkisinin (lagged effects) olup olmadığını görmemize yarar. Cari dönem değişkeni z t nin katsayısı, δ 0, etki çoğaltanı (impact multiplier or impact propensity) adını alır. Uzun dönem çoğaltanı (long-run propensity, LRP) tüm z t j katsayılarının toplamıdır: LRP = δ 0 + δ δ q Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 16
54 q.cu Sıradan Sonlu Dağıtılmış Gecikme Modeli FDL(q) q.cu sıradan sonlu bir dağıtılmış gecikme modeli (a finite distributed lag model of order q): FDL(q) y t = α 0 + δ 0 z t + δ 1 z t δ q z t q + u t FDL modelleri, bağımsız değişkenin (z) bağımlı değişken (y) üzerinde gecikmeli etkisinin (lagged effects) olup olmadığını görmemize yarar. Cari dönem değişkeni z t nin katsayısı, δ 0, etki çoğaltanı (impact multiplier or impact propensity) adını alır. Uzun dönem çoğaltanı (long-run propensity, LRP) tüm z t j katsayılarının toplamıdır: LRP = δ 0 + δ δ q Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 16
55 q.cu Sıradan Sonlu Dağıtılmış Gecikme Modeli FDL(q) q.cu sıradan sonlu bir dağıtılmış gecikme modeli (a finite distributed lag model of order q): FDL(q) y t = α 0 + δ 0 z t + δ 1 z t δ q z t q + u t FDL modelleri, bağımsız değişkenin (z) bağımlı değişken (y) üzerinde gecikmeli etkisinin (lagged effects) olup olmadığını görmemize yarar. Cari dönem değişkeni z t nin katsayısı, δ 0, etki çoğaltanı (impact multiplier or impact propensity) adını alır. Uzun dönem çoğaltanı (long-run propensity, LRP) tüm z t j katsayılarının toplamıdır: LRP = δ 0 + δ δ q Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 16
56 q.cu Sıradan Sonlu Dağıtılmış Gecikme Modeli FDL(2) z nin gecikmeli değerleri arasında çoğu kez yüksek korelasyon bulunur. Bu durum çoklu-bağıntıya yol açar. Çoklu-bağıntı da δ j lerin ayrı ayrı kesin bir şekilde tahmin edilmelerini güçleştirir. FDL modellerinde birden fazla açıklayıcı değişken gecikmeli olarak bulunabilir. Cari dönem (contemporaneous) değişkenleri de, x t ve w t gibi, FDL modellerine eklenebilir. Soru: Aşağıda yıllık verilerle tahmin edilmiş FDL(2) modelinin etki ve uzun dönem çoğaltanlarını (LRP) bulun ve yorumlayın. faiz t = enf t 0.15enf t enf t 2 enf t : enflasyon oranı ve faiz t : faiz oranı Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 17
57 q.cu Sıradan Sonlu Dağıtılmış Gecikme Modeli FDL(2) z nin gecikmeli değerleri arasında çoğu kez yüksek korelasyon bulunur. Bu durum çoklu-bağıntıya yol açar. Çoklu-bağıntı da δ j lerin ayrı ayrı kesin bir şekilde tahmin edilmelerini güçleştirir. FDL modellerinde birden fazla açıklayıcı değişken gecikmeli olarak bulunabilir. Cari dönem (contemporaneous) değişkenleri de, x t ve w t gibi, FDL modellerine eklenebilir. Soru: Aşağıda yıllık verilerle tahmin edilmiş FDL(2) modelinin etki ve uzun dönem çoğaltanlarını (LRP) bulun ve yorumlayın. faiz t = enf t 0.15enf t enf t 2 enf t : enflasyon oranı ve faiz t : faiz oranı Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 17
58 q.cu Sıradan Sonlu Dağıtılmış Gecikme Modeli FDL(2) z nin gecikmeli değerleri arasında çoğu kez yüksek korelasyon bulunur. Bu durum çoklu-bağıntıya yol açar. Çoklu-bağıntı da δ j lerin ayrı ayrı kesin bir şekilde tahmin edilmelerini güçleştirir. FDL modellerinde birden fazla açıklayıcı değişken gecikmeli olarak bulunabilir. Cari dönem (contemporaneous) değişkenleri de, x t ve w t gibi, FDL modellerine eklenebilir. Soru: Aşağıda yıllık verilerle tahmin edilmiş FDL(2) modelinin etki ve uzun dönem çoğaltanlarını (LRP) bulun ve yorumlayın. faiz t = enf t 0.15enf t enf t 2 enf t : enflasyon oranı ve faiz t : faiz oranı Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 17
59 q.cu Sıradan Sonlu Dağıtılmış Gecikme Modeli FDL(2) z nin gecikmeli değerleri arasında çoğu kez yüksek korelasyon bulunur. Bu durum çoklu-bağıntıya yol açar. Çoklu-bağıntı da δ j lerin ayrı ayrı kesin bir şekilde tahmin edilmelerini güçleştirir. FDL modellerinde birden fazla açıklayıcı değişken gecikmeli olarak bulunabilir. Cari dönem (contemporaneous) değişkenleri de, x t ve w t gibi, FDL modellerine eklenebilir. Soru: Aşağıda yıllık verilerle tahmin edilmiş FDL(2) modelinin etki ve uzun dönem çoğaltanlarını (LRP) bulun ve yorumlayın. faiz t = enf t 0.15enf t enf t 2 enf t : enflasyon oranı ve faiz t : faiz oranı Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 17
60 q.cu Sıradan Sonlu Dağıtılmış Gecikme Modeli FDL(2) z nin gecikmeli değerleri arasında çoğu kez yüksek korelasyon bulunur. Bu durum çoklu-bağıntıya yol açar. Çoklu-bağıntı da δ j lerin ayrı ayrı kesin bir şekilde tahmin edilmelerini güçleştirir. FDL modellerinde birden fazla açıklayıcı değişken gecikmeli olarak bulunabilir. Cari dönem (contemporaneous) değişkenleri de, x t ve w t gibi, FDL modellerine eklenebilir. Soru: Aşağıda yıllık verilerle tahmin edilmiş FDL(2) modelinin etki ve uzun dönem çoğaltanlarını (LRP) bulun ve yorumlayın. faiz t = enf t 0.15enf t enf t 2 enf t : enflasyon oranı ve faiz t : faiz oranı Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 17
61 q.cu Sıradan Sonlu Dağıtılmış Gecikme Modeli FDL(2) z nin gecikmeli değerleri arasında çoğu kez yüksek korelasyon bulunur. Bu durum çoklu-bağıntıya yol açar. Çoklu-bağıntı da δ j lerin ayrı ayrı kesin bir şekilde tahmin edilmelerini güçleştirir. FDL modellerinde birden fazla açıklayıcı değişken gecikmeli olarak bulunabilir. Cari dönem (contemporaneous) değişkenleri de, x t ve w t gibi, FDL modellerine eklenebilir. Soru: Aşağıda yıllık verilerle tahmin edilmiş FDL(2) modelinin etki ve uzun dönem çoğaltanlarını (LRP) bulun ve yorumlayın. faiz t = enf t 0.15enf t enf t 2 enf t : enflasyon oranı ve faiz t : faiz oranı Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 17
62 Klasik Varsayımlar Altında OLS Tahmin Edicilerinin Sonlu (Küçük) Örneklem Özellikleri Zaman serilerinde OLS tahmin edicilerinin sapmasız (unbiased) olabilmesi için üç varsayıma ihtiyaç vardır: Varsayım T S.1: Parametrelerde Doğrusallık {(x t1, x t2,..., x tk, y t ) : t = 1, 2,..., n} stokastik süreci aşağıdaki doğrusal modeli izler: y t = β 0 + β 1 x t β k x tk + u t Burada {u t : t = 1, 2,..., n} hata terimi dizisidir. n gözlem sayısını (zaman periyodunu) gösterir. Bu varsayım kesitler-arası regresyondaki M LR.1 e denk gelmektedir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 18
63 Klasik Varsayımlar Altında OLS Tahmin Edicilerinin Sonlu (Küçük) Örneklem Özellikleri Zaman serilerinde OLS tahmin edicilerinin sapmasız (unbiased) olabilmesi için üç varsayıma ihtiyaç vardır: Varsayım T S.1: Parametrelerde Doğrusallık {(x t1, x t2,..., x tk, y t ) : t = 1, 2,..., n} stokastik süreci aşağıdaki doğrusal modeli izler: y t = β 0 + β 1 x t β k x tk + u t Burada {u t : t = 1, 2,..., n} hata terimi dizisidir. n gözlem sayısını (zaman periyodunu) gösterir. Bu varsayım kesitler-arası regresyondaki M LR.1 e denk gelmektedir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 18
64 Klasik Varsayımlar Altında OLS Tahmin Edicilerinin Sonlu (Küçük) Örneklem Özellikleri Zaman serilerinde OLS tahmin edicilerinin sapmasız (unbiased) olabilmesi için üç varsayıma ihtiyaç vardır: Varsayım T S.1: Parametrelerde Doğrusallık {(x t1, x t2,..., x tk, y t ) : t = 1, 2,..., n} stokastik süreci aşağıdaki doğrusal modeli izler: y t = β 0 + β 1 x t β k x tk + u t Burada {u t : t = 1, 2,..., n} hata terimi dizisidir. n gözlem sayısını (zaman periyodunu) gösterir. Bu varsayım kesitler-arası regresyondaki M LR.1 e denk gelmektedir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 18
65 Klasik Varsayımlar Altında OLS Tahmin Edicilerinin Sonlu (Küçük) Örneklem Özellikleri Zaman serilerinde x tj değişkeninin iki endeksi vardır. t zaman endeksidir, j ise x in no sudur. FDL modellerinde her bir gecikmeli değişken ayrı bir x olarak tanımlanabilir: x t1 = z t, x t2 = z t 1 ve x t3 = z t 2 Açıklayıcı değişkenlerin oluşturduğu kümeyi x t ile göstereceğiz. x lerden oluşan veri matrisi ise X olacaktır. X, n k boyutludur. X matrisinin t.ci satırı t dönemine ait x değerlerinden oluşur. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 19
66 Klasik Varsayımlar Altında OLS Tahmin Edicilerinin Sonlu (Küçük) Örneklem Özellikleri Zaman serilerinde x tj değişkeninin iki endeksi vardır. t zaman endeksidir, j ise x in no sudur. FDL modellerinde her bir gecikmeli değişken ayrı bir x olarak tanımlanabilir: x t1 = z t, x t2 = z t 1 ve x t3 = z t 2 Açıklayıcı değişkenlerin oluşturduğu kümeyi x t ile göstereceğiz. x lerden oluşan veri matrisi ise X olacaktır. X, n k boyutludur. X matrisinin t.ci satırı t dönemine ait x değerlerinden oluşur. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 19
67 Klasik Varsayımlar Altında OLS Tahmin Edicilerinin Sonlu (Küçük) Örneklem Özellikleri Zaman serilerinde x tj değişkeninin iki endeksi vardır. t zaman endeksidir, j ise x in no sudur. FDL modellerinde her bir gecikmeli değişken ayrı bir x olarak tanımlanabilir: x t1 = z t, x t2 = z t 1 ve x t3 = z t 2 Açıklayıcı değişkenlerin oluşturduğu kümeyi x t ile göstereceğiz. x lerden oluşan veri matrisi ise X olacaktır. X, n k boyutludur. X matrisinin t.ci satırı t dönemine ait x değerlerinden oluşur. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 19
68 Klasik Varsayımlar Altında OLS Tahmin Edicilerinin Sonlu (Küçük) Örneklem Özellikleri Zaman serilerinde x tj değişkeninin iki endeksi vardır. t zaman endeksidir, j ise x in no sudur. FDL modellerinde her bir gecikmeli değişken ayrı bir x olarak tanımlanabilir: x t1 = z t, x t2 = z t 1 ve x t3 = z t 2 Açıklayıcı değişkenlerin oluşturduğu kümeyi x t ile göstereceğiz. x lerden oluşan veri matrisi ise X olacaktır. X, n k boyutludur. X matrisinin t.ci satırı t dönemine ait x değerlerinden oluşur. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 19
69 Klasik Varsayımlar Altında OLS Tahmin Edicilerinin Sonlu (Küçük) Örneklem Özellikleri Zaman serilerinde x tj değişkeninin iki endeksi vardır. t zaman endeksidir, j ise x in no sudur. FDL modellerinde her bir gecikmeli değişken ayrı bir x olarak tanımlanabilir: x t1 = z t, x t2 = z t 1 ve x t3 = z t 2 Açıklayıcı değişkenlerin oluşturduğu kümeyi x t ile göstereceğiz. x lerden oluşan veri matrisi ise X olacaktır. X, n k boyutludur. X matrisinin t.ci satırı t dönemine ait x değerlerinden oluşur. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 19
70 Klasik Varsayımlar Altında OLS Tahmin Edicilerinin Sonlu (Küçük) Örneklem Özellikleri Zaman serilerinde x tj değişkeninin iki endeksi vardır. t zaman endeksidir, j ise x in no sudur. FDL modellerinde her bir gecikmeli değişken ayrı bir x olarak tanımlanabilir: x t1 = z t, x t2 = z t 1 ve x t3 = z t 2 Açıklayıcı değişkenlerin oluşturduğu kümeyi x t ile göstereceğiz. x lerden oluşan veri matrisi ise X olacaktır. X, n k boyutludur. X matrisinin t.ci satırı t dönemine ait x değerlerinden oluşur. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 19
71 Klasik Varsayımlar Altında OLS Tahmin Edicilerinin Sonlu (Küçük) Örneklem Özellikleri Zaman serilerinde x tj değişkeninin iki endeksi vardır. t zaman endeksidir, j ise x in no sudur. FDL modellerinde her bir gecikmeli değişken ayrı bir x olarak tanımlanabilir: x t1 = z t, x t2 = z t 1 ve x t3 = z t 2 Açıklayıcı değişkenlerin oluşturduğu kümeyi x t ile göstereceğiz. x lerden oluşan veri matrisi ise X olacaktır. X, n k boyutludur. X matrisinin t.ci satırı t dönemine ait x değerlerinden oluşur. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 19
72 Klasik Varsayımlar Altında OLS Tahmin Edicilerinin Sonlu (Küçük) Örneklem Özellikleri Zaman serilerinde x tj değişkeninin iki endeksi vardır. t zaman endeksidir, j ise x in no sudur. FDL modellerinde her bir gecikmeli değişken ayrı bir x olarak tanımlanabilir: x t1 = z t, x t2 = z t 1 ve x t3 = z t 2 Açıklayıcı değişkenlerin oluşturduğu kümeyi x t ile göstereceğiz. x lerden oluşan veri matrisi ise X olacaktır. X, n k boyutludur. X matrisinin t.ci satırı t dönemine ait x değerlerinden oluşur. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 19
73 A cıklayıcı De gi sken Matrisine Bir Ornek
74 Varsayım T S.2: Sıfır Koşullu Ortalama Varsayım T S.2: Sıfır Koşullu Ortalama Tüm dönemler itibarıyla açıklayıcı değişkenlere koşullu olarak, her t için hata teriminin (u t ) beklenen değeri sıfırdır. E(u t X) = 0, t = 1, 2,..., n. Bu kritik varsayım şunu söylüyor: t dönemine ait hata terimi, u t, her bir x ile tüm dönemler itibariyle ilişkisizdir. Bu varsayım koşullu beklenen değer cinsinden ifade edildiği için, y ile x lerin arasındaki ilişkinin biçiminin (form) doğru olarak belirlenmesi gerekmektedir. Yani, spesifikasyon hatası yapılmaması lazım. Eğer u t, X den bağımsız ve E(u t ) = 0 ise, varsayım T S.2 otomatik olarak sağlanır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 21
75 Varsayım T S.2: Sıfır Koşullu Ortalama Varsayım T S.2: Sıfır Koşullu Ortalama Tüm dönemler itibarıyla açıklayıcı değişkenlere koşullu olarak, her t için hata teriminin (u t ) beklenen değeri sıfırdır. E(u t X) = 0, t = 1, 2,..., n. Bu kritik varsayım şunu söylüyor: t dönemine ait hata terimi, u t, her bir x ile tüm dönemler itibariyle ilişkisizdir. Bu varsayım koşullu beklenen değer cinsinden ifade edildiği için, y ile x lerin arasındaki ilişkinin biçiminin (form) doğru olarak belirlenmesi gerekmektedir. Yani, spesifikasyon hatası yapılmaması lazım. Eğer u t, X den bağımsız ve E(u t ) = 0 ise, varsayım T S.2 otomatik olarak sağlanır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 21
76 Varsayım T S.2: Sıfır Koşullu Ortalama Varsayım T S.2: Sıfır Koşullu Ortalama Tüm dönemler itibarıyla açıklayıcı değişkenlere koşullu olarak, her t için hata teriminin (u t ) beklenen değeri sıfırdır. E(u t X) = 0, t = 1, 2,..., n. Bu kritik varsayım şunu söylüyor: t dönemine ait hata terimi, u t, her bir x ile tüm dönemler itibariyle ilişkisizdir. Bu varsayım koşullu beklenen değer cinsinden ifade edildiği için, y ile x lerin arasındaki ilişkinin biçiminin (form) doğru olarak belirlenmesi gerekmektedir. Yani, spesifikasyon hatası yapılmaması lazım. Eğer u t, X den bağımsız ve E(u t ) = 0 ise, varsayım T S.2 otomatik olarak sağlanır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 21
77 Varsayım T S.2: Sıfır Koşullu Ortalama Varsayım T S.2: Sıfır Koşullu Ortalama Tüm dönemler itibarıyla açıklayıcı değişkenlere koşullu olarak, her t için hata teriminin (u t ) beklenen değeri sıfırdır. E(u t X) = 0, t = 1, 2,..., n. Bu kritik varsayım şunu söylüyor: t dönemine ait hata terimi, u t, her bir x ile tüm dönemler itibariyle ilişkisizdir. Bu varsayım koşullu beklenen değer cinsinden ifade edildiği için, y ile x lerin arasındaki ilişkinin biçiminin (form) doğru olarak belirlenmesi gerekmektedir. Yani, spesifikasyon hatası yapılmaması lazım. Eğer u t, X den bağımsız ve E(u t ) = 0 ise, varsayım T S.2 otomatik olarak sağlanır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 21
78 Varsayım T S.2: Sıfır Koşullu Ortalama Varsayım T S.2: Sıfır Koşullu Ortalama Tüm dönemler itibarıyla açıklayıcı değişkenlere koşullu olarak, her t için hata teriminin (u t ) beklenen değeri sıfırdır. E(u t X) = 0, t = 1, 2,..., n. Bu kritik varsayım şunu söylüyor: t dönemine ait hata terimi, u t, her bir x ile tüm dönemler itibariyle ilişkisizdir. Bu varsayım koşullu beklenen değer cinsinden ifade edildiği için, y ile x lerin arasındaki ilişkinin biçiminin (form) doğru olarak belirlenmesi gerekmektedir. Yani, spesifikasyon hatası yapılmaması lazım. Eğer u t, X den bağımsız ve E(u t ) = 0 ise, varsayım T S.2 otomatik olarak sağlanır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 21
79 Varsayım T S.2: Sıfır Koşullu Ortalama u t lerin aynı zamanda t dönemine ait x lerle de ilişkisiz olması gerekmektedir: E(u t x t1, x t2,..., x tk ) = E(u t x t ) = 0 Bu koşul u t ve açıklayıcı değişkenlerin cari dönem itibariyle de ilişkisiz olduğunu ifade eder: Cari Dönem Dışsallığı Her j için geçerlidir. Corr(x tj, u t ) = 0 T S.2 varsayımı cari dönem dışsallığından (contemporaneous exogeneity) öte koşullar getirmektedir. u t, x sj ile, s t iken bile ilişkisiz olmalıdır. Yani, t dönemi hata terimi u t nin ortalama değeri, x lerin tüm geçmiş, şimdiki (cari) ve gelecek değerleriyle ilişkisiz olmalıdır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 22
80 Varsayım T S.2: Sıfır Koşullu Ortalama u t lerin aynı zamanda t dönemine ait x lerle de ilişkisiz olması gerekmektedir: E(u t x t1, x t2,..., x tk ) = E(u t x t ) = 0 Bu koşul u t ve açıklayıcı değişkenlerin cari dönem itibariyle de ilişkisiz olduğunu ifade eder: Cari Dönem Dışsallığı Her j için geçerlidir. Corr(x tj, u t ) = 0 T S.2 varsayımı cari dönem dışsallığından (contemporaneous exogeneity) öte koşullar getirmektedir. u t, x sj ile, s t iken bile ilişkisiz olmalıdır. Yani, t dönemi hata terimi u t nin ortalama değeri, x lerin tüm geçmiş, şimdiki (cari) ve gelecek değerleriyle ilişkisiz olmalıdır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 22
81 Varsayım T S.2: Sıfır Koşullu Ortalama u t lerin aynı zamanda t dönemine ait x lerle de ilişkisiz olması gerekmektedir: E(u t x t1, x t2,..., x tk ) = E(u t x t ) = 0 Bu koşul u t ve açıklayıcı değişkenlerin cari dönem itibariyle de ilişkisiz olduğunu ifade eder: Cari Dönem Dışsallığı Her j için geçerlidir. Corr(x tj, u t ) = 0 T S.2 varsayımı cari dönem dışsallığından (contemporaneous exogeneity) öte koşullar getirmektedir. u t, x sj ile, s t iken bile ilişkisiz olmalıdır. Yani, t dönemi hata terimi u t nin ortalama değeri, x lerin tüm geçmiş, şimdiki (cari) ve gelecek değerleriyle ilişkisiz olmalıdır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 22
82 Varsayım T S.2: Sıfır Koşullu Ortalama u t lerin aynı zamanda t dönemine ait x lerle de ilişkisiz olması gerekmektedir: E(u t x t1, x t2,..., x tk ) = E(u t x t ) = 0 Bu koşul u t ve açıklayıcı değişkenlerin cari dönem itibariyle de ilişkisiz olduğunu ifade eder: Cari Dönem Dışsallığı Her j için geçerlidir. Corr(x tj, u t ) = 0 T S.2 varsayımı cari dönem dışsallığından (contemporaneous exogeneity) öte koşullar getirmektedir. u t, x sj ile, s t iken bile ilişkisiz olmalıdır. Yani, t dönemi hata terimi u t nin ortalama değeri, x lerin tüm geçmiş, şimdiki (cari) ve gelecek değerleriyle ilişkisiz olmalıdır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 22
83 Varsayım T S.2: Sıfır Koşullu Ortalama u t lerin aynı zamanda t dönemine ait x lerle de ilişkisiz olması gerekmektedir: E(u t x t1, x t2,..., x tk ) = E(u t x t ) = 0 Bu koşul u t ve açıklayıcı değişkenlerin cari dönem itibariyle de ilişkisiz olduğunu ifade eder: Cari Dönem Dışsallığı Her j için geçerlidir. Corr(x tj, u t ) = 0 T S.2 varsayımı cari dönem dışsallığından (contemporaneous exogeneity) öte koşullar getirmektedir. u t, x sj ile, s t iken bile ilişkisiz olmalıdır. Yani, t dönemi hata terimi u t nin ortalama değeri, x lerin tüm geçmiş, şimdiki (cari) ve gelecek değerleriyle ilişkisiz olmalıdır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 22
84 Varsayım T S.2: Sıfır Koşullu Ortalama u t lerin aynı zamanda t dönemine ait x lerle de ilişkisiz olması gerekmektedir: E(u t x t1, x t2,..., x tk ) = E(u t x t ) = 0 Bu koşul u t ve açıklayıcı değişkenlerin cari dönem itibariyle de ilişkisiz olduğunu ifade eder: Cari Dönem Dışsallığı Her j için geçerlidir. Corr(x tj, u t ) = 0 T S.2 varsayımı cari dönem dışsallığından (contemporaneous exogeneity) öte koşullar getirmektedir. u t, x sj ile, s t iken bile ilişkisiz olmalıdır. Yani, t dönemi hata terimi u t nin ortalama değeri, x lerin tüm geçmiş, şimdiki (cari) ve gelecek değerleriyle ilişkisiz olmalıdır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 22
85 Varsayım T S.2: Sıfır Koşullu Ortalama u t lerin aynı zamanda t dönemine ait x lerle de ilişkisiz olması gerekmektedir: E(u t x t1, x t2,..., x tk ) = E(u t x t ) = 0 Bu koşul u t ve açıklayıcı değişkenlerin cari dönem itibariyle de ilişkisiz olduğunu ifade eder: Cari Dönem Dışsallığı Her j için geçerlidir. Corr(x tj, u t ) = 0 T S.2 varsayımı cari dönem dışsallığından (contemporaneous exogeneity) öte koşullar getirmektedir. u t, x sj ile, s t iken bile ilişkisiz olmalıdır. Yani, t dönemi hata terimi u t nin ortalama değeri, x lerin tüm geçmiş, şimdiki (cari) ve gelecek değerleriyle ilişkisiz olmalıdır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 22
86 Varsayım T S.2: Sıfır Koşullu Ortalama T S.2 sağlandığında x lerin kesin olarak dışsal (strictly exogenous) olduğunu söyleriz. OLS nin tutarlılığı için cari dışsallığın sağlanması yeterlidir. Ancak, OLS nin sapmasızlığı için kesin dışsallık gerekmektedir (bkz. Bölüm 11). Kesitler-arası regresyonda örneklemin rassal oluşu (M LR.2) kesin dışsallık varsayımını gereksiz kılıyordu. Zaman serilerinde rassal örnekleme olmadığı için kesin dışsallık varsayımına ihtiyaç duyuyoruz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 23
87 Varsayım T S.2: Sıfır Koşullu Ortalama T S.2 sağlandığında x lerin kesin olarak dışsal (strictly exogenous) olduğunu söyleriz. OLS nin tutarlılığı için cari dışsallığın sağlanması yeterlidir. Ancak, OLS nin sapmasızlığı için kesin dışsallık gerekmektedir (bkz. Bölüm 11). Kesitler-arası regresyonda örneklemin rassal oluşu (M LR.2) kesin dışsallık varsayımını gereksiz kılıyordu. Zaman serilerinde rassal örnekleme olmadığı için kesin dışsallık varsayımına ihtiyaç duyuyoruz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 23
88 Varsayım T S.2: Sıfır Koşullu Ortalama T S.2 sağlandığında x lerin kesin olarak dışsal (strictly exogenous) olduğunu söyleriz. OLS nin tutarlılığı için cari dışsallığın sağlanması yeterlidir. Ancak, OLS nin sapmasızlığı için kesin dışsallık gerekmektedir (bkz. Bölüm 11). Kesitler-arası regresyonda örneklemin rassal oluşu (M LR.2) kesin dışsallık varsayımını gereksiz kılıyordu. Zaman serilerinde rassal örnekleme olmadığı için kesin dışsallık varsayımına ihtiyaç duyuyoruz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 23
89 Varsayım T S.2: Sıfır Koşullu Ortalama T S.2 sağlandığında x lerin kesin olarak dışsal (strictly exogenous) olduğunu söyleriz. OLS nin tutarlılığı için cari dışsallığın sağlanması yeterlidir. Ancak, OLS nin sapmasızlığı için kesin dışsallık gerekmektedir (bkz. Bölüm 11). Kesitler-arası regresyonda örneklemin rassal oluşu (M LR.2) kesin dışsallık varsayımını gereksiz kılıyordu. Zaman serilerinde rassal örnekleme olmadığı için kesin dışsallık varsayımına ihtiyaç duyuyoruz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 23
90 Varsayım T S.2: Sıfır Koşullu Ortalama Varsayım T S.2, x lerin ve u nun kendi geçmişleri ile korelasyonlarına izin vermektedir. İzin verilmeyen, u t nin beklenen değerinin x lerle zaman içinde ileri ve geriye doğru ilişkili olmasıdır. T S.2 nin sağlanamamasına yol açan başlıca iki faktör ihmal edilmiş değişkenler ve ölçme hatalarıdır. Ancak başka nedenler de varsayımın ihlaline yol açabilmektedir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 24
91 Varsayım T S.2: Sıfır Koşullu Ortalama Varsayım T S.2, x lerin ve u nun kendi geçmişleri ile korelasyonlarına izin vermektedir. İzin verilmeyen, u t nin beklenen değerinin x lerle zaman içinde ileri ve geriye doğru ilişkili olmasıdır. T S.2 nin sağlanamamasına yol açan başlıca iki faktör ihmal edilmiş değişkenler ve ölçme hatalarıdır. Ancak başka nedenler de varsayımın ihlaline yol açabilmektedir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 24
92 Varsayım T S.2: Sıfır Koşullu Ortalama Varsayım T S.2, x lerin ve u nun kendi geçmişleri ile korelasyonlarına izin vermektedir. İzin verilmeyen, u t nin beklenen değerinin x lerle zaman içinde ileri ve geriye doğru ilişkili olmasıdır. T S.2 nin sağlanamamasına yol açan başlıca iki faktör ihmal edilmiş değişkenler ve ölçme hatalarıdır. Ancak başka nedenler de varsayımın ihlaline yol açabilmektedir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 24
93 Varsayım T S.2: Sıfır Koşullu Ortalama Varsayım T S.2, x lerin ve u nun kendi geçmişleri ile korelasyonlarına izin vermektedir. İzin verilmeyen, u t nin beklenen değerinin x lerle zaman içinde ileri ve geriye doğru ilişkili olmasıdır. T S.2 nin sağlanamamasına yol açan başlıca iki faktör ihmal edilmiş değişkenler ve ölçme hatalarıdır. Ancak başka nedenler de varsayımın ihlaline yol açabilmektedir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 24
94 Varsayım T S.2: Sıfır Koşullu Ortalama Şu basit statik, yani açıklayıcı değişkenler arasında gecikmeli değişkenin olmadığı regresyonu ele alalım : y t = β 0 + β 1 z t + u t T S.2 varsayımı, sadece u t ve z t nin ilişkisiz olmasını gerektirmiyor. u t nin, z t nin tüm geçmiş {z t 1, z t 2,...} ve gelecek {z t+1, z t+2,...} değerleri ile de ilişkisiz olmasını koşul olarak koyuyor. Bu koşulun iki sonucu (implication) vardır : 1 z nin y üzerinde gecikmeli etkisi (lagged effect) yoktur. 2 Eğer gecikmeli etkisi varsa, FDL modeli tahmin etmemiz gerekmektedir. Kesin dışsallık (strict exogeneity) varsayımı, u da t anında oluşacak bir değişmenin z nin gelecek değerlerine etki etmeyeceğini varsayar. Bu ise, y den z nin gelecek değerlerine bir etkinin (feedback) olmadığı anlamına gelir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 25
95 Varsayım T S.2: Sıfır Koşullu Ortalama Şu basit statik, yani açıklayıcı değişkenler arasında gecikmeli değişkenin olmadığı regresyonu ele alalım : y t = β 0 + β 1 z t + u t T S.2 varsayımı, sadece u t ve z t nin ilişkisiz olmasını gerektirmiyor. u t nin, z t nin tüm geçmiş {z t 1, z t 2,...} ve gelecek {z t+1, z t+2,...} değerleri ile de ilişkisiz olmasını koşul olarak koyuyor. Bu koşulun iki sonucu (implication) vardır : 1 z nin y üzerinde gecikmeli etkisi (lagged effect) yoktur. 2 Eğer gecikmeli etkisi varsa, FDL modeli tahmin etmemiz gerekmektedir. Kesin dışsallık (strict exogeneity) varsayımı, u da t anında oluşacak bir değişmenin z nin gelecek değerlerine etki etmeyeceğini varsayar. Bu ise, y den z nin gelecek değerlerine bir etkinin (feedback) olmadığı anlamına gelir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 25
96 Varsayım T S.2: Sıfır Koşullu Ortalama Şu basit statik, yani açıklayıcı değişkenler arasında gecikmeli değişkenin olmadığı regresyonu ele alalım : y t = β 0 + β 1 z t + u t T S.2 varsayımı, sadece u t ve z t nin ilişkisiz olmasını gerektirmiyor. u t nin, z t nin tüm geçmiş {z t 1, z t 2,...} ve gelecek {z t+1, z t+2,...} değerleri ile de ilişkisiz olmasını koşul olarak koyuyor. Bu koşulun iki sonucu (implication) vardır : 1 z nin y üzerinde gecikmeli etkisi (lagged effect) yoktur. 2 Eğer gecikmeli etkisi varsa, FDL modeli tahmin etmemiz gerekmektedir. Kesin dışsallık (strict exogeneity) varsayımı, u da t anında oluşacak bir değişmenin z nin gelecek değerlerine etki etmeyeceğini varsayar. Bu ise, y den z nin gelecek değerlerine bir etkinin (feedback) olmadığı anlamına gelir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 25
97 Varsayım T S.2: Sıfır Koşullu Ortalama Şu basit statik, yani açıklayıcı değişkenler arasında gecikmeli değişkenin olmadığı regresyonu ele alalım : y t = β 0 + β 1 z t + u t T S.2 varsayımı, sadece u t ve z t nin ilişkisiz olmasını gerektirmiyor. u t nin, z t nin tüm geçmiş {z t 1, z t 2,...} ve gelecek {z t+1, z t+2,...} değerleri ile de ilişkisiz olmasını koşul olarak koyuyor. Bu koşulun iki sonucu (implication) vardır : 1 z nin y üzerinde gecikmeli etkisi (lagged effect) yoktur. 2 Eğer gecikmeli etkisi varsa, FDL modeli tahmin etmemiz gerekmektedir. Kesin dışsallık (strict exogeneity) varsayımı, u da t anında oluşacak bir değişmenin z nin gelecek değerlerine etki etmeyeceğini varsayar. Bu ise, y den z nin gelecek değerlerine bir etkinin (feedback) olmadığı anlamına gelir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 25
98 Varsayım T S.2: Sıfır Koşullu Ortalama Şu basit statik, yani açıklayıcı değişkenler arasında gecikmeli değişkenin olmadığı regresyonu ele alalım : y t = β 0 + β 1 z t + u t T S.2 varsayımı, sadece u t ve z t nin ilişkisiz olmasını gerektirmiyor. u t nin, z t nin tüm geçmiş {z t 1, z t 2,...} ve gelecek {z t+1, z t+2,...} değerleri ile de ilişkisiz olmasını koşul olarak koyuyor. Bu koşulun iki sonucu (implication) vardır : 1 z nin y üzerinde gecikmeli etkisi (lagged effect) yoktur. 2 Eğer gecikmeli etkisi varsa, FDL modeli tahmin etmemiz gerekmektedir. Kesin dışsallık (strict exogeneity) varsayımı, u da t anında oluşacak bir değişmenin z nin gelecek değerlerine etki etmeyeceğini varsayar. Bu ise, y den z nin gelecek değerlerine bir etkinin (feedback) olmadığı anlamına gelir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 25
99 Varsayım T S.2: Sıfır Koşullu Ortalama Şu basit statik, yani açıklayıcı değişkenler arasında gecikmeli değişkenin olmadığı regresyonu ele alalım : y t = β 0 + β 1 z t + u t T S.2 varsayımı, sadece u t ve z t nin ilişkisiz olmasını gerektirmiyor. u t nin, z t nin tüm geçmiş {z t 1, z t 2,...} ve gelecek {z t+1, z t+2,...} değerleri ile de ilişkisiz olmasını koşul olarak koyuyor. Bu koşulun iki sonucu (implication) vardır : 1 z nin y üzerinde gecikmeli etkisi (lagged effect) yoktur. 2 Eğer gecikmeli etkisi varsa, FDL modeli tahmin etmemiz gerekmektedir. Kesin dışsallık (strict exogeneity) varsayımı, u da t anında oluşacak bir değişmenin z nin gelecek değerlerine etki etmeyeceğini varsayar. Bu ise, y den z nin gelecek değerlerine bir etkinin (feedback) olmadığı anlamına gelir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 25
100 Varsayım T S.2: Sıfır Koşullu Ortalama Şu basit statik, yani açıklayıcı değişkenler arasında gecikmeli değişkenin olmadığı regresyonu ele alalım : y t = β 0 + β 1 z t + u t T S.2 varsayımı, sadece u t ve z t nin ilişkisiz olmasını gerektirmiyor. u t nin, z t nin tüm geçmiş {z t 1, z t 2,...} ve gelecek {z t+1, z t+2,...} değerleri ile de ilişkisiz olmasını koşul olarak koyuyor. Bu koşulun iki sonucu (implication) vardır : 1 z nin y üzerinde gecikmeli etkisi (lagged effect) yoktur. 2 Eğer gecikmeli etkisi varsa, FDL modeli tahmin etmemiz gerekmektedir. Kesin dışsallık (strict exogeneity) varsayımı, u da t anında oluşacak bir değişmenin z nin gelecek değerlerine etki etmeyeceğini varsayar. Bu ise, y den z nin gelecek değerlerine bir etkinin (feedback) olmadığı anlamına gelir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 25
101 Varsayım T S.2: Sıfır Koşullu Ortalama Şu basit statik, yani açıklayıcı değişkenler arasında gecikmeli değişkenin olmadığı regresyonu ele alalım : y t = β 0 + β 1 z t + u t T S.2 varsayımı, sadece u t ve z t nin ilişkisiz olmasını gerektirmiyor. u t nin, z t nin tüm geçmiş {z t 1, z t 2,...} ve gelecek {z t+1, z t+2,...} değerleri ile de ilişkisiz olmasını koşul olarak koyuyor. Bu koşulun iki sonucu (implication) vardır : 1 z nin y üzerinde gecikmeli etkisi (lagged effect) yoktur. 2 Eğer gecikmeli etkisi varsa, FDL modeli tahmin etmemiz gerekmektedir. Kesin dışsallık (strict exogeneity) varsayımı, u da t anında oluşacak bir değişmenin z nin gelecek değerlerine etki etmeyeceğini varsayar. Bu ise, y den z nin gelecek değerlerine bir etkinin (feedback) olmadığı anlamına gelir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 25
102 Varsayım T S.2: Sıfır Koşullu Ortalama Şehirlerde işlenen cinayet sayılarını (nüfusa oran olarak), nüfus başına düşen polis sayısı ile açıklayalım : mrdrte t = β 0 + β 1 polpc t + u t u t nin polpc t ile ilişkisiz olmasını varsaymamız makuldur. Hatta polpc t nin geçmiş değerleri ile de ilişkisiz olduğunu varsaymamız da çok sakıncalı olmaz ve böyle olduğunu varsayalım. Diyelim ki, şehir yönetimi polis sayılarını geçmiş cinayet sayılarına bakarak değiştiriyor. Bu durumda, mrdrte t polpc t+1 yönünde bir etkileşim olacaktır. Bu ise, u t polpc t+1 etkileşimi olduğu anlamına gelecektir. Bu durumda T S.2 varsayımı ihlal edilmiş olacaktır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 26
103 Varsayım T S.2: Sıfır Koşullu Ortalama Şehirlerde işlenen cinayet sayılarını (nüfusa oran olarak), nüfus başına düşen polis sayısı ile açıklayalım : mrdrte t = β 0 + β 1 polpc t + u t u t nin polpc t ile ilişkisiz olmasını varsaymamız makuldur. Hatta polpc t nin geçmiş değerleri ile de ilişkisiz olduğunu varsaymamız da çok sakıncalı olmaz ve böyle olduğunu varsayalım. Diyelim ki, şehir yönetimi polis sayılarını geçmiş cinayet sayılarına bakarak değiştiriyor. Bu durumda, mrdrte t polpc t+1 yönünde bir etkileşim olacaktır. Bu ise, u t polpc t+1 etkileşimi olduğu anlamına gelecektir. Bu durumda T S.2 varsayımı ihlal edilmiş olacaktır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 26
104 Varsayım T S.2: Sıfır Koşullu Ortalama Şehirlerde işlenen cinayet sayılarını (nüfusa oran olarak), nüfus başına düşen polis sayısı ile açıklayalım : mrdrte t = β 0 + β 1 polpc t + u t u t nin polpc t ile ilişkisiz olmasını varsaymamız makuldur. Hatta polpc t nin geçmiş değerleri ile de ilişkisiz olduğunu varsaymamız da çok sakıncalı olmaz ve böyle olduğunu varsayalım. Diyelim ki, şehir yönetimi polis sayılarını geçmiş cinayet sayılarına bakarak değiştiriyor. Bu durumda, mrdrte t polpc t+1 yönünde bir etkileşim olacaktır. Bu ise, u t polpc t+1 etkileşimi olduğu anlamına gelecektir. Bu durumda T S.2 varsayımı ihlal edilmiş olacaktır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 26
105 Varsayım T S.2: Sıfır Koşullu Ortalama Şehirlerde işlenen cinayet sayılarını (nüfusa oran olarak), nüfus başına düşen polis sayısı ile açıklayalım : mrdrte t = β 0 + β 1 polpc t + u t u t nin polpc t ile ilişkisiz olmasını varsaymamız makuldur. Hatta polpc t nin geçmiş değerleri ile de ilişkisiz olduğunu varsaymamız da çok sakıncalı olmaz ve böyle olduğunu varsayalım. Diyelim ki, şehir yönetimi polis sayılarını geçmiş cinayet sayılarına bakarak değiştiriyor. Bu durumda, mrdrte t polpc t+1 yönünde bir etkileşim olacaktır. Bu ise, u t polpc t+1 etkileşimi olduğu anlamına gelecektir. Bu durumda T S.2 varsayımı ihlal edilmiş olacaktır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 26
106 Varsayım T S.2: Sıfır Koşullu Ortalama Şehirlerde işlenen cinayet sayılarını (nüfusa oran olarak), nüfus başına düşen polis sayısı ile açıklayalım : mrdrte t = β 0 + β 1 polpc t + u t u t nin polpc t ile ilişkisiz olmasını varsaymamız makuldur. Hatta polpc t nin geçmiş değerleri ile de ilişkisiz olduğunu varsaymamız da çok sakıncalı olmaz ve böyle olduğunu varsayalım. Diyelim ki, şehir yönetimi polis sayılarını geçmiş cinayet sayılarına bakarak değiştiriyor. Bu durumda, mrdrte t polpc t+1 yönünde bir etkileşim olacaktır. Bu ise, u t polpc t+1 etkileşimi olduğu anlamına gelecektir. Bu durumda T S.2 varsayımı ihlal edilmiş olacaktır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 26
107 Varsayım T S.2: Sıfır Koşullu Ortalama Şehirlerde işlenen cinayet sayılarını (nüfusa oran olarak), nüfus başına düşen polis sayısı ile açıklayalım : mrdrte t = β 0 + β 1 polpc t + u t u t nin polpc t ile ilişkisiz olmasını varsaymamız makuldur. Hatta polpc t nin geçmiş değerleri ile de ilişkisiz olduğunu varsaymamız da çok sakıncalı olmaz ve böyle olduğunu varsayalım. Diyelim ki, şehir yönetimi polis sayılarını geçmiş cinayet sayılarına bakarak değiştiriyor. Bu durumda, mrdrte t polpc t+1 yönünde bir etkileşim olacaktır. Bu ise, u t polpc t+1 etkileşimi olduğu anlamına gelecektir. Bu durumda T S.2 varsayımı ihlal edilmiş olacaktır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 26
108 Varsayım T S.2: Sıfır Koşullu Ortalama Distributed lag modellerinde (DLM) u t nin z nin geçmiş değerleriyle ilişkili olması sorun olmaz, zira, modelde z nin geçmiş değerlerini, {z t 1, z t 2,...}, açıklayıcı değişken olarak zaten kullanıyoruz (kontrol ediyoruz). Ancak, u dan z nin gelecek değerlerine doğru bir etki (feedback), u t z t+1, z t+2,..., her zaman sorun yaratacaktır. Kesin dışsal (strict exogeneity) olan açıklayıcı değişkenler y nin geçmiş değerlerinden etkilenmez. Örneğin, t yılındaki yağmur miktarı, Y t, bu yılın ve önceki yılların buğday üretiminden, {Q t, Q t 1, Q t 2,...}, etkilenmez. Bu aynı zamanda şu anlama da gelir : gelecek yılların yağmur miktarı, {Y t+1, Y t+2,...}, bu yılın ve geçen yılların buğday üretiminden, {Q t, Q t 1, Q t 2,...}, etkilenmez. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 27
109 Varsayım T S.2: Sıfır Koşullu Ortalama Distributed lag modellerinde (DLM) u t nin z nin geçmiş değerleriyle ilişkili olması sorun olmaz, zira, modelde z nin geçmiş değerlerini, {z t 1, z t 2,...}, açıklayıcı değişken olarak zaten kullanıyoruz (kontrol ediyoruz). Ancak, u dan z nin gelecek değerlerine doğru bir etki (feedback), u t z t+1, z t+2,..., her zaman sorun yaratacaktır. Kesin dışsal (strict exogeneity) olan açıklayıcı değişkenler y nin geçmiş değerlerinden etkilenmez. Örneğin, t yılındaki yağmur miktarı, Y t, bu yılın ve önceki yılların buğday üretiminden, {Q t, Q t 1, Q t 2,...}, etkilenmez. Bu aynı zamanda şu anlama da gelir : gelecek yılların yağmur miktarı, {Y t+1, Y t+2,...}, bu yılın ve geçen yılların buğday üretiminden, {Q t, Q t 1, Q t 2,...}, etkilenmez. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 27
110 Varsayım T S.2: Sıfır Koşullu Ortalama Distributed lag modellerinde (DLM) u t nin z nin geçmiş değerleriyle ilişkili olması sorun olmaz, zira, modelde z nin geçmiş değerlerini, {z t 1, z t 2,...}, açıklayıcı değişken olarak zaten kullanıyoruz (kontrol ediyoruz). Ancak, u dan z nin gelecek değerlerine doğru bir etki (feedback), u t z t+1, z t+2,..., her zaman sorun yaratacaktır. Kesin dışsal (strict exogeneity) olan açıklayıcı değişkenler y nin geçmiş değerlerinden etkilenmez. Örneğin, t yılındaki yağmur miktarı, Y t, bu yılın ve önceki yılların buğday üretiminden, {Q t, Q t 1, Q t 2,...}, etkilenmez. Bu aynı zamanda şu anlama da gelir : gelecek yılların yağmur miktarı, {Y t+1, Y t+2,...}, bu yılın ve geçen yılların buğday üretiminden, {Q t, Q t 1, Q t 2,...}, etkilenmez. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 27
111 Varsayım T S.2: Sıfır Koşullu Ortalama Distributed lag modellerinde (DLM) u t nin z nin geçmiş değerleriyle ilişkili olması sorun olmaz, zira, modelde z nin geçmiş değerlerini, {z t 1, z t 2,...}, açıklayıcı değişken olarak zaten kullanıyoruz (kontrol ediyoruz). Ancak, u dan z nin gelecek değerlerine doğru bir etki (feedback), u t z t+1, z t+2,..., her zaman sorun yaratacaktır. Kesin dışsal (strict exogeneity) olan açıklayıcı değişkenler y nin geçmiş değerlerinden etkilenmez. Örneğin, t yılındaki yağmur miktarı, Y t, bu yılın ve önceki yılların buğday üretiminden, {Q t, Q t 1, Q t 2,...}, etkilenmez. Bu aynı zamanda şu anlama da gelir : gelecek yılların yağmur miktarı, {Y t+1, Y t+2,...}, bu yılın ve geçen yılların buğday üretiminden, {Q t, Q t 1, Q t 2,...}, etkilenmez. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 27
112 Varsayım T S.2: Sıfır Koşullu Ortalama Distributed lag modellerinde (DLM) u t nin z nin geçmiş değerleriyle ilişkili olması sorun olmaz, zira, modelde z nin geçmiş değerlerini, {z t 1, z t 2,...}, açıklayıcı değişken olarak zaten kullanıyoruz (kontrol ediyoruz). Ancak, u dan z nin gelecek değerlerine doğru bir etki (feedback), u t z t+1, z t+2,..., her zaman sorun yaratacaktır. Kesin dışsal (strict exogeneity) olan açıklayıcı değişkenler y nin geçmiş değerlerinden etkilenmez. Örneğin, t yılındaki yağmur miktarı, Y t, bu yılın ve önceki yılların buğday üretiminden, {Q t, Q t 1, Q t 2,...}, etkilenmez. Bu aynı zamanda şu anlama da gelir : gelecek yılların yağmur miktarı, {Y t+1, Y t+2,...}, bu yılın ve geçen yılların buğday üretiminden, {Q t, Q t 1, Q t 2,...}, etkilenmez. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 27
113 Varsayım T S.2: Sıfır Koşullu Ortalama Ancak, tüm tarım girdileri yağmur gibi değildir. Örneğin, işgücü girdisini çiftlik sahibi geçen yılın hasılasına bakarak belirleyebilir. Dolayısıyla, işgücü kesin dışsal değildir. Sosyal bilimlerde kullandığımız pek çok açıklayıcı değişken böyledir. Para arzı artış hızı, sosyal refah harcamaları, yollardaki hız limitleri vs. Tüm bu değişkenler, çoğu zaman, kontrol değişkeni y nin geçmişte aldığı değerlere bakılarak belirlenmektedirler, dolayısıyla da kesin dışsallık varsayımının ihlali söz konusudur. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 28
114 Varsayım T S.2: Sıfır Koşullu Ortalama Ancak, tüm tarım girdileri yağmur gibi değildir. Örneğin, işgücü girdisini çiftlik sahibi geçen yılın hasılasına bakarak belirleyebilir. Dolayısıyla, işgücü kesin dışsal değildir. Sosyal bilimlerde kullandığımız pek çok açıklayıcı değişken böyledir. Para arzı artış hızı, sosyal refah harcamaları, yollardaki hız limitleri vs. Tüm bu değişkenler, çoğu zaman, kontrol değişkeni y nin geçmişte aldığı değerlere bakılarak belirlenmektedirler, dolayısıyla da kesin dışsallık varsayımının ihlali söz konusudur. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 28
115 Varsayım T S.2: Sıfır Koşullu Ortalama Ancak, tüm tarım girdileri yağmur gibi değildir. Örneğin, işgücü girdisini çiftlik sahibi geçen yılın hasılasına bakarak belirleyebilir. Dolayısıyla, işgücü kesin dışsal değildir. Sosyal bilimlerde kullandığımız pek çok açıklayıcı değişken böyledir. Para arzı artış hızı, sosyal refah harcamaları, yollardaki hız limitleri vs. Tüm bu değişkenler, çoğu zaman, kontrol değişkeni y nin geçmişte aldığı değerlere bakılarak belirlenmektedirler, dolayısıyla da kesin dışsallık varsayımının ihlali söz konusudur. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 28
116 Varsayım T S.2: Sıfır Koşullu Ortalama Ancak, tüm tarım girdileri yağmur gibi değildir. Örneğin, işgücü girdisini çiftlik sahibi geçen yılın hasılasına bakarak belirleyebilir. Dolayısıyla, işgücü kesin dışsal değildir. Sosyal bilimlerde kullandığımız pek çok açıklayıcı değişken böyledir. Para arzı artış hızı, sosyal refah harcamaları, yollardaki hız limitleri vs. Tüm bu değişkenler, çoğu zaman, kontrol değişkeni y nin geçmişte aldığı değerlere bakılarak belirlenmektedirler, dolayısıyla da kesin dışsallık varsayımının ihlali söz konusudur. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 28
117 Varsayım T S.2: Sıfır Koşullu Ortalama Ancak, tüm tarım girdileri yağmur gibi değildir. Örneğin, işgücü girdisini çiftlik sahibi geçen yılın hasılasına bakarak belirleyebilir. Dolayısıyla, işgücü kesin dışsal değildir. Sosyal bilimlerde kullandığımız pek çok açıklayıcı değişken böyledir. Para arzı artış hızı, sosyal refah harcamaları, yollardaki hız limitleri vs. Tüm bu değişkenler, çoğu zaman, kontrol değişkeni y nin geçmişte aldığı değerlere bakılarak belirlenmektedirler, dolayısıyla da kesin dışsallık varsayımının ihlali söz konusudur. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 28
118 Varsayım T S.2: Sıfır Koşullu Ortalama T S.2 varsayımı gerçekçi olmamasına rağmen OLS tahmin edicilerin sapmasız (unbiased) olmasını sağlamak için kullanılmaktadır. Çoğu zaman T S.2 varsayımı ondan daha katı olan şu varsayım ile değiştirilir: Açıklayıcı değişkenler (x ler) rassal (random) değildir ya da tekrarlanan örneklemlerde sabit (fixed) değerlerden ibarettirler. Bu varsayım, otomatik olarak T S.2 varsayımını sağlamaktadır. Ancak, rassal-olmama (nonrandomness) varsayımının zaman serileri gözlemleri için doğru olamayacağı açıktır. Oysa T S.2 varsayımı x lerin rassallık niteliğine dayandığı için daha gerçekçidir. Ancak, sapmasızlığın sağlanması için x u ilişkilerinin nasıl olması gerektiği konusunda katı koşullar getirmektedir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 29
119 Varsayım T S.2: Sıfır Koşullu Ortalama T S.2 varsayımı gerçekçi olmamasına rağmen OLS tahmin edicilerin sapmasız (unbiased) olmasını sağlamak için kullanılmaktadır. Çoğu zaman T S.2 varsayımı ondan daha katı olan şu varsayım ile değiştirilir: Açıklayıcı değişkenler (x ler) rassal (random) değildir ya da tekrarlanan örneklemlerde sabit (fixed) değerlerden ibarettirler. Bu varsayım, otomatik olarak T S.2 varsayımını sağlamaktadır. Ancak, rassal-olmama (nonrandomness) varsayımının zaman serileri gözlemleri için doğru olamayacağı açıktır. Oysa T S.2 varsayımı x lerin rassallık niteliğine dayandığı için daha gerçekçidir. Ancak, sapmasızlığın sağlanması için x u ilişkilerinin nasıl olması gerektiği konusunda katı koşullar getirmektedir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 29
120 Varsayım T S.2: Sıfır Koşullu Ortalama T S.2 varsayımı gerçekçi olmamasına rağmen OLS tahmin edicilerin sapmasız (unbiased) olmasını sağlamak için kullanılmaktadır. Çoğu zaman T S.2 varsayımı ondan daha katı olan şu varsayım ile değiştirilir: Açıklayıcı değişkenler (x ler) rassal (random) değildir ya da tekrarlanan örneklemlerde sabit (fixed) değerlerden ibarettirler. Bu varsayım, otomatik olarak T S.2 varsayımını sağlamaktadır. Ancak, rassal-olmama (nonrandomness) varsayımının zaman serileri gözlemleri için doğru olamayacağı açıktır. Oysa T S.2 varsayımı x lerin rassallık niteliğine dayandığı için daha gerçekçidir. Ancak, sapmasızlığın sağlanması için x u ilişkilerinin nasıl olması gerektiği konusunda katı koşullar getirmektedir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 29
121 Varsayım T S.2: Sıfır Koşullu Ortalama T S.2 varsayımı gerçekçi olmamasına rağmen OLS tahmin edicilerin sapmasız (unbiased) olmasını sağlamak için kullanılmaktadır. Çoğu zaman T S.2 varsayımı ondan daha katı olan şu varsayım ile değiştirilir: Açıklayıcı değişkenler (x ler) rassal (random) değildir ya da tekrarlanan örneklemlerde sabit (fixed) değerlerden ibarettirler. Bu varsayım, otomatik olarak T S.2 varsayımını sağlamaktadır. Ancak, rassal-olmama (nonrandomness) varsayımının zaman serileri gözlemleri için doğru olamayacağı açıktır. Oysa T S.2 varsayımı x lerin rassallık niteliğine dayandığı için daha gerçekçidir. Ancak, sapmasızlığın sağlanması için x u ilişkilerinin nasıl olması gerektiği konusunda katı koşullar getirmektedir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 29
122 Varsayım T S.2: Sıfır Koşullu Ortalama T S.2 varsayımı gerçekçi olmamasına rağmen OLS tahmin edicilerin sapmasız (unbiased) olmasını sağlamak için kullanılmaktadır. Çoğu zaman T S.2 varsayımı ondan daha katı olan şu varsayım ile değiştirilir: Açıklayıcı değişkenler (x ler) rassal (random) değildir ya da tekrarlanan örneklemlerde sabit (fixed) değerlerden ibarettirler. Bu varsayım, otomatik olarak T S.2 varsayımını sağlamaktadır. Ancak, rassal-olmama (nonrandomness) varsayımının zaman serileri gözlemleri için doğru olamayacağı açıktır. Oysa T S.2 varsayımı x lerin rassallık niteliğine dayandığı için daha gerçekçidir. Ancak, sapmasızlığın sağlanması için x u ilişkilerinin nasıl olması gerektiği konusunda katı koşullar getirmektedir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 29
123 Varsayım T S.2: Sıfır Koşullu Ortalama T S.2 varsayımı gerçekçi olmamasına rağmen OLS tahmin edicilerin sapmasız (unbiased) olmasını sağlamak için kullanılmaktadır. Çoğu zaman T S.2 varsayımı ondan daha katı olan şu varsayım ile değiştirilir: Açıklayıcı değişkenler (x ler) rassal (random) değildir ya da tekrarlanan örneklemlerde sabit (fixed) değerlerden ibarettirler. Bu varsayım, otomatik olarak T S.2 varsayımını sağlamaktadır. Ancak, rassal-olmama (nonrandomness) varsayımının zaman serileri gözlemleri için doğru olamayacağı açıktır. Oysa T S.2 varsayımı x lerin rassallık niteliğine dayandığı için daha gerçekçidir. Ancak, sapmasızlığın sağlanması için x u ilişkilerinin nasıl olması gerektiği konusunda katı koşullar getirmektedir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 29
124 Varsayım T S.2: Sıfır Koşullu Ortalama T S.2 varsayımı gerçekçi olmamasına rağmen OLS tahmin edicilerin sapmasız (unbiased) olmasını sağlamak için kullanılmaktadır. Çoğu zaman T S.2 varsayımı ondan daha katı olan şu varsayım ile değiştirilir: Açıklayıcı değişkenler (x ler) rassal (random) değildir ya da tekrarlanan örneklemlerde sabit (fixed) değerlerden ibarettirler. Bu varsayım, otomatik olarak T S.2 varsayımını sağlamaktadır. Ancak, rassal-olmama (nonrandomness) varsayımının zaman serileri gözlemleri için doğru olamayacağı açıktır. Oysa T S.2 varsayımı x lerin rassallık niteliğine dayandığı için daha gerçekçidir. Ancak, sapmasızlığın sağlanması için x u ilişkilerinin nasıl olması gerektiği konusunda katı koşullar getirmektedir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 29
125 Varsayım T S.3: Tam Çoklu Bağıntının Olmaması Varsayım T S.3: Tam Çoklu Bağıntının Olmaması Örneklemde ( dolayısıyla altında yatan zaman serisi sürecinde) bağımsız değişkenler sabit değildir ve diğer değişkenlerin tam bir doğrusal kombinasyonu olmamalıdır. OLS nin sapmasızlığı için gerekli son varsayım standart tam çoklu-bağıntı olmaması varsayımıdır. x ler arasında ilişki olabilir, ancak tam (perfect) korelasyona izin verilmemektedir. Ayrıca, x lerde değişme olması, yani sabit olmamaları da bu varsayım içinde yer almaktadır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 30
126 Varsayım T S.3: Tam Çoklu Bağıntının Olmaması Varsayım T S.3: Tam Çoklu Bağıntının Olmaması Örneklemde ( dolayısıyla altında yatan zaman serisi sürecinde) bağımsız değişkenler sabit değildir ve diğer değişkenlerin tam bir doğrusal kombinasyonu olmamalıdır. OLS nin sapmasızlığı için gerekli son varsayım standart tam çoklu-bağıntı olmaması varsayımıdır. x ler arasında ilişki olabilir, ancak tam (perfect) korelasyona izin verilmemektedir. Ayrıca, x lerde değişme olması, yani sabit olmamaları da bu varsayım içinde yer almaktadır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 30
127 Varsayım T S.3: Tam Çoklu Bağıntının Olmaması Varsayım T S.3: Tam Çoklu Bağıntının Olmaması Örneklemde ( dolayısıyla altında yatan zaman serisi sürecinde) bağımsız değişkenler sabit değildir ve diğer değişkenlerin tam bir doğrusal kombinasyonu olmamalıdır. OLS nin sapmasızlığı için gerekli son varsayım standart tam çoklu-bağıntı olmaması varsayımıdır. x ler arasında ilişki olabilir, ancak tam (perfect) korelasyona izin verilmemektedir. Ayrıca, x lerde değişme olması, yani sabit olmamaları da bu varsayım içinde yer almaktadır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 30
128 Varsayım T S.3: Tam Çoklu Bağıntının Olmaması Varsayım T S.3: Tam Çoklu Bağıntının Olmaması Örneklemde ( dolayısıyla altında yatan zaman serisi sürecinde) bağımsız değişkenler sabit değildir ve diğer değişkenlerin tam bir doğrusal kombinasyonu olmamalıdır. OLS nin sapmasızlığı için gerekli son varsayım standart tam çoklu-bağıntı olmaması varsayımıdır. x ler arasında ilişki olabilir, ancak tam (perfect) korelasyona izin verilmemektedir. Ayrıca, x lerde değişme olması, yani sabit olmamaları da bu varsayım içinde yer almaktadır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 30
129 OLS nin Sapmasızlığı Teorem 10.1: OLS nin Sapmasızlığı T S.1 T S.3 varsayımları altında OLS tahmin edicileri X e koşullu olarak sapmasızdır: E( ˆβ j ) = β j, j = 0, 1, 2,..., k Bu teoremin ispatı kesitler-arası regresyon için verilen Teorem 3.1 in ispatının aynıdır. Ancak, oradaki rassal örnekleme (random sampling) varsayımının yerini burada açıklayıcı değişkenlerin tüm zamanlar için değerleri kontrol edilmişken, her bir t dönemi için u t sıfır ortalamaya sahiptir. varsayımı almıştır. Bu varsayım sağlanamazsa OLS nin sapmasız olduğu kanıtlanamaz. İki varsayım daha ekleyerek zaman serileri için Gauss-Markov varsayımlarını tamamlayalım : Sabit varyans (Homoscedasticity) ve Ardışık bağımlılık (serial correlation) Ekonometri II: Zaman olmaması Serisi Verileriyle varsayımları Regresyon - H. Taştan 31
130 OLS nin Sapmasızlığı Teorem 10.1: OLS nin Sapmasızlığı T S.1 T S.3 varsayımları altında OLS tahmin edicileri X e koşullu olarak sapmasızdır: E( ˆβ j ) = β j, j = 0, 1, 2,..., k Bu teoremin ispatı kesitler-arası regresyon için verilen Teorem 3.1 in ispatının aynıdır. Ancak, oradaki rassal örnekleme (random sampling) varsayımının yerini burada açıklayıcı değişkenlerin tüm zamanlar için değerleri kontrol edilmişken, her bir t dönemi için u t sıfır ortalamaya sahiptir. varsayımı almıştır. Bu varsayım sağlanamazsa OLS nin sapmasız olduğu kanıtlanamaz. İki varsayım daha ekleyerek zaman serileri için Gauss-Markov varsayımlarını tamamlayalım : Sabit varyans (Homoscedasticity) ve Ardışık bağımlılık (serial correlation) Ekonometri II: Zaman olmaması Serisi Verileriyle varsayımları Regresyon - H. Taştan 31
131 OLS nin Sapmasızlığı Teorem 10.1: OLS nin Sapmasızlığı T S.1 T S.3 varsayımları altında OLS tahmin edicileri X e koşullu olarak sapmasızdır: E( ˆβ j ) = β j, j = 0, 1, 2,..., k Bu teoremin ispatı kesitler-arası regresyon için verilen Teorem 3.1 in ispatının aynıdır. Ancak, oradaki rassal örnekleme (random sampling) varsayımının yerini burada açıklayıcı değişkenlerin tüm zamanlar için değerleri kontrol edilmişken, her bir t dönemi için u t sıfır ortalamaya sahiptir. varsayımı almıştır. Bu varsayım sağlanamazsa OLS nin sapmasız olduğu kanıtlanamaz. İki varsayım daha ekleyerek zaman serileri için Gauss-Markov varsayımlarını tamamlayalım : Sabit varyans (Homoscedasticity) ve Ardışık bağımlılık (serial correlation) Ekonometri II: Zaman olmaması Serisi Verileriyle varsayımları Regresyon - H. Taştan 31
132 OLS nin Sapmasızlığı Teorem 10.1: OLS nin Sapmasızlığı T S.1 T S.3 varsayımları altında OLS tahmin edicileri X e koşullu olarak sapmasızdır: E( ˆβ j ) = β j, j = 0, 1, 2,..., k Bu teoremin ispatı kesitler-arası regresyon için verilen Teorem 3.1 in ispatının aynıdır. Ancak, oradaki rassal örnekleme (random sampling) varsayımının yerini burada açıklayıcı değişkenlerin tüm zamanlar için değerleri kontrol edilmişken, her bir t dönemi için u t sıfır ortalamaya sahiptir. varsayımı almıştır. Bu varsayım sağlanamazsa OLS nin sapmasız olduğu kanıtlanamaz. İki varsayım daha ekleyerek zaman serileri için Gauss-Markov varsayımlarını tamamlayalım : Sabit varyans (Homoscedasticity) ve Ardışık bağımlılık (serial correlation) Ekonometri II: Zaman olmaması Serisi Verileriyle varsayımları Regresyon - H. Taştan 31
133 OLS nin Sapmasızlığı Teorem 10.1: OLS nin Sapmasızlığı T S.1 T S.3 varsayımları altında OLS tahmin edicileri X e koşullu olarak sapmasızdır: E( ˆβ j ) = β j, j = 0, 1, 2,..., k Bu teoremin ispatı kesitler-arası regresyon için verilen Teorem 3.1 in ispatının aynıdır. Ancak, oradaki rassal örnekleme (random sampling) varsayımının yerini burada açıklayıcı değişkenlerin tüm zamanlar için değerleri kontrol edilmişken, her bir t dönemi için u t sıfır ortalamaya sahiptir. varsayımı almıştır. Bu varsayım sağlanamazsa OLS nin sapmasız olduğu kanıtlanamaz. İki varsayım daha ekleyerek zaman serileri için Gauss-Markov varsayımlarını tamamlayalım : Sabit varyans (Homoscedasticity) ve Ardışık bağımlılık (serial correlation) Ekonometri II: Zaman olmaması Serisi Verileriyle varsayımları Regresyon - H. Taştan 31
134 Varsayım T S4: Sabit varyans Varsayım T S5: Ardışık Bağımlılığın Olmaması İki varsayım daha ekleyerek zaman serileri için Gauss-Markov varsayımlarını tamamlayalım : Sabit varyans (Homoscedasticity) ve Ardışık bağımlılık (serial correlation) olmaması varsayımları Varsayım T S.4: Sabit Varyans X e koşullu u t nin varyansı her t dönemi için sabittir. V ar(u t X) = σ 2, t = 1, 2,,..., n. Varsayım T S.5: Ardışık Bağımlılılığın olmaması Her t s için, X e koşullu biçimde farklı iki zaman dönemine ait hata terimleri arasındaki korelasyon sıfırdır: Corr(u t, u s X) = 0. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 32
135 Varsayım T S4: Sabit varyans Varsayım T S5: Ardışık Bağımlılığın Olmaması İki varsayım daha ekleyerek zaman serileri için Gauss-Markov varsayımlarını tamamlayalım : Sabit varyans (Homoscedasticity) ve Ardışık bağımlılık (serial correlation) olmaması varsayımları Varsayım T S.4: Sabit Varyans X e koşullu u t nin varyansı her t dönemi için sabittir. V ar(u t X) = σ 2, t = 1, 2,,..., n. Varsayım T S.5: Ardışık Bağımlılılığın olmaması Her t s için, X e koşullu biçimde farklı iki zaman dönemine ait hata terimleri arasındaki korelasyon sıfırdır: Corr(u t, u s X) = 0. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 32
136 Varsayım T S4: Sabit varyans Varsayım T S5: Ardışık Bağımlılığın Olmaması İki varsayım daha ekleyerek zaman serileri için Gauss-Markov varsayımlarını tamamlayalım : Sabit varyans (Homoscedasticity) ve Ardışık bağımlılık (serial correlation) olmaması varsayımları Varsayım T S.4: Sabit Varyans X e koşullu u t nin varyansı her t dönemi için sabittir. V ar(u t X) = σ 2, t = 1, 2,,..., n. Varsayım T S.5: Ardışık Bağımlılılığın olmaması Her t s için, X e koşullu biçimde farklı iki zaman dönemine ait hata terimleri arasındaki korelasyon sıfırdır: Corr(u t, u s X) = 0. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 32
137 T S.5: Ardışık Bağımlılığın Olmaması Varsayım T S.5: Ardışık Bağımlılığın olmaması Her t s için, X e koşullu biçimde farklı iki zaman dönemine ait hata terimleri arasındaki korelasyon sıfırdır: Corr(u t, u s X) = 0. T S.5 varsayımı iki ayrı zaman dönemine (t ve s diyelim) ait u ların x lere koşullu olarak ilişkisiz olması anlamına gelmektedir. x ler rassal-olmayan (nonrandom) değişken ya da tekrarlanan örneklemlerde sabit değerler olarak ele alınırsa, bu halde x lere koşullu olma kaydını kaldırırız: Corr(u t, u s ) = 0 Bu durum sağlanmadığında hata terimi (u) ardışık bağımlılık (serial correlation) ya da otokorelasyon (autocorrelation) içeriyor demektir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 33
138 T S.5: Ardışık Bağımlılığın Olmaması Varsayım T S.5: Ardışık Bağımlılığın olmaması Her t s için, X e koşullu biçimde farklı iki zaman dönemine ait hata terimleri arasındaki korelasyon sıfırdır: Corr(u t, u s X) = 0. T S.5 varsayımı iki ayrı zaman dönemine (t ve s diyelim) ait u ların x lere koşullu olarak ilişkisiz olması anlamına gelmektedir. x ler rassal-olmayan (nonrandom) değişken ya da tekrarlanan örneklemlerde sabit değerler olarak ele alınırsa, bu halde x lere koşullu olma kaydını kaldırırız: Corr(u t, u s ) = 0 Bu durum sağlanmadığında hata terimi (u) ardışık bağımlılık (serial correlation) ya da otokorelasyon (autocorrelation) içeriyor demektir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 33
139 T S.5: Ardışık Bağımlılığın Olmaması Varsayım T S.5: Ardışık Bağımlılığın olmaması Her t s için, X e koşullu biçimde farklı iki zaman dönemine ait hata terimleri arasındaki korelasyon sıfırdır: Corr(u t, u s X) = 0. T S.5 varsayımı iki ayrı zaman dönemine (t ve s diyelim) ait u ların x lere koşullu olarak ilişkisiz olması anlamına gelmektedir. x ler rassal-olmayan (nonrandom) değişken ya da tekrarlanan örneklemlerde sabit değerler olarak ele alınırsa, bu halde x lere koşullu olma kaydını kaldırırız: Corr(u t, u s ) = 0 Bu durum sağlanmadığında hata terimi (u) ardışık bağımlılık (serial correlation) ya da otokorelasyon (autocorrelation) içeriyor demektir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 33
140 T S.5: Ardışık Bağımlılığın Olmaması Varsayım T S.5: Ardışık Bağımlılığın olmaması Her t s için, X e koşullu biçimde farklı iki zaman dönemine ait hata terimleri arasındaki korelasyon sıfırdır: Corr(u t, u s X) = 0. T S.5 varsayımı iki ayrı zaman dönemine (t ve s diyelim) ait u ların x lere koşullu olarak ilişkisiz olması anlamına gelmektedir. x ler rassal-olmayan (nonrandom) değişken ya da tekrarlanan örneklemlerde sabit değerler olarak ele alınırsa, bu halde x lere koşullu olma kaydını kaldırırız: Corr(u t, u s ) = 0 Bu durum sağlanmadığında hata terimi (u) ardışık bağımlılık (serial correlation) ya da otokorelasyon (autocorrelation) içeriyor demektir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 33
141 T S.5: Ardışık Bağımlılığın Olmaması Yani, hata terimleri zaman dönemleri itibariyle (across time) ilişkilidirler. Otokorelasyon, ard arda gelen u ların tümünün birden pozitif ya da tümünün birden negatif olması şeklinde ortaya çıkar. Oysa, ideal durum bu hata teriminin tamamen birbirinden bağımsız olarak rasgele dağılmaları durumu idi. Kesitler-arası regresyonda bu varsayımı yapmadık. Nedeni ise rassal örnekleme varsayımıydı. Rassal örnekleme varsayımı altında herhangi iki i ve h gözlemlerine ait hata terimleri, u i ve u h, birbirinden bağımsızdır. Bu, tüm açıklayıcı değişkenlere koşullu olarak da böyledir. Demek ki otokorelasyon sadece zaman serileri regresyonlarına özgü bir sorundur. Ancak, örneklemin rassal olmadığı kesitler-arası verilerde de otokorelasyon sorunu çıkabilir. Hata terimlerinin şehirler itibariyle ilişkili olması gibi. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 34
142 T S.5: Ardışık Bağımlılığın Olmaması Yani, hata terimleri zaman dönemleri itibariyle (across time) ilişkilidirler. Otokorelasyon, ard arda gelen u ların tümünün birden pozitif ya da tümünün birden negatif olması şeklinde ortaya çıkar. Oysa, ideal durum bu hata teriminin tamamen birbirinden bağımsız olarak rasgele dağılmaları durumu idi. Kesitler-arası regresyonda bu varsayımı yapmadık. Nedeni ise rassal örnekleme varsayımıydı. Rassal örnekleme varsayımı altında herhangi iki i ve h gözlemlerine ait hata terimleri, u i ve u h, birbirinden bağımsızdır. Bu, tüm açıklayıcı değişkenlere koşullu olarak da böyledir. Demek ki otokorelasyon sadece zaman serileri regresyonlarına özgü bir sorundur. Ancak, örneklemin rassal olmadığı kesitler-arası verilerde de otokorelasyon sorunu çıkabilir. Hata terimlerinin şehirler itibariyle ilişkili olması gibi. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 34
143 T S.5: Ardışık Bağımlılığın Olmaması Yani, hata terimleri zaman dönemleri itibariyle (across time) ilişkilidirler. Otokorelasyon, ard arda gelen u ların tümünün birden pozitif ya da tümünün birden negatif olması şeklinde ortaya çıkar. Oysa, ideal durum bu hata teriminin tamamen birbirinden bağımsız olarak rasgele dağılmaları durumu idi. Kesitler-arası regresyonda bu varsayımı yapmadık. Nedeni ise rassal örnekleme varsayımıydı. Rassal örnekleme varsayımı altında herhangi iki i ve h gözlemlerine ait hata terimleri, u i ve u h, birbirinden bağımsızdır. Bu, tüm açıklayıcı değişkenlere koşullu olarak da böyledir. Demek ki otokorelasyon sadece zaman serileri regresyonlarına özgü bir sorundur. Ancak, örneklemin rassal olmadığı kesitler-arası verilerde de otokorelasyon sorunu çıkabilir. Hata terimlerinin şehirler itibariyle ilişkili olması gibi. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 34
144 T S.5: Ardışık Bağımlılığın Olmaması Yani, hata terimleri zaman dönemleri itibariyle (across time) ilişkilidirler. Otokorelasyon, ard arda gelen u ların tümünün birden pozitif ya da tümünün birden negatif olması şeklinde ortaya çıkar. Oysa, ideal durum bu hata teriminin tamamen birbirinden bağımsız olarak rasgele dağılmaları durumu idi. Kesitler-arası regresyonda bu varsayımı yapmadık. Nedeni ise rassal örnekleme varsayımıydı. Rassal örnekleme varsayımı altında herhangi iki i ve h gözlemlerine ait hata terimleri, u i ve u h, birbirinden bağımsızdır. Bu, tüm açıklayıcı değişkenlere koşullu olarak da böyledir. Demek ki otokorelasyon sadece zaman serileri regresyonlarına özgü bir sorundur. Ancak, örneklemin rassal olmadığı kesitler-arası verilerde de otokorelasyon sorunu çıkabilir. Hata terimlerinin şehirler itibariyle ilişkili olması gibi. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 34
145 T S.5: Ardışık Bağımlılığın Olmaması Yani, hata terimleri zaman dönemleri itibariyle (across time) ilişkilidirler. Otokorelasyon, ard arda gelen u ların tümünün birden pozitif ya da tümünün birden negatif olması şeklinde ortaya çıkar. Oysa, ideal durum bu hata teriminin tamamen birbirinden bağımsız olarak rasgele dağılmaları durumu idi. Kesitler-arası regresyonda bu varsayımı yapmadık. Nedeni ise rassal örnekleme varsayımıydı. Rassal örnekleme varsayımı altında herhangi iki i ve h gözlemlerine ait hata terimleri, u i ve u h, birbirinden bağımsızdır. Bu, tüm açıklayıcı değişkenlere koşullu olarak da böyledir. Demek ki otokorelasyon sadece zaman serileri regresyonlarına özgü bir sorundur. Ancak, örneklemin rassal olmadığı kesitler-arası verilerde de otokorelasyon sorunu çıkabilir. Hata terimlerinin şehirler itibariyle ilişkili olması gibi. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 34
146 T S.5: Ardışık Bağımlılığın Olmaması Yani, hata terimleri zaman dönemleri itibariyle (across time) ilişkilidirler. Otokorelasyon, ard arda gelen u ların tümünün birden pozitif ya da tümünün birden negatif olması şeklinde ortaya çıkar. Oysa, ideal durum bu hata teriminin tamamen birbirinden bağımsız olarak rasgele dağılmaları durumu idi. Kesitler-arası regresyonda bu varsayımı yapmadık. Nedeni ise rassal örnekleme varsayımıydı. Rassal örnekleme varsayımı altında herhangi iki i ve h gözlemlerine ait hata terimleri, u i ve u h, birbirinden bağımsızdır. Bu, tüm açıklayıcı değişkenlere koşullu olarak da böyledir. Demek ki otokorelasyon sadece zaman serileri regresyonlarına özgü bir sorundur. Ancak, örneklemin rassal olmadığı kesitler-arası verilerde de otokorelasyon sorunu çıkabilir. Hata terimlerinin şehirler itibariyle ilişkili olması gibi. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 34
147 T S.5: Ardışık Bağımlılığın Olmaması Yani, hata terimleri zaman dönemleri itibariyle (across time) ilişkilidirler. Otokorelasyon, ard arda gelen u ların tümünün birden pozitif ya da tümünün birden negatif olması şeklinde ortaya çıkar. Oysa, ideal durum bu hata teriminin tamamen birbirinden bağımsız olarak rasgele dağılmaları durumu idi. Kesitler-arası regresyonda bu varsayımı yapmadık. Nedeni ise rassal örnekleme varsayımıydı. Rassal örnekleme varsayımı altında herhangi iki i ve h gözlemlerine ait hata terimleri, u i ve u h, birbirinden bağımsızdır. Bu, tüm açıklayıcı değişkenlere koşullu olarak da böyledir. Demek ki otokorelasyon sadece zaman serileri regresyonlarına özgü bir sorundur. Ancak, örneklemin rassal olmadığı kesitler-arası verilerde de otokorelasyon sorunu çıkabilir. Hata terimlerinin şehirler itibariyle ilişkili olması gibi. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 34
148 OLS Örnekleme Varyansları Teorem 10.2: OLS Örnekleme Varyansları Zaman serileri Gauss-Markov varsayımları (T S.1 T S.5) altında Var( ˆβ j X) = σ 2 SST j (1 R 2 j ), j = 1, 2,..., k Burada SST j = n (x tj x j ) 2 x j deki örneklem değişkenliği, R 2 j ise x j nin diğer tüm x değişkenlerine (sabit terim içeren) regresyonundan elde edilen belirlilik katsayısıdır. t=1 Bu, Gauss-Markov koşulları altında kesitler-arası regresyon için türettiğimiz varyans ile aynı şeydir. Çoklu-bağıntı gibi varyansın büyük çıkmasına sebep olan faktörler aynı etkiyi göstermektedir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 35
149 Gauss Markov Teoerimi Teorem 10.3: ˆσ 2 nin Sapmasız Tahmini T S.1 T S5 varsayımları altında tahmin edici ˆσ 2 = SSR dof, σ2 nin sapmasız tahmin edicisidir. Burada serbestlik derecesi: dof = n (k + 1) Hata terimleri varyansının OLS tahmin edicisi, T S.1 T S.5 varsayımları altında sapmasızdır ve yine bu varsayımlar altında Gauss-Markov teoremi sağlanmaktadır. Teorem 10.4: Gauss-Markov Teoremi T S.1 T S5 varsayımları altında OLS tahmin edicileri X e koşullu en iyi doğrusal sapmasız tahmin eidicilerdir (BLUE, DESTE). Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 36
150 Gauss Markov Teoerimi Teorem 10.3: ˆσ 2 nin Sapmasız Tahmini T S.1 T S5 varsayımları altında tahmin edici ˆσ 2 = SSR dof, σ2 nin sapmasız tahmin edicisidir. Burada serbestlik derecesi: dof = n (k + 1) Hata terimleri varyansının OLS tahmin edicisi, T S.1 T S.5 varsayımları altında sapmasızdır ve yine bu varsayımlar altında Gauss-Markov teoremi sağlanmaktadır. Teorem 10.4: Gauss-Markov Teoremi T S.1 T S5 varsayımları altında OLS tahmin edicileri X e koşullu en iyi doğrusal sapmasız tahmin eidicilerdir (BLUE, DESTE). Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 36
151 Klasik Doğrusal Model Varsayımları Altında Çıkarım OLS tahmin edicileri, T S.1 T S.5 varsayımları altında tıpkı MLR.1 MLR.5 varsayımları altında olduğu gibi arzu edilir küçük (sonlu) örneklem özelliklerine sahip olmaktadırlar. Zaman serileri regresyonlarında hipotez testleri yapabilmek ve güven aralıkları oluşturabilmek için, başka bir deyişle, standart hata, t ve F testlerini kullanabilmemiz için kesitler-arasıdaki varsayımının bir benzerini burada da yapacağız: Varsayım T S.6: Normallik u t hata terimleri X ten bağımsızdır ve bağımsız ve özdeş(normal) dağılımlıdır (iid). Yani u N(0, σ 2 ). T S.6 varsayımı, T S.3, T S.4 ve T S.5 varsayımlarının geçerli olmalarını zorunlu kılar. Başka bir deyişle, T S.6 sağlanmışsa, T S.3, T S.4 ve T S.5 otomatik olarak sağlanmış olur. Ancak, bağımsızlık ve normallik varsayımları dolayısıyla T S.6 daha katı bir varsayımdır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 37
152 Klasik Doğrusal Model Varsayımları Altında Çıkarım OLS tahmin edicileri, T S.1 T S.5 varsayımları altında tıpkı MLR.1 MLR.5 varsayımları altında olduğu gibi arzu edilir küçük (sonlu) örneklem özelliklerine sahip olmaktadırlar. Zaman serileri regresyonlarında hipotez testleri yapabilmek ve güven aralıkları oluşturabilmek için, başka bir deyişle, standart hata, t ve F testlerini kullanabilmemiz için kesitler-arasıdaki varsayımının bir benzerini burada da yapacağız: Varsayım T S.6: Normallik u t hata terimleri X ten bağımsızdır ve bağımsız ve özdeş(normal) dağılımlıdır (iid). Yani u N(0, σ 2 ). T S.6 varsayımı, T S.3, T S.4 ve T S.5 varsayımlarının geçerli olmalarını zorunlu kılar. Başka bir deyişle, T S.6 sağlanmışsa, T S.3, T S.4 ve T S.5 otomatik olarak sağlanmış olur. Ancak, bağımsızlık ve normallik varsayımları dolayısıyla T S.6 daha katı bir varsayımdır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 37
153 Klasik Doğrusal Model Varsayımları Altında Çıkarım OLS tahmin edicileri, T S.1 T S.5 varsayımları altında tıpkı MLR.1 MLR.5 varsayımları altında olduğu gibi arzu edilir küçük (sonlu) örneklem özelliklerine sahip olmaktadırlar. Zaman serileri regresyonlarında hipotez testleri yapabilmek ve güven aralıkları oluşturabilmek için, başka bir deyişle, standart hata, t ve F testlerini kullanabilmemiz için kesitler-arasıdaki varsayımının bir benzerini burada da yapacağız: Varsayım T S.6: Normallik u t hata terimleri X ten bağımsızdır ve bağımsız ve özdeş(normal) dağılımlıdır (iid). Yani u N(0, σ 2 ). T S.6 varsayımı, T S.3, T S.4 ve T S.5 varsayımlarının geçerli olmalarını zorunlu kılar. Başka bir deyişle, T S.6 sağlanmışsa, T S.3, T S.4 ve T S.5 otomatik olarak sağlanmış olur. Ancak, bağımsızlık ve normallik varsayımları dolayısıyla T S.6 daha katı bir varsayımdır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 37
154 Klasik Doğrusal Model Varsayımları Altında Çıkarım OLS tahmin edicileri, T S.1 T S.5 varsayımları altında tıpkı MLR.1 MLR.5 varsayımları altında olduğu gibi arzu edilir küçük (sonlu) örneklem özelliklerine sahip olmaktadırlar. Zaman serileri regresyonlarında hipotez testleri yapabilmek ve güven aralıkları oluşturabilmek için, başka bir deyişle, standart hata, t ve F testlerini kullanabilmemiz için kesitler-arasıdaki varsayımının bir benzerini burada da yapacağız: Varsayım T S.6: Normallik u t hata terimleri X ten bağımsızdır ve bağımsız ve özdeş(normal) dağılımlıdır (iid). Yani u N(0, σ 2 ). T S.6 varsayımı, T S.3, T S.4 ve T S.5 varsayımlarının geçerli olmalarını zorunlu kılar. Başka bir deyişle, T S.6 sağlanmışsa, T S.3, T S.4 ve T S.5 otomatik olarak sağlanmış olur. Ancak, bağımsızlık ve normallik varsayımları dolayısıyla T S.6 daha katı bir varsayımdır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 37
155 Klasik Doğrusal Model Varsayımları Altında Çıkarım OLS tahmin edicileri, T S.1 T S.5 varsayımları altında tıpkı MLR.1 MLR.5 varsayımları altında olduğu gibi arzu edilir küçük (sonlu) örneklem özelliklerine sahip olmaktadırlar. Zaman serileri regresyonlarında hipotez testleri yapabilmek ve güven aralıkları oluşturabilmek için, başka bir deyişle, standart hata, t ve F testlerini kullanabilmemiz için kesitler-arasıdaki varsayımının bir benzerini burada da yapacağız: Varsayım T S.6: Normallik u t hata terimleri X ten bağımsızdır ve bağımsız ve özdeş(normal) dağılımlıdır (iid). Yani u N(0, σ 2 ). T S.6 varsayımı, T S.3, T S.4 ve T S.5 varsayımlarının geçerli olmalarını zorunlu kılar. Başka bir deyişle, T S.6 sağlanmışsa, T S.3, T S.4 ve T S.5 otomatik olarak sağlanmış olur. Ancak, bağımsızlık ve normallik varsayımları dolayısıyla T S.6 daha katı bir varsayımdır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 37
156 Klasik Doğrusal Model Varsayımları Altında Çıkarım OLS tahmin edicileri, T S.1 T S.5 varsayımları altında tıpkı MLR.1 MLR.5 varsayımları altında olduğu gibi arzu edilir küçük (sonlu) örneklem özelliklerine sahip olmaktadırlar. Zaman serileri regresyonlarında hipotez testleri yapabilmek ve güven aralıkları oluşturabilmek için, başka bir deyişle, standart hata, t ve F testlerini kullanabilmemiz için kesitler-arasıdaki varsayımının bir benzerini burada da yapacağız: Varsayım T S.6: Normallik u t hata terimleri X ten bağımsızdır ve bağımsız ve özdeş(normal) dağılımlıdır (iid). Yani u N(0, σ 2 ). T S.6 varsayımı, T S.3, T S.4 ve T S.5 varsayımlarının geçerli olmalarını zorunlu kılar. Başka bir deyişle, T S.6 sağlanmışsa, T S.3, T S.4 ve T S.5 otomatik olarak sağlanmış olur. Ancak, bağımsızlık ve normallik varsayımları dolayısıyla T S.6 daha katı bir varsayımdır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 37
157 Klasik Doğrusal Model Varsayımları Altında Çıkarım Teorem 10.5: Normal Örnekleme Dağılımları T S.1 T S.6 varsayımları altında, zaman serileri için klasik varsayımlar, OLS tahmin edicilerinin X e koşullu dağılımı normaldir. Sıfır hipotezi altında t istatistikleri t dağılımına, F istatistikleri F dağılımına uyar. Güven aralıkları standart biçimde oluşturulabilir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 38
158 Klasik Doğrusal Model Varsayımları Altında Çıkarım Teorem 10.5, T S.1 T S.6 varsayımları sağlandığında kesitler-arası regresyonda tahmin (estimation) ve çıkarımla (inference) ilgili olarak elde edilen tüm sonuçların zaman serileri regresyonuna da uygulanabileceğini ifade ediyor. Zaman serileri için klasik doğrusal model varsayımları T S.1 T S.6, kesitler-arası regresyonu varsayımlarına kıyasla daha katı koşullar getirmektedir. Özellikle kesin dışsallık ve otokorelasyon olmaması varsayımları çoğu kez gerçekçi olmaktan uzak olabilirler. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 39
159 Klasik Doğrusal Model Varsayımları Altında Çıkarım Teorem 10.5, T S.1 T S.6 varsayımları sağlandığında kesitler-arası regresyonda tahmin (estimation) ve çıkarımla (inference) ilgili olarak elde edilen tüm sonuçların zaman serileri regresyonuna da uygulanabileceğini ifade ediyor. Zaman serileri için klasik doğrusal model varsayımları T S.1 T S.6, kesitler-arası regresyonu varsayımlarına kıyasla daha katı koşullar getirmektedir. Özellikle kesin dışsallık ve otokorelasyon olmaması varsayımları çoğu kez gerçekçi olmaktan uzak olabilirler. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 39
160 Klasik Doğrusal Model Varsayımları Altında Çıkarım Teorem 10.5, T S.1 T S.6 varsayımları sağlandığında kesitler-arası regresyonda tahmin (estimation) ve çıkarımla (inference) ilgili olarak elde edilen tüm sonuçların zaman serileri regresyonuna da uygulanabileceğini ifade ediyor. Zaman serileri için klasik doğrusal model varsayımları T S.1 T S.6, kesitler-arası regresyonu varsayımlarına kıyasla daha katı koşullar getirmektedir. Özellikle kesin dışsallık ve otokorelasyon olmaması varsayımları çoğu kez gerçekçi olmaktan uzak olabilirler. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 39
161 Örnek 10.1: Statik Phillips Eğrisi Ortalamada işsizilik ve enflasyon arasında bir ödünümün varlığını araştırmak için H 0 : β 1 = 0 ile H 1 : β 1 < 0 test ediebilir. inf t = β 0 + β 1 unemp t + u t Klasik varsayımlar geçerliyse OLS t istatistiği kullanılabilir. Statik Phillips Eğrisi ( ) PHILLIPS.RAW înf t = 1.42 (1.72) (0.289) unem t n = 49 R 2 = R 2 = Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 40
162 Örnek 10.1: Statik Phillips Eğrisi Ortalamada işsizilik ve enflasyon arasında bir ödünümün varlığını araştırmak için H 0 : β 1 = 0 ile H 1 : β 1 < 0 test ediebilir. inf t = β 0 + β 1 unemp t + u t Klasik varsayımlar geçerliyse OLS t istatistiği kullanılabilir. Statik Phillips Eğrisi ( ) PHILLIPS.RAW înf t = 1.42 (1.72) (0.289) unem t n = 49 R 2 = R 2 = Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 40
163 Örnek 10.1: Statik Phillips Eğrisi Ortalamada işsizilik ve enflasyon arasında bir ödünümün varlığını araştırmak için H 0 : β 1 = 0 ile H 1 : β 1 < 0 test ediebilir. inf t = β 0 + β 1 unemp t + u t Klasik varsayımlar geçerliyse OLS t istatistiği kullanılabilir. Statik Phillips Eğrisi ( ) PHILLIPS.RAW înf t = 1.42 (1.72) (0.289) unem t n = 49 R 2 = R 2 = Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 40
164 Örnek 10.1: Statik Phillips Eğrisi Ortalamada işsizilik ve enflasyon arasında bir ödünümün varlığını araştırmak için H 0 : β 1 = 0 ile H 1 : β 1 < 0 test ediebilir. inf t = β 0 + β 1 unemp t + u t Klasik varsayımlar geçerliyse OLS t istatistiği kullanılabilir. Statik Phillips Eğrisi ( ) PHILLIPS.RAW înf t = 1.42 (1.72) (0.289) unem t n = 49 R 2 = R 2 = Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 40
165 Örnek 10.1: Statik Phillips Eğrisi ˆβ 1 beklenilenin aksine (+) işaretli çıkmıştır. Enflasyonla işsizlik arasında beklediğimiz zıt yönlü bir ödünüm (tradeoff) gözükmemektedir. Bu, kısmen modelin yetersizliğinden ileri gelebilir. Beklentilerin (expectations) ilave edildiği genişletilmiş (augmented) Phillips eğrisi modeli daha başarılı sonuç vermektedir. İkincisi, modelin tatmin edici olmaması klasik varsayımların sağlanamamasından da ileri gelebilir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 41
166 Örnek 10.1: Statik Phillips Eğrisi ˆβ 1 beklenilenin aksine (+) işaretli çıkmıştır. Enflasyonla işsizlik arasında beklediğimiz zıt yönlü bir ödünüm (tradeoff) gözükmemektedir. Bu, kısmen modelin yetersizliğinden ileri gelebilir. Beklentilerin (expectations) ilave edildiği genişletilmiş (augmented) Phillips eğrisi modeli daha başarılı sonuç vermektedir. İkincisi, modelin tatmin edici olmaması klasik varsayımların sağlanamamasından da ileri gelebilir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 41
167 Örnek 10.1: Statik Phillips Eğrisi ˆβ 1 beklenilenin aksine (+) işaretli çıkmıştır. Enflasyonla işsizlik arasında beklediğimiz zıt yönlü bir ödünüm (tradeoff) gözükmemektedir. Bu, kısmen modelin yetersizliğinden ileri gelebilir. Beklentilerin (expectations) ilave edildiği genişletilmiş (augmented) Phillips eğrisi modeli daha başarılı sonuç vermektedir. İkincisi, modelin tatmin edici olmaması klasik varsayımların sağlanamamasından da ileri gelebilir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 41
168 Örnek 10.2: Enflasyon ve Bütçe Açığının Faiz Oranı Üzerinde Etkileri (ABD) i3: üç aylık hazine bonosu faiz haddi inf : yıllık tüketici enflasyonu def : GSYİH ya oran olarak federal bütçe açıkları. Dönem : Enflasyon ve Bütçe Açığının Faiz Oranı Üzerinde Etkileri (INTDEF.RAW) î3 t = 1.25 (0.44) (0.076) inf t (0.118) def t n = 49 R 2 = R 2 = Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 42
169 Örnek 10.2: Enflasyon ve Bütçe Açığının Faiz Oranı Üzerinde Etkileri (ABD) i3: üç aylık hazine bonosu faiz haddi inf : yıllık tüketici enflasyonu def : GSYİH ya oran olarak federal bütçe açıkları. Dönem : Enflasyon ve Bütçe Açığının Faiz Oranı Üzerinde Etkileri (INTDEF.RAW) î3 t = 1.25 (0.44) (0.076) inf t (0.118) def t n = 49 R 2 = R 2 = Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 42
170 Örnek 10.2: Enflasyon ve Bütçe Açığının Faiz Oranı Üzerinde Etkileri (ABD) i3: üç aylık hazine bonosu faiz haddi inf : yıllık tüketici enflasyonu def : GSYİH ya oran olarak federal bütçe açıkları. Dönem : Enflasyon ve Bütçe Açığının Faiz Oranı Üzerinde Etkileri (INTDEF.RAW) î3 t = 1.25 (0.44) (0.076) inf t (0.118) def t n = 49 R 2 = R 2 = Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 42
171 Örnek 10.2: Enflasyon ve Bütçe Açığının Faiz Oranı Üzerinde Etkileri (ABD) i3: üç aylık hazine bonosu faiz haddi inf : yıllık tüketici enflasyonu def : GSYİH ya oran olarak federal bütçe açıkları. Dönem : Enflasyon ve Bütçe Açığının Faiz Oranı Üzerinde Etkileri (INTDEF.RAW) î3 t = 1.25 (0.44) (0.076) inf t (0.118) def t n = 49 R 2 = R 2 = Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 42
172 Örnek 10.2: Enflasyon ve Bütçe Açığının Faiz Oranı Üzerinde Etkileri (ABD) i3: üç aylık hazine bonosu faiz haddi inf : yıllık tüketici enflasyonu def : GSYİH ya oran olarak federal bütçe açıkları. Dönem : Enflasyon ve Bütçe Açığının Faiz Oranı Üzerinde Etkileri (INTDEF.RAW) î3 t = 1.25 (0.44) (0.076) inf t (0.118) def t n = 49 R 2 = R 2 = Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 42
173 Örnek 10.2: Enflasyon ve Bütçe Açığının Faiz Oranı Üzerinde Etkileri (ABD) Diğer her şey sabitken, enflasyonda yüzde 1 puanlık (one percentage point) artış kısa vadeli faizlerde puanlık artış yaratıyor. Katsayıların t değerleri oldukça yüksektir, dolayısıyla istatistiksel olarak anlamlıdırlar. Tabii, klasik varsayımlar burada sağlanmışsa bu değerleri çıkarım (inference) amacıyla kullanabileceğiz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 43
174 Örnek 10.2: Enflasyon ve Bütçe Açığının Faiz Oranı Üzerinde Etkileri (ABD) Diğer her şey sabitken, enflasyonda yüzde 1 puanlık (one percentage point) artış kısa vadeli faizlerde puanlık artış yaratıyor. Katsayıların t değerleri oldukça yüksektir, dolayısıyla istatistiksel olarak anlamlıdırlar. Tabii, klasik varsayımlar burada sağlanmışsa bu değerleri çıkarım (inference) amacıyla kullanabileceğiz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 43
175 Örnek 10.2: Enflasyon ve Bütçe Açığının Faiz Oranı Üzerinde Etkileri (ABD) Diğer her şey sabitken, enflasyonda yüzde 1 puanlık (one percentage point) artış kısa vadeli faizlerde puanlık artış yaratıyor. Katsayıların t değerleri oldukça yüksektir, dolayısıyla istatistiksel olarak anlamlıdırlar. Tabii, klasik varsayımlar burada sağlanmışsa bu değerleri çıkarım (inference) amacıyla kullanabileceğiz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 43
176 Fonksiyonel Biçim ve Kukla Değişkenler Kesitler-arası regresyonda gördüğümüz tüm fonksiyonel biçimleri zaman serilerinde de kullanabileceğiz. Özellikle doğal logaritma zaman serilerinde çok kullanılmaktadır. Böylece değişkenlerin y üzerindeki etkisi, ölçü birimlerinden bağımsız olarak, sabit yüzde cinsinden elde edilebilmektedir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 44
177 Fonksiyonel Biçim ve Kukla Değişkenler Kesitler-arası regresyonda gördüğümüz tüm fonksiyonel biçimleri zaman serilerinde de kullanabileceğiz. Özellikle doğal logaritma zaman serilerinde çok kullanılmaktadır. Böylece değişkenlerin y üzerindeki etkisi, ölçü birimlerinden bağımsız olarak, sabit yüzde cinsinden elde edilebilmektedir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 44
178 Fonksiyonel Biçim ve Kukla Değişkenler Kesitler-arası regresyonda gördüğümüz tüm fonksiyonel biçimleri zaman serilerinde de kullanabileceğiz. Özellikle doğal logaritma zaman serilerinde çok kullanılmaktadır. Böylece değişkenlerin y üzerindeki etkisi, ölçü birimlerinden bağımsız olarak, sabit yüzde cinsinden elde edilebilmektedir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 44
179 Örnek 10.3: İstihdam ve Asgari Ücret (Porto Riko) prepop: istihdam oranı mincov = [(ortalama asgari ücret)/ortalama ücret] [(asgari ücretli sayısı)/(tüm çalışanlar)] Böylece, mincov değişkeni asgari ücretin ortalama ücrete göre görece önemini ölçüyor. usgdp: ABD nin GSMH ı. Dönem : İstihdam ve Asgari Ücret (PRMINWGE.RAW) log(prepop) t = 1.05 (0.77) (0.065) log(mincov) t (0.118) usgdp t n = 38 R 2 = R 2 = Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 45
180 Örnek 10.3: İstihdam ve Asgari Ücret (Porto Riko) prepop: istihdam oranı mincov = [(ortalama asgari ücret)/ortalama ücret] [(asgari ücretli sayısı)/(tüm çalışanlar)] Böylece, mincov değişkeni asgari ücretin ortalama ücrete göre görece önemini ölçüyor. usgdp: ABD nin GSMH ı. Dönem : İstihdam ve Asgari Ücret (PRMINWGE.RAW) log(prepop) t = 1.05 (0.77) (0.065) log(mincov) t (0.118) usgdp t n = 38 R 2 = R 2 = Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 45
181 Örnek 10.3: İstihdam ve Asgari Ücret (Porto Riko) prepop: istihdam oranı mincov = [(ortalama asgari ücret)/ortalama ücret] [(asgari ücretli sayısı)/(tüm çalışanlar)] Böylece, mincov değişkeni asgari ücretin ortalama ücrete göre görece önemini ölçüyor. usgdp: ABD nin GSMH ı. Dönem : İstihdam ve Asgari Ücret (PRMINWGE.RAW) log(prepop) t = 1.05 (0.77) (0.065) log(mincov) t (0.118) usgdp t n = 38 R 2 = R 2 = Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 45
182 Örnek 10.3: İstihdam ve Asgari Ücret (Porto Riko) prepop: istihdam oranı mincov = [(ortalama asgari ücret)/ortalama ücret] [(asgari ücretli sayısı)/(tüm çalışanlar)] Böylece, mincov değişkeni asgari ücretin ortalama ücrete göre görece önemini ölçüyor. usgdp: ABD nin GSMH ı. Dönem : İstihdam ve Asgari Ücret (PRMINWGE.RAW) log(prepop) t = 1.05 (0.77) (0.065) log(mincov) t (0.118) usgdp t n = 38 R 2 = R 2 = Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 45
183 Örnek 10.3: İstihdam ve Asgari Ücret (Porto Riko) prepop: istihdam oranı mincov = [(ortalama asgari ücret)/ortalama ücret] [(asgari ücretli sayısı)/(tüm çalışanlar)] Böylece, mincov değişkeni asgari ücretin ortalama ücrete göre görece önemini ölçüyor. usgdp: ABD nin GSMH ı. Dönem : İstihdam ve Asgari Ücret (PRMINWGE.RAW) log(prepop) t = 1.05 (0.77) (0.065) log(mincov) t (0.118) usgdp t n = 38 R 2 = R 2 = Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 45
184 Örnek 10.3: İstihdam ve Asgari Ücret (Porto Riko) prepop: istihdam oranı mincov = [(ortalama asgari ücret)/ortalama ücret] [(asgari ücretli sayısı)/(tüm çalışanlar)] Böylece, mincov değişkeni asgari ücretin ortalama ücrete göre görece önemini ölçüyor. usgdp: ABD nin GSMH ı. Dönem : İstihdam ve Asgari Ücret (PRMINWGE.RAW) log(prepop) t = 1.05 (0.77) (0.065) log(mincov) t (0.118) usgdp t n = 38 R 2 = R 2 = Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 45
185 Örnek 10.3: İstihdam ve Asgari Ücret (Porto Riko) prepop un mincov a göre esnekliği bulunmuştur ve anlamlıdır. Daha yüksek bir asgari ücret, istihdam oranını düşürmektedir. Bu, iktisat teorisinin öngörüsüne uygun bir sonuçtur. usngp serisi anlamsız çıkmıştır. Ancak, ileride göreceğiz ki regresyona trent ekleyince bu sonuç değişecektir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 46
186 Örnek 10.3: İstihdam ve Asgari Ücret (Porto Riko) prepop un mincov a göre esnekliği bulunmuştur ve anlamlıdır. Daha yüksek bir asgari ücret, istihdam oranını düşürmektedir. Bu, iktisat teorisinin öngörüsüne uygun bir sonuçtur. usngp serisi anlamsız çıkmıştır. Ancak, ileride göreceğiz ki regresyona trent ekleyince bu sonuç değişecektir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 46
187 Örnek 10.3: İstihdam ve Asgari Ücret (Porto Riko) prepop un mincov a göre esnekliği bulunmuştur ve anlamlıdır. Daha yüksek bir asgari ücret, istihdam oranını düşürmektedir. Bu, iktisat teorisinin öngörüsüne uygun bir sonuçtur. usngp serisi anlamsız çıkmıştır. Ancak, ileride göreceğiz ki regresyona trent ekleyince bu sonuç değişecektir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 46
188 FDL Modeli ve Logaritmik Fonksiyonel Biçim FDL(4) Logaritmik fonksiyonel biçimi sonlu distributed lag modelleri (FDLM) için de kullanabiliriz. Örneğin, para talebini (M) GDP nin bir fonksiyonu olarak çeyrek yıllık veriden şöyle tahmin edebiliriz: log(m t ) = α 0 + δ 0 log(gdp ) t + δ 1 log(gdp ) t 1 + δ 2 log(gdp ) t 2 +δ 3 log(gdp ) t 3 + δ 4 log(gdp ) t 4 + u t Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 47
189 FDL Modeli ve Logaritmik Fonksiyonel Biçim FDL(4) Logaritmik fonksiyonel biçimi sonlu distributed lag modelleri (FDLM) için de kullanabiliriz. Örneğin, para talebini (M) GDP nin bir fonksiyonu olarak çeyrek yıllık veriden şöyle tahmin edebiliriz: log(m t ) = α 0 + δ 0 log(gdp ) t + δ 1 log(gdp ) t 1 + δ 2 log(gdp ) t 2 +δ 3 log(gdp ) t 3 + δ 4 log(gdp ) t 4 + u t Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 47
190 FDL Modeli ve Logaritmik Fonksiyonel Biçim FDL(4) Logaritmik fonksiyonel biçimi sonlu distributed lag modelleri (FDLM) için de kullanabiliriz. Örneğin, para talebini (M) GDP nin bir fonksiyonu olarak çeyrek yıllık veriden şöyle tahmin edebiliriz: log(m t ) = α 0 + δ 0 log(gdp ) t + δ 1 log(gdp ) t 1 + δ 2 log(gdp ) t 2 +δ 3 log(gdp ) t 3 + δ 4 log(gdp ) t 4 + u t Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 47
191 FDL Modeli ve Logaritmik Fonksiyonel Biçim δ ların toplamına, δ 0 + δ 1 + δ 2 + δ 3 + δ 4, uzun-dönem esnekliği (long-run elasticity) denir. GDP de yüzde 1 lik sürekli (permanent) artışın, para talebinde 4 çeyrek yıl sonra doğuracağı yüzde artışı gösterir. Burada cari dönem (t) değişkeninin katsayısı δ 0, the impact propensity ya da kısa dönem esnekliği (short-run elasticity) adını alır. GDP de yüzde 1 lik bir artışın para talebinde doğuracağı ani etkiyi yüzde olarak gösterir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 48
192 FDL Modeli ve Logaritmik Fonksiyonel Biçim δ ların toplamına, δ 0 + δ 1 + δ 2 + δ 3 + δ 4, uzun-dönem esnekliği (long-run elasticity) denir. GDP de yüzde 1 lik sürekli (permanent) artışın, para talebinde 4 çeyrek yıl sonra doğuracağı yüzde artışı gösterir. Burada cari dönem (t) değişkeninin katsayısı δ 0, the impact propensity ya da kısa dönem esnekliği (short-run elasticity) adını alır. GDP de yüzde 1 lik bir artışın para talebinde doğuracağı ani etkiyi yüzde olarak gösterir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 48
193 FDL Modeli ve Logaritmik Fonksiyonel Biçim δ ların toplamına, δ 0 + δ 1 + δ 2 + δ 3 + δ 4, uzun-dönem esnekliği (long-run elasticity) denir. GDP de yüzde 1 lik sürekli (permanent) artışın, para talebinde 4 çeyrek yıl sonra doğuracağı yüzde artışı gösterir. Burada cari dönem (t) değişkeninin katsayısı δ 0, the impact propensity ya da kısa dönem esnekliği (short-run elasticity) adını alır. GDP de yüzde 1 lik bir artışın para talebinde doğuracağı ani etkiyi yüzde olarak gösterir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 48
194 FDL Modeli ve Logaritmik Fonksiyonel Biçim δ ların toplamına, δ 0 + δ 1 + δ 2 + δ 3 + δ 4, uzun-dönem esnekliği (long-run elasticity) denir. GDP de yüzde 1 lik sürekli (permanent) artışın, para talebinde 4 çeyrek yıl sonra doğuracağı yüzde artışı gösterir. Burada cari dönem (t) değişkeninin katsayısı δ 0, the impact propensity ya da kısa dönem esnekliği (short-run elasticity) adını alır. GDP de yüzde 1 lik bir artışın para talebinde doğuracağı ani etkiyi yüzde olarak gösterir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 48
195 Zaman Serisi Analizi ve Kukla Değişkenler Kukla değişkenler zaman serilerinde çok sıkça kullanılır ve çok yararlıdırlar. Örneğin, herhangi bir A partisinin iktidarda olduğu yıllarda 1, olmadığı yıllarda 0 değerini alan bir kukla değişkeni tanımlayıp regresyonumuzda açıklayıcı değişken olarak kullanabiliriz. Savaş yılları, krizler, depremler vb. bazı özel dönemleri kukla değişken kullanarak izole edebiliriz. Örneğin, II.Dünya Savaşı yıllarında 1, diğer yıllarda 0 değerini alan bir kukla değişkeni yaratarak savaş yıllarının bağımlı değişken (y) üzerindeki özel etkisini ölçebiliriz. Belli olayların kukla değişken kullanarak etkilerini ölçmeye event study denir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 49
196 Zaman Serisi Analizi ve Kukla Değişkenler Kukla değişkenler zaman serilerinde çok sıkça kullanılır ve çok yararlıdırlar. Örneğin, herhangi bir A partisinin iktidarda olduğu yıllarda 1, olmadığı yıllarda 0 değerini alan bir kukla değişkeni tanımlayıp regresyonumuzda açıklayıcı değişken olarak kullanabiliriz. Savaş yılları, krizler, depremler vb. bazı özel dönemleri kukla değişken kullanarak izole edebiliriz. Örneğin, II.Dünya Savaşı yıllarında 1, diğer yıllarda 0 değerini alan bir kukla değişkeni yaratarak savaş yıllarının bağımlı değişken (y) üzerindeki özel etkisini ölçebiliriz. Belli olayların kukla değişken kullanarak etkilerini ölçmeye event study denir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 49
197 Zaman Serisi Analizi ve Kukla Değişkenler Kukla değişkenler zaman serilerinde çok sıkça kullanılır ve çok yararlıdırlar. Örneğin, herhangi bir A partisinin iktidarda olduğu yıllarda 1, olmadığı yıllarda 0 değerini alan bir kukla değişkeni tanımlayıp regresyonumuzda açıklayıcı değişken olarak kullanabiliriz. Savaş yılları, krizler, depremler vb. bazı özel dönemleri kukla değişken kullanarak izole edebiliriz. Örneğin, II.Dünya Savaşı yıllarında 1, diğer yıllarda 0 değerini alan bir kukla değişkeni yaratarak savaş yıllarının bağımlı değişken (y) üzerindeki özel etkisini ölçebiliriz. Belli olayların kukla değişken kullanarak etkilerini ölçmeye event study denir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 49
198 Zaman Serisi Analizi ve Kukla Değişkenler Kukla değişkenler zaman serilerinde çok sıkça kullanılır ve çok yararlıdırlar. Örneğin, herhangi bir A partisinin iktidarda olduğu yıllarda 1, olmadığı yıllarda 0 değerini alan bir kukla değişkeni tanımlayıp regresyonumuzda açıklayıcı değişken olarak kullanabiliriz. Savaş yılları, krizler, depremler vb. bazı özel dönemleri kukla değişken kullanarak izole edebiliriz. Örneğin, II.Dünya Savaşı yıllarında 1, diğer yıllarda 0 değerini alan bir kukla değişkeni yaratarak savaş yıllarının bağımlı değişken (y) üzerindeki özel etkisini ölçebiliriz. Belli olayların kukla değişken kullanarak etkilerini ölçmeye event study denir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 49
199 Zaman Serisi Analizi ve Kukla Değişkenler Kukla değişkenler zaman serilerinde çok sıkça kullanılır ve çok yararlıdırlar. Örneğin, herhangi bir A partisinin iktidarda olduğu yıllarda 1, olmadığı yıllarda 0 değerini alan bir kukla değişkeni tanımlayıp regresyonumuzda açıklayıcı değişken olarak kullanabiliriz. Savaş yılları, krizler, depremler vb. bazı özel dönemleri kukla değişken kullanarak izole edebiliriz. Örneğin, II.Dünya Savaşı yıllarında 1, diğer yıllarda 0 değerini alan bir kukla değişkeni yaratarak savaş yıllarının bağımlı değişken (y) üzerindeki özel etkisini ölçebiliriz. Belli olayların kukla değişken kullanarak etkilerini ölçmeye event study denir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 49
200 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) gf r: Doğurganlık dönemindeki 1000 kadın başına düşen doğum sayısı pe: Kişisel vergi muafiyeti (çocuk sahibi olunduğunda) ww2: ABD nin II. Dünya Savaşına olduğu yıllar için 1 değeri alan kukla değişken pill: Doğum kontrol hapının kullanılmaya başlandığı 1963 den sonra 1 değeri alan kukla değişken Vergi Muafiyeti ve Doğurganlık (FERTIL3.RAW) ĝfr t = (3.21) (0.030) pe t (7.46) ww2 t (4.08) pill t n = 72 R 2 = R 2 = Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 50
201 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) gf r: Doğurganlık dönemindeki 1000 kadın başına düşen doğum sayısı pe: Kişisel vergi muafiyeti (çocuk sahibi olunduğunda) ww2: ABD nin II. Dünya Savaşına olduğu yıllar için 1 değeri alan kukla değişken pill: Doğum kontrol hapının kullanılmaya başlandığı 1963 den sonra 1 değeri alan kukla değişken Vergi Muafiyeti ve Doğurganlık (FERTIL3.RAW) ĝfr t = (3.21) (0.030) pe t (7.46) ww2 t (4.08) pill t n = 72 R 2 = R 2 = Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 50
202 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) gf r: Doğurganlık dönemindeki 1000 kadın başına düşen doğum sayısı pe: Kişisel vergi muafiyeti (çocuk sahibi olunduğunda) ww2: ABD nin II. Dünya Savaşına olduğu yıllar için 1 değeri alan kukla değişken pill: Doğum kontrol hapının kullanılmaya başlandığı 1963 den sonra 1 değeri alan kukla değişken Vergi Muafiyeti ve Doğurganlık (FERTIL3.RAW) ĝfr t = (3.21) (0.030) pe t (7.46) ww2 t (4.08) pill t n = 72 R 2 = R 2 = Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 50
203 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) gf r: Doğurganlık dönemindeki 1000 kadın başına düşen doğum sayısı pe: Kişisel vergi muafiyeti (çocuk sahibi olunduğunda) ww2: ABD nin II. Dünya Savaşına olduğu yıllar için 1 değeri alan kukla değişken pill: Doğum kontrol hapının kullanılmaya başlandığı 1963 den sonra 1 değeri alan kukla değişken Vergi Muafiyeti ve Doğurganlık (FERTIL3.RAW) ĝfr t = (3.21) (0.030) pe t (7.46) ww2 t (4.08) pill t n = 72 R 2 = R 2 = Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 50
204 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) gf r: Doğurganlık dönemindeki 1000 kadın başına düşen doğum sayısı pe: Kişisel vergi muafiyeti (çocuk sahibi olunduğunda) ww2: ABD nin II. Dünya Savaşına olduğu yıllar için 1 değeri alan kukla değişken pill: Doğum kontrol hapının kullanılmaya başlandığı 1963 den sonra 1 değeri alan kukla değişken Vergi Muafiyeti ve Doğurganlık (FERTIL3.RAW) ĝfr t = (3.21) (0.030) pe t (7.46) ww2 t (4.08) pill t n = 72 R 2 = R 2 = Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 50
205 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) Tüm katsayılar çift taraflı bir alternatif hipoteze karşı yüzde 1 düzeyinde anlamlıdırlar. II. Dünya savaşı yıllarında, ceteris paribus, doğurganlık çağındaki 1000 kadın başına düşen doğum sayısı 24 azalmıştır. gf r değişkeninin arasında değiştiğini düşünürsek bu sayı oldukça önemlidir. Yine her şey aynı iken, doğum kontrol haplarının piyasaya çıktığı yıldan sonraki doğum sayılarında ciddi azalma olmuştur. Doğumları teşvik için getirilen vergi muafiyeti değişkeni pe nin örnek ortalaması dolar olup, minimum ve maksimum değeri sırasıyla 0 ve dir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 51
206 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) Tüm katsayılar çift taraflı bir alternatif hipoteze karşı yüzde 1 düzeyinde anlamlıdırlar. II. Dünya savaşı yıllarında, ceteris paribus, doğurganlık çağındaki 1000 kadın başına düşen doğum sayısı 24 azalmıştır. gf r değişkeninin arasında değiştiğini düşünürsek bu sayı oldukça önemlidir. Yine her şey aynı iken, doğum kontrol haplarının piyasaya çıktığı yıldan sonraki doğum sayılarında ciddi azalma olmuştur. Doğumları teşvik için getirilen vergi muafiyeti değişkeni pe nin örnek ortalaması dolar olup, minimum ve maksimum değeri sırasıyla 0 ve dir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 51
207 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) Tüm katsayılar çift taraflı bir alternatif hipoteze karşı yüzde 1 düzeyinde anlamlıdırlar. II. Dünya savaşı yıllarında, ceteris paribus, doğurganlık çağındaki 1000 kadın başına düşen doğum sayısı 24 azalmıştır. gf r değişkeninin arasında değiştiğini düşünürsek bu sayı oldukça önemlidir. Yine her şey aynı iken, doğum kontrol haplarının piyasaya çıktığı yıldan sonraki doğum sayılarında ciddi azalma olmuştur. Doğumları teşvik için getirilen vergi muafiyeti değişkeni pe nin örnek ortalaması dolar olup, minimum ve maksimum değeri sırasıyla 0 ve dir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 51
208 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) Tüm katsayılar çift taraflı bir alternatif hipoteze karşı yüzde 1 düzeyinde anlamlıdırlar. II. Dünya savaşı yıllarında, ceteris paribus, doğurganlık çağındaki 1000 kadın başına düşen doğum sayısı 24 azalmıştır. gf r değişkeninin arasında değiştiğini düşünürsek bu sayı oldukça önemlidir. Yine her şey aynı iken, doğum kontrol haplarının piyasaya çıktığı yıldan sonraki doğum sayılarında ciddi azalma olmuştur. Doğumları teşvik için getirilen vergi muafiyeti değişkeni pe nin örnek ortalaması dolar olup, minimum ve maksimum değeri sırasıyla 0 ve dir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 51
209 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) Tüm katsayılar çift taraflı bir alternatif hipoteze karşı yüzde 1 düzeyinde anlamlıdırlar. II. Dünya savaşı yıllarında, ceteris paribus, doğurganlık çağındaki 1000 kadın başına düşen doğum sayısı 24 azalmıştır. gf r değişkeninin arasında değiştiğini düşünürsek bu sayı oldukça önemlidir. Yine her şey aynı iken, doğum kontrol haplarının piyasaya çıktığı yıldan sonraki doğum sayılarında ciddi azalma olmuştur. Doğumları teşvik için getirilen vergi muafiyeti değişkeni pe nin örnek ortalaması dolar olup, minimum ve maksimum değeri sırasıyla 0 ve dir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 51
210 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) Bu muafiyette yapılan 12 dolarlık bir artış 1000 kadın başına düşen doğum sayısını 1 adet artıracaktır ( 12 x = 1 ). Doğurganlık, pe deki değişmelere belli bir gecikme ile tepki (response) verebilir. Dolayısıyla, 2 yıl gecikmenin (lag) kullanıldığı bir DLM tahmin edelim: Vergi Muafiyeti ve Doğurganlık: FDL(2) ĝfr t = (3.28) (0.126) pe t (0.1557) pe t (0.126) pe t (10.73) ww2 t (3.98) pill t n = 70 R 2 = R 2 = Örneklem hacmi gecikme sayısı (2) kadar azaldı. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 52
211 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) Bu muafiyette yapılan 12 dolarlık bir artış 1000 kadın başına düşen doğum sayısını 1 adet artıracaktır ( 12 x = 1 ). Doğurganlık, pe deki değişmelere belli bir gecikme ile tepki (response) verebilir. Dolayısıyla, 2 yıl gecikmenin (lag) kullanıldığı bir DLM tahmin edelim: Vergi Muafiyeti ve Doğurganlık: FDL(2) ĝfr t = (3.28) (0.126) pe t (0.1557) pe t (0.126) pe t (10.73) ww2 t (3.98) pill t n = 70 R 2 = R 2 = Örneklem hacmi gecikme sayısı (2) kadar azaldı. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 52
212 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) Bu muafiyette yapılan 12 dolarlık bir artış 1000 kadın başına düşen doğum sayısını 1 adet artıracaktır ( 12 x = 1 ). Doğurganlık, pe deki değişmelere belli bir gecikme ile tepki (response) verebilir. Dolayısıyla, 2 yıl gecikmenin (lag) kullanıldığı bir DLM tahmin edelim: Vergi Muafiyeti ve Doğurganlık: FDL(2) ĝfr t = (3.28) (0.126) pe t (0.1557) pe t (0.126) pe t (10.73) ww2 t (3.98) pill t n = 70 R 2 = R 2 = Örneklem hacmi gecikme sayısı (2) kadar azaldı. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 52
213 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) Bu muafiyette yapılan 12 dolarlık bir artış 1000 kadın başına düşen doğum sayısını 1 adet artıracaktır ( 12 x = 1 ). Doğurganlık, pe deki değişmelere belli bir gecikme ile tepki (response) verebilir. Dolayısıyla, 2 yıl gecikmenin (lag) kullanıldığı bir DLM tahmin edelim: Vergi Muafiyeti ve Doğurganlık: FDL(2) ĝfr t = (3.28) (0.126) pe t (0.1557) pe t (0.126) pe t (10.73) ww2 t (3.98) pill t n = 70 R 2 = R 2 = Örneklem hacmi gecikme sayısı (2) kadar azaldı. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 52
214 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) pe t, pe t 1 ve pe t 2 arasında çok yüksek çoklu-bağıntı olduğu için katsayılarının standart hataları çok yüksek çıktı. Ayrı ayrı hiçbiri anlamlı değildir. Ancak, üçü birden (jointly) anlamlıdır (F istatiğinin p-değeri: 0.012). pe katsayılarının üçü de anlamsız çıktığı için pe nin gf r üzerindeki etkisinin cari dönem itibariyle mi (contemporaneous effect) yoksa gecikmeli mi olduğunu bilemiyoruz. Bunun için pe t 1 ve pe t 2 nin katsayılarının birlikte anlamlı olup olmadığını yine F testi ile test ediyoruz. Testin p-değeri 0.95 çıktığı için gecikmeli değişkenlerin etkisi yoktur diyoruz ve statik modeli tercih ediyoruz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 53
215 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) pe t, pe t 1 ve pe t 2 arasında çok yüksek çoklu-bağıntı olduğu için katsayılarının standart hataları çok yüksek çıktı. Ayrı ayrı hiçbiri anlamlı değildir. Ancak, üçü birden (jointly) anlamlıdır (F istatiğinin p-değeri: 0.012). pe katsayılarının üçü de anlamsız çıktığı için pe nin gf r üzerindeki etkisinin cari dönem itibariyle mi (contemporaneous effect) yoksa gecikmeli mi olduğunu bilemiyoruz. Bunun için pe t 1 ve pe t 2 nin katsayılarının birlikte anlamlı olup olmadığını yine F testi ile test ediyoruz. Testin p-değeri 0.95 çıktığı için gecikmeli değişkenlerin etkisi yoktur diyoruz ve statik modeli tercih ediyoruz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 53
216 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) pe t, pe t 1 ve pe t 2 arasında çok yüksek çoklu-bağıntı olduğu için katsayılarının standart hataları çok yüksek çıktı. Ayrı ayrı hiçbiri anlamlı değildir. Ancak, üçü birden (jointly) anlamlıdır (F istatiğinin p-değeri: 0.012). pe katsayılarının üçü de anlamsız çıktığı için pe nin gf r üzerindeki etkisinin cari dönem itibariyle mi (contemporaneous effect) yoksa gecikmeli mi olduğunu bilemiyoruz. Bunun için pe t 1 ve pe t 2 nin katsayılarının birlikte anlamlı olup olmadığını yine F testi ile test ediyoruz. Testin p-değeri 0.95 çıktığı için gecikmeli değişkenlerin etkisi yoktur diyoruz ve statik modeli tercih ediyoruz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 53
217 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) pe t, pe t 1 ve pe t 2 arasında çok yüksek çoklu-bağıntı olduğu için katsayılarının standart hataları çok yüksek çıktı. Ayrı ayrı hiçbiri anlamlı değildir. Ancak, üçü birden (jointly) anlamlıdır (F istatiğinin p-değeri: 0.012). pe katsayılarının üçü de anlamsız çıktığı için pe nin gf r üzerindeki etkisinin cari dönem itibariyle mi (contemporaneous effect) yoksa gecikmeli mi olduğunu bilemiyoruz. Bunun için pe t 1 ve pe t 2 nin katsayılarının birlikte anlamlı olup olmadığını yine F testi ile test ediyoruz. Testin p-değeri 0.95 çıktığı için gecikmeli değişkenlerin etkisi yoktur diyoruz ve statik modeli tercih ediyoruz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 53
218 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) pe t, pe t 1 ve pe t 2 arasında çok yüksek çoklu-bağıntı olduğu için katsayılarının standart hataları çok yüksek çıktı. Ayrı ayrı hiçbiri anlamlı değildir. Ancak, üçü birden (jointly) anlamlıdır (F istatiğinin p-değeri: 0.012). pe katsayılarının üçü de anlamsız çıktığı için pe nin gf r üzerindeki etkisinin cari dönem itibariyle mi (contemporaneous effect) yoksa gecikmeli mi olduğunu bilemiyoruz. Bunun için pe t 1 ve pe t 2 nin katsayılarının birlikte anlamlı olup olmadığını yine F testi ile test ediyoruz. Testin p-değeri 0.95 çıktığı için gecikmeli değişkenlerin etkisi yoktur diyoruz ve statik modeli tercih ediyoruz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 53
219 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) Bu FDL(2) modelinde uzun-dönem çoğaltanı (long-run propensity): = olarak buluyoruz. Bu tahminin anlamlılığını sınamak için standart hatasını bilmemiz gerek. Bunun için Bölüm 4.4 deki yola başvuruyoruz: θ 0 = δ 0 + δ 1 + δ 2 uzun-dönem çoğaltanı δ 0 = θ 0 δ 1 δ 2 ı modelde yerine koyarsak: gfr t = α 0 + δ 0 pe t + δ 1 pe t 1 + δ 2 pe t = α 0 + (θ 0 δ 1 δ 2 )pe t + δ 1 pe t 1 + δ 2 pe t = α 0 + θ 0 pe t + δ 1 (pe t 1 pe t ) + δ 2 (pe t 2 pe t ) +... Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 54
220 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) Bu FDL(2) modelinde uzun-dönem çoğaltanı (long-run propensity): = olarak buluyoruz. Bu tahminin anlamlılığını sınamak için standart hatasını bilmemiz gerek. Bunun için Bölüm 4.4 deki yola başvuruyoruz: θ 0 = δ 0 + δ 1 + δ 2 uzun-dönem çoğaltanı δ 0 = θ 0 δ 1 δ 2 ı modelde yerine koyarsak: gfr t = α 0 + δ 0 pe t + δ 1 pe t 1 + δ 2 pe t = α 0 + (θ 0 δ 1 δ 2 )pe t + δ 1 pe t 1 + δ 2 pe t = α 0 + θ 0 pe t + δ 1 (pe t 1 pe t ) + δ 2 (pe t 2 pe t ) +... Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 54
221 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) Bu FDL(2) modelinde uzun-dönem çoğaltanı (long-run propensity): = olarak buluyoruz. Bu tahminin anlamlılığını sınamak için standart hatasını bilmemiz gerek. Bunun için Bölüm 4.4 deki yola başvuruyoruz: θ 0 = δ 0 + δ 1 + δ 2 uzun-dönem çoğaltanı δ 0 = θ 0 δ 1 δ 2 ı modelde yerine koyarsak: gfr t = α 0 + δ 0 pe t + δ 1 pe t 1 + δ 2 pe t = α 0 + (θ 0 δ 1 δ 2 )pe t + δ 1 pe t 1 + δ 2 pe t = α 0 + θ 0 pe t + δ 1 (pe t 1 pe t ) + δ 2 (pe t 2 pe t ) +... Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 54
222 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) Bu FDL(2) modelinde uzun-dönem çoğaltanı (long-run propensity): = olarak buluyoruz. Bu tahminin anlamlılığını sınamak için standart hatasını bilmemiz gerek. Bunun için Bölüm 4.4 deki yola başvuruyoruz: θ 0 = δ 0 + δ 1 + δ 2 uzun-dönem çoğaltanı δ 0 = θ 0 δ 1 δ 2 ı modelde yerine koyarsak: gfr t = α 0 + δ 0 pe t + δ 1 pe t 1 + δ 2 pe t = α 0 + (θ 0 δ 1 δ 2 )pe t + δ 1 pe t 1 + δ 2 pe t = α 0 + θ 0 pe t + δ 1 (pe t 1 pe t ) + δ 2 (pe t 2 pe t ) +... Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 54
223 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) Bu FDL(2) modelinde uzun-dönem çoğaltanı (long-run propensity): = olarak buluyoruz. Bu tahminin anlamlılığını sınamak için standart hatasını bilmemiz gerek. Bunun için Bölüm 4.4 deki yola başvuruyoruz: θ 0 = δ 0 + δ 1 + δ 2 uzun-dönem çoğaltanı δ 0 = θ 0 δ 1 δ 2 ı modelde yerine koyarsak: gfr t = α 0 + δ 0 pe t + δ 1 pe t 1 + δ 2 pe t = α 0 + (θ 0 δ 1 δ 2 )pe t + δ 1 pe t 1 + δ 2 pe t = α 0 + θ 0 pe t + δ 1 (pe t 1 pe t ) + δ 2 (pe t 2 pe t ) +... Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 54
224 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) Son modeli tahmin ettiğimizde stderror(ˆθ 0 ) = ve böylece t istatistiğini 3.37 buluruz ve anlamlıdır. Her üç δ da tek tek anlamsız çıktığı halde onların toplamı olan uzun-dönem çoğaltanı kuvvetli bir şekilde sıfıra karşı testi geçmektedir. θ 0 için % 95 lik bir güven aralığı oluşturursak, bu aralığın olduğunu görürüz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 55
225 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) Son modeli tahmin ettiğimizde stderror(ˆθ 0 ) = ve böylece t istatistiğini 3.37 buluruz ve anlamlıdır. Her üç δ da tek tek anlamsız çıktığı halde onların toplamı olan uzun-dönem çoğaltanı kuvvetli bir şekilde sıfıra karşı testi geçmektedir. θ 0 için % 95 lik bir güven aralığı oluşturursak, bu aralığın olduğunu görürüz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 55
226 Örnek 10.4: Vergi Muafiyetinin Doğurganlık Üzerindeki Etkisi (ABD, ) Son modeli tahmin ettiğimizde stderror(ˆθ 0 ) = ve böylece t istatistiğini 3.37 buluruz ve anlamlıdır. Her üç δ da tek tek anlamsız çıktığı halde onların toplamı olan uzun-dönem çoğaltanı kuvvetli bir şekilde sıfıra karşı testi geçmektedir. θ 0 için % 95 lik bir güven aralığı oluşturursak, bu aralığın olduğunu görürüz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 55
227 Zaman Serisi Analizinde Trent Kullanılması Pek çok ekonomik değişken zaman içinde artma eğilimi gösterir. Yani zaman içinde trent gösterir. İki değişkenin aynı ya da zıt yönde trent göstermesi onların mutlaka birbirleri üzerinde etkiye sahip oldukları anlamına gelmez. Herhangi iki seri çoğu kez diğer başka gözlenemeyen faktörlerin etkisiyle zaman içinde trent gösterdikleri için ilişkili çıkmaktadır. Değişkenlerdeki trendi hangi istatistiksel modellerle ifade edebiliriz? Doğrusal Zaman Trendi Modeli y t = α 0 + α 1 t + e t, t = 1, 2,... En yaygın model doğrusal zaman trendi (linear time trend) modelidir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 56
228 Zaman Serisi Analizinde Trent Kullanılması Pek çok ekonomik değişken zaman içinde artma eğilimi gösterir. Yani zaman içinde trent gösterir. İki değişkenin aynı ya da zıt yönde trent göstermesi onların mutlaka birbirleri üzerinde etkiye sahip oldukları anlamına gelmez. Herhangi iki seri çoğu kez diğer başka gözlenemeyen faktörlerin etkisiyle zaman içinde trent gösterdikleri için ilişkili çıkmaktadır. Değişkenlerdeki trendi hangi istatistiksel modellerle ifade edebiliriz? Doğrusal Zaman Trendi Modeli y t = α 0 + α 1 t + e t, t = 1, 2,... En yaygın model doğrusal zaman trendi (linear time trend) modelidir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 56
229 Zaman Serisi Analizinde Trent Kullanılması Pek çok ekonomik değişken zaman içinde artma eğilimi gösterir. Yani zaman içinde trent gösterir. İki değişkenin aynı ya da zıt yönde trent göstermesi onların mutlaka birbirleri üzerinde etkiye sahip oldukları anlamına gelmez. Herhangi iki seri çoğu kez diğer başka gözlenemeyen faktörlerin etkisiyle zaman içinde trent gösterdikleri için ilişkili çıkmaktadır. Değişkenlerdeki trendi hangi istatistiksel modellerle ifade edebiliriz? Doğrusal Zaman Trendi Modeli y t = α 0 + α 1 t + e t, t = 1, 2,... En yaygın model doğrusal zaman trendi (linear time trend) modelidir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 56
230 Zaman Serisi Analizinde Trent Kullanılması Pek çok ekonomik değişken zaman içinde artma eğilimi gösterir. Yani zaman içinde trent gösterir. İki değişkenin aynı ya da zıt yönde trent göstermesi onların mutlaka birbirleri üzerinde etkiye sahip oldukları anlamına gelmez. Herhangi iki seri çoğu kez diğer başka gözlenemeyen faktörlerin etkisiyle zaman içinde trent gösterdikleri için ilişkili çıkmaktadır. Değişkenlerdeki trendi hangi istatistiksel modellerle ifade edebiliriz? Doğrusal Zaman Trendi Modeli y t = α 0 + α 1 t + e t, t = 1, 2,... En yaygın model doğrusal zaman trendi (linear time trend) modelidir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 56
231 Zaman Serisi Analizinde Trent Kullanılması Pek çok ekonomik değişken zaman içinde artma eğilimi gösterir. Yani zaman içinde trent gösterir. İki değişkenin aynı ya da zıt yönde trent göstermesi onların mutlaka birbirleri üzerinde etkiye sahip oldukları anlamına gelmez. Herhangi iki seri çoğu kez diğer başka gözlenemeyen faktörlerin etkisiyle zaman içinde trent gösterdikleri için ilişkili çıkmaktadır. Değişkenlerdeki trendi hangi istatistiksel modellerle ifade edebiliriz? Doğrusal Zaman Trendi Modeli y t = α 0 + α 1 t + e t, t = 1, 2,... En yaygın model doğrusal zaman trendi (linear time trend) modelidir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 56
232 Zaman Serisi Analizinde Trent Kullanılması Pek çok ekonomik değişken zaman içinde artma eğilimi gösterir. Yani zaman içinde trent gösterir. İki değişkenin aynı ya da zıt yönde trent göstermesi onların mutlaka birbirleri üzerinde etkiye sahip oldukları anlamına gelmez. Herhangi iki seri çoğu kez diğer başka gözlenemeyen faktörlerin etkisiyle zaman içinde trent gösterdikleri için ilişkili çıkmaktadır. Değişkenlerdeki trendi hangi istatistiksel modellerle ifade edebiliriz? Doğrusal Zaman Trendi Modeli y t = α 0 + α 1 t + e t, t = 1, 2,... En yaygın model doğrusal zaman trendi (linear time trend) modelidir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 56
233 ABD Saat Başına Çıktı: 1977=100
234 Zaman Serisi Analizinde Trent Kullanılması Burada, (e t ), bağımsız, özdeş dağılmış (independent, identically distributed, iid) bir silsiledir (sequence). E(e t ) = 0 V ar(e t ) = σ 2 e α 1, diğer faktörler (e t de içerilen) sabit iken, zaman endeksinde 1 dönemlik (period) bir değişme olduğunda y de meydana gelecek değişmedir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 58
235 Zaman Serisi Analizinde Trent Kullanılması Burada, (e t ), bağımsız, özdeş dağılmış (independent, identically distributed, iid) bir silsiledir (sequence). E(e t ) = 0 V ar(e t ) = σ 2 e α 1, diğer faktörler (e t de içerilen) sabit iken, zaman endeksinde 1 dönemlik (period) bir değişme olduğunda y de meydana gelecek değişmedir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 58
236 Zaman Serisi Analizinde Trent Kullanılması Burada, e t = 0 iken, y t = y t y t 1 Diğer bir zaman trendi gösteren silsile, ortalaması zamanın bir fonksiyonu olan süreçlerdir: E(y t ) = α 0 + α 1 t. α 1 > 0 iken y t zamanla artacak, α 1 < 0 ise azalacaktır. Ancak burada doğrusal bir şekilde (bir çizgi üzerinde) artan ya da azalan y t değil onun ortalamasıdır. Rassal değerler alan e t, dolayısıyla y t zig zaglar izleyecektir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 59
237 Zaman Serisi Analizinde Trent Kullanılması Burada, e t = 0 iken, y t = y t y t 1 Diğer bir zaman trendi gösteren silsile, ortalaması zamanın bir fonksiyonu olan süreçlerdir: E(y t ) = α 0 + α 1 t. α 1 > 0 iken y t zamanla artacak, α 1 < 0 ise azalacaktır. Ancak burada doğrusal bir şekilde (bir çizgi üzerinde) artan ya da azalan y t değil onun ortalamasıdır. Rassal değerler alan e t, dolayısıyla y t zig zaglar izleyecektir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 59
238 Zaman Serisi Analizinde Trent Kullanılması Burada, e t = 0 iken, y t = y t y t 1 Diğer bir zaman trendi gösteren silsile, ortalaması zamanın bir fonksiyonu olan süreçlerdir: E(y t ) = α 0 + α 1 t. α 1 > 0 iken y t zamanla artacak, α 1 < 0 ise azalacaktır. Ancak burada doğrusal bir şekilde (bir çizgi üzerinde) artan ya da azalan y t değil onun ortalamasıdır. Rassal değerler alan e t, dolayısıyla y t zig zaglar izleyecektir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 59
239 Zaman Serisi Analizinde Trent Kullanılması Burada, e t = 0 iken, y t = y t y t 1 Diğer bir zaman trendi gösteren silsile, ortalaması zamanın bir fonksiyonu olan süreçlerdir: E(y t ) = α 0 + α 1 t. α 1 > 0 iken y t zamanla artacak, α 1 < 0 ise azalacaktır. Ancak burada doğrusal bir şekilde (bir çizgi üzerinde) artan ya da azalan y t değil onun ortalamasıdır. Rassal değerler alan e t, dolayısıyla y t zig zaglar izleyecektir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 59
240 Zaman Serisi Analizinde Trent Kullanılması Burada, e t = 0 iken, y t = y t y t 1 Diğer bir zaman trendi gösteren silsile, ortalaması zamanın bir fonksiyonu olan süreçlerdir: E(y t ) = α 0 + α 1 t. α 1 > 0 iken y t zamanla artacak, α 1 < 0 ise azalacaktır. Ancak burada doğrusal bir şekilde (bir çizgi üzerinde) artan ya da azalan y t değil onun ortalamasıdır. Rassal değerler alan e t, dolayısıyla y t zig zaglar izleyecektir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 59
241 Zaman Serisi Analizinde Trent Kullanılması Bu durumda ortalamanın aksine varyans zaman içinde sabittir : V ar(y t ) = V ar(y t 1 ) = σ 2 e Eğer {e t } iid silsilesi ise {y t } bağımsız bir silsile olacak, ancak özdeş olmayacaktır. e t de zaman içinde kendi geçmişi ile ilişkili olabilir. Bu durum daha gerçekçidir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 60
242 Zaman Serisi Analizinde Trent Kullanılması Bu durumda ortalamanın aksine varyans zaman içinde sabittir : V ar(y t ) = V ar(y t 1 ) = σ 2 e Eğer {e t } iid silsilesi ise {y t } bağımsız bir silsile olacak, ancak özdeş olmayacaktır. e t de zaman içinde kendi geçmişi ile ilişkili olabilir. Bu durum daha gerçekçidir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 60
243 Zaman Serisi Analizinde Trent Kullanılması Bu durumda ortalamanın aksine varyans zaman içinde sabittir : V ar(y t ) = V ar(y t 1 ) = σ 2 e Eğer {e t } iid silsilesi ise {y t } bağımsız bir silsile olacak, ancak özdeş olmayacaktır. e t de zaman içinde kendi geçmişi ile ilişkili olabilir. Bu durum daha gerçekçidir. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 60
244 Zaman Serisi Analizinde Trent Kullanılması Çoğu iktisadi seri zaman içinde sabit bir ortalama hızla artar. Bu durumda trendi üstel olarak modellemek uygun olur. Eğer seri hep pozitif değerler alıyorsa, üstel trendi doğal logaritma kullanarak ifade edebiliriz: Üstel Trent Modeli y t = exp(β 0 + β 1 t + e t ) β 1 büyüme oranıdır. İki tarafın logaritmasını alırsak: log(y t ) = β 0 + β 1 t + e t log(y t ) y t y t 1 y t 1 e t = 0 kabul edildiğinde log(y t ) = β 1 Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 61
245 Zaman Serisi Analizinde Trent Kullanılması Çoğu iktisadi seri zaman içinde sabit bir ortalama hızla artar. Bu durumda trendi üstel olarak modellemek uygun olur. Eğer seri hep pozitif değerler alıyorsa, üstel trendi doğal logaritma kullanarak ifade edebiliriz: Üstel Trent Modeli y t = exp(β 0 + β 1 t + e t ) β 1 büyüme oranıdır. İki tarafın logaritmasını alırsak: log(y t ) = β 0 + β 1 t + e t log(y t ) y t y t 1 y t 1 e t = 0 kabul edildiğinde log(y t ) = β 1 Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 61
246 Zaman Serisi Analizinde Trent Kullanılması Çoğu iktisadi seri zaman içinde sabit bir ortalama hızla artar. Bu durumda trendi üstel olarak modellemek uygun olur. Eğer seri hep pozitif değerler alıyorsa, üstel trendi doğal logaritma kullanarak ifade edebiliriz: Üstel Trent Modeli y t = exp(β 0 + β 1 t + e t ) β 1 büyüme oranıdır. İki tarafın logaritmasını alırsak: log(y t ) = β 0 + β 1 t + e t log(y t ) y t y t 1 y t 1 e t = 0 kabul edildiğinde log(y t ) = β 1 Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 61
247 Zaman Serisi Analizinde Trent Kullanılması Çoğu iktisadi seri zaman içinde sabit bir ortalama hızla artar. Bu durumda trendi üstel olarak modellemek uygun olur. Eğer seri hep pozitif değerler alıyorsa, üstel trendi doğal logaritma kullanarak ifade edebiliriz: Üstel Trent Modeli y t = exp(β 0 + β 1 t + e t ) β 1 büyüme oranıdır. İki tarafın logaritmasını alırsak: log(y t ) = β 0 + β 1 t + e t log(y t ) y t y t 1 y t 1 e t = 0 kabul edildiğinde log(y t ) = β 1 Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 61
248 Zaman Serisi Analizinde Trent Kullanılması Çoğu iktisadi seri zaman içinde sabit bir ortalama hızla artar. Bu durumda trendi üstel olarak modellemek uygun olur. Eğer seri hep pozitif değerler alıyorsa, üstel trendi doğal logaritma kullanarak ifade edebiliriz: Üstel Trent Modeli y t = exp(β 0 + β 1 t + e t ) β 1 büyüme oranıdır. İki tarafın logaritmasını alırsak: log(y t ) = β 0 + β 1 t + e t log(y t ) y t y t 1 y t 1 e t = 0 kabul edildiğinde log(y t ) = β 1 Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 61
249 Zaman Serisi Analizinde Trent Kullanılması Karesel trent (quadratic trend): Bir zaman serinin eğimi zaman içinde artıyorsa, yani büyüme giderek hızlanıyorsa (hiper enflasyonda olduğu gibi), kareli t terimi de regresyona eklenir: Karesel Trent Modeli y t = α 0 + α 1 t + α 2 t 2 + e t Eğer α 1 ve α 2 pozitifse, eğim t ile birlikte artacaktır. Eğer α 1 > 0 ve α 2 < 0 ise trent kambur şeklinde olacaktır ve eğim t ile birlikte azalacaktır. y t t α 1 + 2α 2 t Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 62
250 Zaman Serisi Analizinde Trent Kullanılması Karesel trent (quadratic trend): Bir zaman serinin eğimi zaman içinde artıyorsa, yani büyüme giderek hızlanıyorsa (hiper enflasyonda olduğu gibi), kareli t terimi de regresyona eklenir: Karesel Trent Modeli y t = α 0 + α 1 t + α 2 t 2 + e t Eğer α 1 ve α 2 pozitifse, eğim t ile birlikte artacaktır. Eğer α 1 > 0 ve α 2 < 0 ise trent kambur şeklinde olacaktır ve eğim t ile birlikte azalacaktır. y t t α 1 + 2α 2 t Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 62
251 Zaman Serisi Analizinde Trent Kullanılması Karesel trent (quadratic trend): Bir zaman serinin eğimi zaman içinde artıyorsa, yani büyüme giderek hızlanıyorsa (hiper enflasyonda olduğu gibi), kareli t terimi de regresyona eklenir: Karesel Trent Modeli y t = α 0 + α 1 t + α 2 t 2 + e t Eğer α 1 ve α 2 pozitifse, eğim t ile birlikte artacaktır. Eğer α 1 > 0 ve α 2 < 0 ise trent kambur şeklinde olacaktır ve eğim t ile birlikte azalacaktır. y t t α 1 + 2α 2 t Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 62
252 Zaman Serisi Analizinde Trent Kullanılması Karesel trent (quadratic trend): Bir zaman serinin eğimi zaman içinde artıyorsa, yani büyüme giderek hızlanıyorsa (hiper enflasyonda olduğu gibi), kareli t terimi de regresyona eklenir: Karesel Trent Modeli y t = α 0 + α 1 t + α 2 t 2 + e t Eğer α 1 ve α 2 pozitifse, eğim t ile birlikte artacaktır. Eğer α 1 > 0 ve α 2 < 0 ise trent kambur şeklinde olacaktır ve eğim t ile birlikte azalacaktır. y t t α 1 + 2α 2 t Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 62
253 Trende Sahip Değişkenlerin Regresyonda Kullanımı Değişkenlerin trent içermesi T S.1 T S.6 varsayımlarımızı bozmaz. Ancak, eğer y ye trent kazandıran gözlenemeyen faktörler x lerle de ilişkili ise, bu durumda sahte (spurious) bir ilişki bulmuş oluruz. Buna sahte(spurious) regresyon denir. Regresyona bir zaman trendi ekleyerek bu sorunu aşabiliriz. y t = β 0 + β 1 x t1 + β 2 x t2 + β 3 t + u t Eklenen zaman endeksi t nin katsayısı y deki x lerle ilişkili olmayan artışı ya da azalışı verecektir. t nin eklenmemesi ihmal edilmiş değişken sapmasına yol açar. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 63
254 Trende Sahip Değişkenlerin Regresyonda Kullanımı Değişkenlerin trent içermesi T S.1 T S.6 varsayımlarımızı bozmaz. Ancak, eğer y ye trent kazandıran gözlenemeyen faktörler x lerle de ilişkili ise, bu durumda sahte (spurious) bir ilişki bulmuş oluruz. Buna sahte(spurious) regresyon denir. Regresyona bir zaman trendi ekleyerek bu sorunu aşabiliriz. y t = β 0 + β 1 x t1 + β 2 x t2 + β 3 t + u t Eklenen zaman endeksi t nin katsayısı y deki x lerle ilişkili olmayan artışı ya da azalışı verecektir. t nin eklenmemesi ihmal edilmiş değişken sapmasına yol açar. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 63
255 Trende Sahip Değişkenlerin Regresyonda Kullanımı Değişkenlerin trent içermesi T S.1 T S.6 varsayımlarımızı bozmaz. Ancak, eğer y ye trent kazandıran gözlenemeyen faktörler x lerle de ilişkili ise, bu durumda sahte (spurious) bir ilişki bulmuş oluruz. Buna sahte(spurious) regresyon denir. Regresyona bir zaman trendi ekleyerek bu sorunu aşabiliriz. y t = β 0 + β 1 x t1 + β 2 x t2 + β 3 t + u t Eklenen zaman endeksi t nin katsayısı y deki x lerle ilişkili olmayan artışı ya da azalışı verecektir. t nin eklenmemesi ihmal edilmiş değişken sapmasına yol açar. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 63
256 Trende Sahip Değişkenlerin Regresyonda Kullanımı Değişkenlerin trent içermesi T S.1 T S.6 varsayımlarımızı bozmaz. Ancak, eğer y ye trent kazandıran gözlenemeyen faktörler x lerle de ilişkili ise, bu durumda sahte (spurious) bir ilişki bulmuş oluruz. Buna sahte(spurious) regresyon denir. Regresyona bir zaman trendi ekleyerek bu sorunu aşabiliriz. y t = β 0 + β 1 x t1 + β 2 x t2 + β 3 t + u t Eklenen zaman endeksi t nin katsayısı y deki x lerle ilişkili olmayan artışı ya da azalışı verecektir. t nin eklenmemesi ihmal edilmiş değişken sapmasına yol açar. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 63
257 Trende Sahip Değişkenlerin Regresyonda Kullanımı Değişkenlerin trent içermesi T S.1 T S.6 varsayımlarımızı bozmaz. Ancak, eğer y ye trent kazandıran gözlenemeyen faktörler x lerle de ilişkili ise, bu durumda sahte (spurious) bir ilişki bulmuş oluruz. Buna sahte(spurious) regresyon denir. Regresyona bir zaman trendi ekleyerek bu sorunu aşabiliriz. y t = β 0 + β 1 x t1 + β 2 x t2 + β 3 t + u t Eklenen zaman endeksi t nin katsayısı y deki x lerle ilişkili olmayan artışı ya da azalışı verecektir. t nin eklenmemesi ihmal edilmiş değişken sapmasına yol açar. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 63
258 ÖRNEK 1.7: Ev yatırımları ve ev fiyatları ilişkisi, ,abd invpc : adam başına reel ev yatırımları (bin dolar) price : ev fiyatları endeksi (1982=1) Sahte regresyon olabilir. Trent alınca ilişki kayboldu. Regresyona trent dahil edilmediğinde log(invpc) = 5.50 (0.43) (0.382) log(price) Regresyona trent eklendiğinde n = 42 R 2 = R 2 = log(invpc) = (0.136) (0.679) log(price) (0.0035) t n = 42 R 2 = R 2 = Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 64
259 ÖRNEK 1.7: Ev yatırımları ve ev fiyatları ilişkisi, ,abd invpc : adam başına reel ev yatırımları (bin dolar) price : ev fiyatları endeksi (1982=1) Sahte regresyon olabilir. Trent alınca ilişki kayboldu. Regresyona trent dahil edilmediğinde log(invpc) = 5.50 (0.43) (0.382) log(price) Regresyona trent eklendiğinde n = 42 R 2 = R 2 = log(invpc) = (0.136) (0.679) log(price) (0.0035) t n = 42 R 2 = R 2 = Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 64
260 ÖRNEK 1.7: Ev yatırımları ve ev fiyatları ilişkisi, ,abd invpc : adam başına reel ev yatırımları (bin dolar) price : ev fiyatları endeksi (1982=1) Sahte regresyon olabilir. Trent alınca ilişki kayboldu. Regresyona trent dahil edilmediğinde log(invpc) = 5.50 (0.43) (0.382) log(price) Regresyona trent eklendiğinde n = 42 R 2 = R 2 = log(invpc) = (0.136) (0.679) log(price) (0.0035) t n = 42 R 2 = R 2 = Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 64
261 ÖRNEK 1.7: Ev yatırımları ve ev fiyatları ilişkisi, ,abd invpc : adam başına reel ev yatırımları (bin dolar) price : ev fiyatları endeksi (1982=1) Sahte regresyon olabilir. Trent alınca ilişki kayboldu. Regresyona trent dahil edilmediğinde log(invpc) = 5.50 (0.43) (0.382) log(price) Regresyona trent eklendiğinde n = 42 R 2 = R 2 = log(invpc) = (0.136) (0.679) log(price) (0.0035) t n = 42 R 2 = R 2 = Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 64
262 ÖRNEK 1.7: Ev yatırımları ve ev fiyatları ilişkisi, ,abd invpc : adam başına reel ev yatırımları (bin dolar) price : ev fiyatları endeksi (1982=1) Sahte regresyon olabilir. Trent alınca ilişki kayboldu. Regresyona trent dahil edilmediğinde log(invpc) = 5.50 (0.43) (0.382) log(price) Regresyona trent eklendiğinde n = 42 R 2 = R 2 = log(invpc) = (0.136) (0.679) log(price) (0.0035) t n = 42 R 2 = R 2 = Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 64
263 Trende Sahip Değişkenlerin Regresyonda Kullanımı Regresyona trent eklemekle; y ve x değişkenlerinin önce trentlerini bertaraf etmek (detrending), daha sonra bu trendi alınmış değişkenler arasında regresyon tahmin etmek aynı şeydir. Aşağıdaki üç modeli düşünelim: 1 y t = α 0 + α 1 t + u t 2 x t1 = θ 0 + θ 1 t + e t 3 x t2 = γ 0 + γ 1 t + h t Eğer 1. modelin tahmininde elde edilen artıklar, 2. ve 3. modelin artıklarıyla regresyona alınırsa, ulaşılan eğim katsayıları (sabit koymaya gerek yok, ancak koysak bile zaten 0 çıkar), y t = β 0 + β 1 x t1 + β 2 x t2 + β 3 t + hata Yukarıdaki modelin tahmini sonucu elde edilecek ˆβ 1 ve ˆβ 2 ile aynı olacaktır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 65
264 Trende Sahip Değişkenlerin Regresyonda Kullanımı Regresyona trent eklemekle; y ve x değişkenlerinin önce trentlerini bertaraf etmek (detrending), daha sonra bu trendi alınmış değişkenler arasında regresyon tahmin etmek aynı şeydir. Aşağıdaki üç modeli düşünelim: 1 y t = α 0 + α 1 t + u t 2 x t1 = θ 0 + θ 1 t + e t 3 x t2 = γ 0 + γ 1 t + h t Eğer 1. modelin tahmininde elde edilen artıklar, 2. ve 3. modelin artıklarıyla regresyona alınırsa, ulaşılan eğim katsayıları (sabit koymaya gerek yok, ancak koysak bile zaten 0 çıkar), y t = β 0 + β 1 x t1 + β 2 x t2 + β 3 t + hata Yukarıdaki modelin tahmini sonucu elde edilecek ˆβ 1 ve ˆβ 2 ile aynı olacaktır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 65
265 Trende Sahip Değişkenlerin Regresyonda Kullanımı Regresyona trent eklemekle; y ve x değişkenlerinin önce trentlerini bertaraf etmek (detrending), daha sonra bu trendi alınmış değişkenler arasında regresyon tahmin etmek aynı şeydir. Aşağıdaki üç modeli düşünelim: 1 y t = α 0 + α 1 t + u t 2 x t1 = θ 0 + θ 1 t + e t 3 x t2 = γ 0 + γ 1 t + h t Eğer 1. modelin tahmininde elde edilen artıklar, 2. ve 3. modelin artıklarıyla regresyona alınırsa, ulaşılan eğim katsayıları (sabit koymaya gerek yok, ancak koysak bile zaten 0 çıkar), y t = β 0 + β 1 x t1 + β 2 x t2 + β 3 t + hata Yukarıdaki modelin tahmini sonucu elde edilecek ˆβ 1 ve ˆβ 2 ile aynı olacaktır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 65
266 Trende Sahip Değişkenlerin Regresyonda Kullanımı Regresyona trent eklemekle; y ve x değişkenlerinin önce trentlerini bertaraf etmek (detrending), daha sonra bu trendi alınmış değişkenler arasında regresyon tahmin etmek aynı şeydir. Aşağıdaki üç modeli düşünelim: 1 y t = α 0 + α 1 t + u t 2 x t1 = θ 0 + θ 1 t + e t 3 x t2 = γ 0 + γ 1 t + h t Eğer 1. modelin tahmininde elde edilen artıklar, 2. ve 3. modelin artıklarıyla regresyona alınırsa, ulaşılan eğim katsayıları (sabit koymaya gerek yok, ancak koysak bile zaten 0 çıkar), y t = β 0 + β 1 x t1 + β 2 x t2 + β 3 t + hata Yukarıdaki modelin tahmini sonucu elde edilecek ˆβ 1 ve ˆβ 2 ile aynı olacaktır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 65
267 Trende Sahip Değişkenlerin Regresyonda Kullanımı Regresyona trent eklemekle; y ve x değişkenlerinin önce trentlerini bertaraf etmek (detrending), daha sonra bu trendi alınmış değişkenler arasında regresyon tahmin etmek aynı şeydir. Aşağıdaki üç modeli düşünelim: 1 y t = α 0 + α 1 t + u t 2 x t1 = θ 0 + θ 1 t + e t 3 x t2 = γ 0 + γ 1 t + h t Eğer 1. modelin tahmininde elde edilen artıklar, 2. ve 3. modelin artıklarıyla regresyona alınırsa, ulaşılan eğim katsayıları (sabit koymaya gerek yok, ancak koysak bile zaten 0 çıkar), y t = β 0 + β 1 x t1 + β 2 x t2 + β 3 t + hata Yukarıdaki modelin tahmini sonucu elde edilecek ˆβ 1 ve ˆβ 2 ile aynı olacaktır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 65
268 Trende Sahip Değişkenlerin Regresyonda Kullanımı Regresyona trent eklemekle; y ve x değişkenlerinin önce trentlerini bertaraf etmek (detrending), daha sonra bu trendi alınmış değişkenler arasında regresyon tahmin etmek aynı şeydir. Aşağıdaki üç modeli düşünelim: 1 y t = α 0 + α 1 t + u t 2 x t1 = θ 0 + θ 1 t + e t 3 x t2 = γ 0 + γ 1 t + h t Eğer 1. modelin tahmininde elde edilen artıklar, 2. ve 3. modelin artıklarıyla regresyona alınırsa, ulaşılan eğim katsayıları (sabit koymaya gerek yok, ancak koysak bile zaten 0 çıkar), y t = β 0 + β 1 x t1 + β 2 x t2 + β 3 t + hata Yukarıdaki modelin tahmini sonucu elde edilecek ˆβ 1 ve ˆβ 2 ile aynı olacaktır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 65
269 Trende Sahip Değişkenlerin Regresyonda Kullanımı Çoğu kez zaman serisi regresyonlarının R 2 leri kesitler-arası veriye kıyasla çok daha yüksektir. Bunun bir nedeni, zaman serilerinde verilerin genellikle toplulaştırılmış (aggregated) nitelikte olmasıdır. Toplulaştırılmış verileri açıklamak bireysel verilere göre daha kolaydır. Ancak R 2 yi zaman serisi regresyonlarında asıl yükselten faktör y nin (bağımlı değişkenin) trende sahip olmasıdır. R 2, hata terimi varyansının y nin varyansına göre görece büyüklüğünün bir ölçüsü idi. y trende sahipken SST n 1, artık V ar(y t) nin sapmasız ve tutarlı bir tahmin edicisi değildir. y trende sahipken, R 2 nin hesaplanmasının detayları için sf ye bakınız. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 66
270 Trende Sahip Değişkenlerin Regresyonda Kullanımı Çoğu kez zaman serisi regresyonlarının R 2 leri kesitler-arası veriye kıyasla çok daha yüksektir. Bunun bir nedeni, zaman serilerinde verilerin genellikle toplulaştırılmış (aggregated) nitelikte olmasıdır. Toplulaştırılmış verileri açıklamak bireysel verilere göre daha kolaydır. Ancak R 2 yi zaman serisi regresyonlarında asıl yükselten faktör y nin (bağımlı değişkenin) trende sahip olmasıdır. R 2, hata terimi varyansının y nin varyansına göre görece büyüklüğünün bir ölçüsü idi. y trende sahipken SST n 1, artık V ar(y t) nin sapmasız ve tutarlı bir tahmin edicisi değildir. y trende sahipken, R 2 nin hesaplanmasının detayları için sf ye bakınız. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 66
271 Trende Sahip Değişkenlerin Regresyonda Kullanımı Çoğu kez zaman serisi regresyonlarının R 2 leri kesitler-arası veriye kıyasla çok daha yüksektir. Bunun bir nedeni, zaman serilerinde verilerin genellikle toplulaştırılmış (aggregated) nitelikte olmasıdır. Toplulaştırılmış verileri açıklamak bireysel verilere göre daha kolaydır. Ancak R 2 yi zaman serisi regresyonlarında asıl yükselten faktör y nin (bağımlı değişkenin) trende sahip olmasıdır. R 2, hata terimi varyansının y nin varyansına göre görece büyüklüğünün bir ölçüsü idi. y trende sahipken SST n 1, artık V ar(y t) nin sapmasız ve tutarlı bir tahmin edicisi değildir. y trende sahipken, R 2 nin hesaplanmasının detayları için sf ye bakınız. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 66
272 Trende Sahip Değişkenlerin Regresyonda Kullanımı Çoğu kez zaman serisi regresyonlarının R 2 leri kesitler-arası veriye kıyasla çok daha yüksektir. Bunun bir nedeni, zaman serilerinde verilerin genellikle toplulaştırılmış (aggregated) nitelikte olmasıdır. Toplulaştırılmış verileri açıklamak bireysel verilere göre daha kolaydır. Ancak R 2 yi zaman serisi regresyonlarında asıl yükselten faktör y nin (bağımlı değişkenin) trende sahip olmasıdır. R 2, hata terimi varyansının y nin varyansına göre görece büyüklüğünün bir ölçüsü idi. y trende sahipken SST n 1, artık V ar(y t) nin sapmasız ve tutarlı bir tahmin edicisi değildir. y trende sahipken, R 2 nin hesaplanmasının detayları için sf ye bakınız. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 66
273 Trende Sahip Değişkenlerin Regresyonda Kullanımı Çoğu kez zaman serisi regresyonlarının R 2 leri kesitler-arası veriye kıyasla çok daha yüksektir. Bunun bir nedeni, zaman serilerinde verilerin genellikle toplulaştırılmış (aggregated) nitelikte olmasıdır. Toplulaştırılmış verileri açıklamak bireysel verilere göre daha kolaydır. Ancak R 2 yi zaman serisi regresyonlarında asıl yükselten faktör y nin (bağımlı değişkenin) trende sahip olmasıdır. R 2, hata terimi varyansının y nin varyansına göre görece büyüklüğünün bir ölçüsü idi. y trende sahipken SST n 1, artık V ar(y t) nin sapmasız ve tutarlı bir tahmin edicisi değildir. y trende sahipken, R 2 nin hesaplanmasının detayları için sf ye bakınız. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 66
274 Trende Sahip Değişkenlerin Regresyonda Kullanımı Çoğu kez zaman serisi regresyonlarının R 2 leri kesitler-arası veriye kıyasla çok daha yüksektir. Bunun bir nedeni, zaman serilerinde verilerin genellikle toplulaştırılmış (aggregated) nitelikte olmasıdır. Toplulaştırılmış verileri açıklamak bireysel verilere göre daha kolaydır. Ancak R 2 yi zaman serisi regresyonlarında asıl yükselten faktör y nin (bağımlı değişkenin) trende sahip olmasıdır. R 2, hata terimi varyansının y nin varyansına göre görece büyüklüğünün bir ölçüsü idi. y trende sahipken SST n 1, artık V ar(y t) nin sapmasız ve tutarlı bir tahmin edicisi değildir. y trende sahipken, R 2 nin hesaplanmasının detayları için sf ye bakınız. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 66
275 Trende Sahip Değişkenlerin Regresyonda Kullanımı Çoğu kez zaman serisi regresyonlarının R 2 leri kesitler-arası veriye kıyasla çok daha yüksektir. Bunun bir nedeni, zaman serilerinde verilerin genellikle toplulaştırılmış (aggregated) nitelikte olmasıdır. Toplulaştırılmış verileri açıklamak bireysel verilere göre daha kolaydır. Ancak R 2 yi zaman serisi regresyonlarında asıl yükselten faktör y nin (bağımlı değişkenin) trende sahip olmasıdır. R 2, hata terimi varyansının y nin varyansına göre görece büyüklüğünün bir ölçüsü idi. y trende sahipken SST n 1, artık V ar(y t) nin sapmasız ve tutarlı bir tahmin edicisi değildir. y trende sahipken, R 2 nin hesaplanmasının detayları için sf ye bakınız. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 66
276 Mevsimsellik (Seasonality) Belli bir zaman aralığında (çeyrek yıl, aylık, haftalık, günlük vb) gözlenmiş iktisadi veriler genellikle mevsimsellik (seasonality) izler. Örneğin, mevsimlere göre değişen iklim koşulları, tatillerin belli aylara toplanması (örnek, Aralık ayı için Christmas etkisi) vs. değişkenlerde sistematik mevsimsel kalıplar yaratır. Önemli ölçüde mevsimsel örüntü (pattern) sergileyen seriler düzeltmeye (seasonal adjustment) tabi tutulur. Mevsimsel düzeltme yapılmamış ham verilerle çalışılıyorsa, regresyona mevsimsel kukla değişkenler (seasonal dummies) eklemeliyiz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 67
277 Mevsimsellik (Seasonality) Belli bir zaman aralığında (çeyrek yıl, aylık, haftalık, günlük vb) gözlenmiş iktisadi veriler genellikle mevsimsellik (seasonality) izler. Örneğin, mevsimlere göre değişen iklim koşulları, tatillerin belli aylara toplanması (örnek, Aralık ayı için Christmas etkisi) vs. değişkenlerde sistematik mevsimsel kalıplar yaratır. Önemli ölçüde mevsimsel örüntü (pattern) sergileyen seriler düzeltmeye (seasonal adjustment) tabi tutulur. Mevsimsel düzeltme yapılmamış ham verilerle çalışılıyorsa, regresyona mevsimsel kukla değişkenler (seasonal dummies) eklemeliyiz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 67
278 Mevsimsellik (Seasonality) Belli bir zaman aralığında (çeyrek yıl, aylık, haftalık, günlük vb) gözlenmiş iktisadi veriler genellikle mevsimsellik (seasonality) izler. Örneğin, mevsimlere göre değişen iklim koşulları, tatillerin belli aylara toplanması (örnek, Aralık ayı için Christmas etkisi) vs. değişkenlerde sistematik mevsimsel kalıplar yaratır. Önemli ölçüde mevsimsel örüntü (pattern) sergileyen seriler düzeltmeye (seasonal adjustment) tabi tutulur. Mevsimsel düzeltme yapılmamış ham verilerle çalışılıyorsa, regresyona mevsimsel kukla değişkenler (seasonal dummies) eklemeliyiz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 67
279 Mevsimsellik (Seasonality) Belli bir zaman aralığında (çeyrek yıl, aylık, haftalık, günlük vb) gözlenmiş iktisadi veriler genellikle mevsimsellik (seasonality) izler. Örneğin, mevsimlere göre değişen iklim koşulları, tatillerin belli aylara toplanması (örnek, Aralık ayı için Christmas etkisi) vs. değişkenlerde sistematik mevsimsel kalıplar yaratır. Önemli ölçüde mevsimsel örüntü (pattern) sergileyen seriler düzeltmeye (seasonal adjustment) tabi tutulur. Mevsimsel düzeltme yapılmamış ham verilerle çalışılıyorsa, regresyona mevsimsel kukla değişkenler (seasonal dummies) eklemeliyiz. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 67
280 Mevsimsellik (Seasonality) Aylık verilerin kullanıldığı bir regresyonda 11 aya ait aylık kukla değişkenler kullanırız, regresyona dahil etmediğimiz 12.ci ay (genellikle Ocak) baz kategori olur. y t = β 0 + δ 1 feb t + δ 2 mar t δ 11 dec t + β 1 x t β k x tk + u t F testi ile tüm 11 kuklanın katsayılarının aynı anda sıfır olup olmadığını test ederiz. Yeterince büyük bir hesaplanan F istatistiği seride mevsimsellik olduğunu gösterir. Çeyrek yıllık veriler kullanılıyorsa, 3 adet mevsimsel kukla kullanacağız. Nasıl regresyona trent (t) eklemek değişkenlerin trentten arındırılması (detrending) anlamına geliyorsa mevsim kuklalarının eklenmesi de mevsimsellikten arındırma (deseasonalizing) demek olacaktır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 68
281 Mevsimsellik (Seasonality) Aylık verilerin kullanıldığı bir regresyonda 11 aya ait aylık kukla değişkenler kullanırız, regresyona dahil etmediğimiz 12.ci ay (genellikle Ocak) baz kategori olur. y t = β 0 + δ 1 feb t + δ 2 mar t δ 11 dec t + β 1 x t β k x tk + u t F testi ile tüm 11 kuklanın katsayılarının aynı anda sıfır olup olmadığını test ederiz. Yeterince büyük bir hesaplanan F istatistiği seride mevsimsellik olduğunu gösterir. Çeyrek yıllık veriler kullanılıyorsa, 3 adet mevsimsel kukla kullanacağız. Nasıl regresyona trent (t) eklemek değişkenlerin trentten arındırılması (detrending) anlamına geliyorsa mevsim kuklalarının eklenmesi de mevsimsellikten arındırma (deseasonalizing) demek olacaktır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 68
282 Mevsimsellik (Seasonality) Aylık verilerin kullanıldığı bir regresyonda 11 aya ait aylık kukla değişkenler kullanırız, regresyona dahil etmediğimiz 12.ci ay (genellikle Ocak) baz kategori olur. y t = β 0 + δ 1 feb t + δ 2 mar t δ 11 dec t + β 1 x t β k x tk + u t F testi ile tüm 11 kuklanın katsayılarının aynı anda sıfır olup olmadığını test ederiz. Yeterince büyük bir hesaplanan F istatistiği seride mevsimsellik olduğunu gösterir. Çeyrek yıllık veriler kullanılıyorsa, 3 adet mevsimsel kukla kullanacağız. Nasıl regresyona trent (t) eklemek değişkenlerin trentten arındırılması (detrending) anlamına geliyorsa mevsim kuklalarının eklenmesi de mevsimsellikten arındırma (deseasonalizing) demek olacaktır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 68
283 Mevsimsellik (Seasonality) Aylık verilerin kullanıldığı bir regresyonda 11 aya ait aylık kukla değişkenler kullanırız, regresyona dahil etmediğimiz 12.ci ay (genellikle Ocak) baz kategori olur. y t = β 0 + δ 1 feb t + δ 2 mar t δ 11 dec t + β 1 x t β k x tk + u t F testi ile tüm 11 kuklanın katsayılarının aynı anda sıfır olup olmadığını test ederiz. Yeterince büyük bir hesaplanan F istatistiği seride mevsimsellik olduğunu gösterir. Çeyrek yıllık veriler kullanılıyorsa, 3 adet mevsimsel kukla kullanacağız. Nasıl regresyona trent (t) eklemek değişkenlerin trentten arındırılması (detrending) anlamına geliyorsa mevsim kuklalarının eklenmesi de mevsimsellikten arındırma (deseasonalizing) demek olacaktır. Ekonometri II: Zaman Serisi Verileriyle Regresyon - H. Taştan 68
Zaman Serisi Verileriyle Regresyon Analizi. Zaman Serisi Verileriyle Regresyon Analizi. İşsizlik Oranlarına Dair Kısmi Zaman
1 Zaman Serisi Verileriyle Regresyon Analizi Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi Iktisat Bölümü Textbook: Introductory Econometrics (4th ed.) J. Wooldridge 2 Zaman Serisi Verileriyle Regresyon
Ekonometri II
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri II Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 10: Zaman Serileri
27 Mart Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi
ZAMAN SERİLERİ VERİLERİYLE REGRESYON ANALİZİNDE EK KONULAR Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge
Ch. 10: Zaman Serileri Verileriyle Regresyon Analizi
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri II Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 10: Zaman Serileri
Ekonometri I VARSAYIMLARI
Ekonometri I ÇOK DEĞİŞKENLİ REGRESYON MODELİNİN VARSAYIMLARI Hüseyin Taştan Temmuz 23, 2006 İçindekiler 1 Varsayım MLR.1: Parametrelerde Doğrusallık 1 2 Varsayım MLR.2: Rassal Örnekleme 1 3 Varsayım MLR.3:
Matris Cebiriyle Çoklu Regresyon Modeli
Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β
Ch. 12: Zaman Serisi Regresyonlarında Ardışık Bağıntı (Serial Correlation) ve Değişen Varyans
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri II Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 12: Zaman Serisi Regresyonlarında
2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım
2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı
3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1
3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki
17 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi
ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: TAHMİN Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 17 Ekim 2012 Ekonometri
OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler
1 SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge
YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri
YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri
Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 5: SEKK (OLS) nin Asimptotik
SIRADAN EN KÜÇÜK KARELER (OLS)
SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge
14 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi
DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri I: Değişen Varyans
YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi
YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi
14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi
ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: ÇIKARSAMA Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri
BASİT REGRESYON MODELİ
BASİT REGRESYON MODELİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri I: Basit Regresyon
Appendix B: Olasılık ve Dağılım Teorisi
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım
YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama Doç.
Appendix C: İstatistiksel Çıkarsama
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama
Zaman Serileri Verileriyle Regresyon Analizinde Ek Konular. Durağan (Stationary) ve Durağan Olmayan (Nonstationary) Zaman Serileri
1 ZAMAN SERİLERİ VERİLERİYLE REGRESYON ANALİZİNDE EK KONULAR Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge
Ch. 1: Giriş, Temel Tanımlar ve Kavramlar
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Ch. 1: Giriş, Temel Tanımlar
KONULAR. 14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi
ÇOKLU REGRESYON ANALİZİNDE EK KONULAR Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri
YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Ch. 1: Giriş, Temel Tanımlar ve Kavramlar
ZAMAN SERİSİ REGRESYONLARINDA ARDIŞIK
ZAMAN SERİSİ REGRESYONLARINDA ARDIŞIK BAĞINTI ve DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge
A. Regresyon Katsayılarında Yapısal Kırılma Testleri
A. Regresyon Katsayılarında Yapısal Kırılma Testleri Durum I: Kırılma Tarihinin Bilinmesi Durumu Kırılmanın bilinen bir tarihte örneğin tarihinde olduğunu önceden bilinmesi durumunda uygulanır. Örneğin,
Zaman Serileri Verileriyle Regresyon Analizinde Ardışık ZAMAN SERİSİ REGRESYONLARINDA
1 ZAMAN SERİSİ REGRESYONLARINDA ARDIŞIK BAĞINTI ve DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge
14 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi
GİRİŞ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri I: Giriş - H. Taştan 1 Ekonometri
İstatistik ve Olasılık
İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel
Ch. 11: Zaman Serileri Verileriyle Regresyon Analizinde Ek Konular
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri II Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 11: Zaman Serileri
Koşullu Öngörümleme. Bu nedenle koşullu öngörümleme gerçekleştirilmelidir.
Koşullu Öngörümleme Ex - ante (tasarlanan - umulan) öngörümleme söz konusu iken açıklayıcı değişkenlerin hatasız bir şekilde bilindiği varsayımı gerçekçi olmayan bir varsayımdır. Çünkü bazı açıklayıcı
3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI
ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6
Çok Değişkenli Regresyon Analizi (Multiple Regression Analysis) Çoklu Regresyon Modeli Örnekler. Sınav başarı notu ve aile geliri
1 ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: TAHMİN Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 17 Ekim 2012 2
Ekonometri Nedir? Ekonometrinin Uğraşı Alanları. Ekonometrinin Bileşenleri
1 GİRİŞ Hüseyin Taştan 1 2 Ekonometri Nedir? Ekonometri kelime anlamıyla ekonomik ölçme demektir. Ancak, ekonometrinin ugraşı alanı çok daha geniştir. Ekonometri, ekonomik olayların ekonomik teori, matematik
İçindekiler. Ön Söz... xiii
İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1
DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci
DOĞRUSAL ZAMAN SERİSİ MODELLERİ Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci Tek Değişkenli Zaman Serisi Modelleri Ekonomik verilerin analizi ile ekonomik değişkenlerin gelecekte alabilecekleri
ARALIK TAHMİNİ (INTERVAL ESTIMATION):
YTÜ-İktisat İstatistik II Aralık Tahmini I 1 ARALIK TAHMİNİ INTERVAL ESTIMATION): Nokta tahmininde ilgilenilen anakütle parametresine ilişkin örneklem bilgisinden hareketle tek bir sayı üretilir. Bir nokta
İÇİNDEKİLER 1. GİRİŞ...
İÇİNDEKİLER 1. GİRİŞ... 1 1.1. Regresyon Analizi... 1 1.2. Uygulama Alanları ve Veri Setleri... 2 1.3. Regresyon Analizinde Adımlar... 3 1.3.1. Problemin İfadesi... 3 1.3.2. Konu ile İlgili Potansiyel
Değişen Varyans (Heteroscedasticity) Sabit Varyans (Homoscedasticity) Varsayımı Altında Basit Regresyon Modeli
1 2 Değişen Varyans (Heteroscedasticity) DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14
Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.
Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri
Örneklemden elde edilen parametreler üzerinden kitle parametreleri tahmin edilmek istenmektedir.
ÇIKARSAMALI İSTATİSTİKLER Çıkarsamalı istatistikler, örneklemden elde edilen değerler üzerinde kitleyi tanımlamak için uygulanan istatistiksel yöntemlerdir. Çıkarsamalı istatistikler; Tahmin Hipotez Testleri
Yatırım Analizi ve Portföy Yönetimi 6. Hafta
Yatırım Analizi ve Portföy Yönetimi 6. Hafta Dr. Mevlüt CAMGÖZ 1 Dr. Mevlüt CAMGÖZ İçerik Karakteristik Doğru ve Beta Katsayısı Karakteristik Doğrunun Tahmini Beta Katsayısının Hesaplanması Agresif ve
İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37
İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar
9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir?
9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? Ardışık bağımlılık sorunu, hata terimleri arasında ilişki olmadığı (E(u i,u j ) = 0, i j) varsayımının geçerli olmamasıdır.
KPSS LİSANS DA UYGULANAN TESTLERİN KAPSAMLARI
2012 - LİSANS DA UYGULANAN TESTLERİN KAPSAMLARI Genel Yetenek 1) Türkçe %50 2) Matematik %50 a) Sözcük bilgisi %5 a) Sayılarla işlem yapma %10 b) Dil bilgisi %10 b) Matematiksel ilişkilerden yararlanma
7.Ders Bazı Ekonometrik Modeller. Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla.
7.Ders Bazı Ekonometrik Modeller Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla. Kaynak: TÜĐK dönemler gayri safi yurt içi hasıla düzeyi 1987-1 8680793 1987-2 9929354 1987-3 13560135 1987-4
MURAT EĞİTİM KURUMLARI
2013 KPSS de Testlerin Kapsamları Değişti ÖSYM tarafından yapılan açıklamaya göre 2013 KPSS de uygulanacak testlerin içeriğinde bir takım değişiklikler yapıldı. Bu değişikler başta Genel Yetenek - Genel
Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( )
İKİ DEĞİŞKENLİ OLASILIK Rassal bir deneme yapılmakta ve farklı iki olay ile ilgilenilmektedir. A 1, A 2,,A i olayları bağdaşmaz ve bütünü kapsayıcıdır. B 1, B 2,,B j olayları bağdaşmaz ve bütünü kapsayıcıdır.
Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT
Ünite 10: Regresyon Analizi Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT 10.Ünite Regresyon Analizi 2 Ünitede Ele Alınan Konular 10. Regresyon Analizi 10.1. Basit Doğrusal regresyon 10.2. Regresyon denklemi
009 BS 400- İstatistik sonılannın cevaplanmasında gerekli olabilecek tablolar ve formüller bu kitapçığın sonunda verilmiştir. 1. şağıdakilerden hangisi doğal birimdir? l TV alıcısı Bl Trafik kazası CL
ÜSTEL DÜZLEŞTİRME YÖNTEMİ
ÜSEL DÜLEŞİRME YÖNEMİ ÜSEL DÜLEŞİRME YÖNEMİ Bu bölüme kadar anlatılan yöntemler zaman içinde değişmeyen parametre varsayımına uygun serilerin tahminlerinde kullanılmaktaydı. Bu tür seriler deterministik
TÜRK İMALAT SANAYİİ NDE UZUN DÖNEM ÜCRET-FİYAT-İSTİHDAM İLİŞKİLERİNİN EKONOMETRİK OLARAK İNCELENMESİ. Kıvılcım METİN* Şenay ÜÇDOĞRUK** ÖZET
TÜRK İMALAT SANAYİİ NDE UZUN DÖNEM ÜCRET-FİYAT-İSTİHDAM İLİŞKİLERİNİN EKONOMETRİK OLARAK İNCELENMESİ Kıvılcım METİN* Şenay ÜÇDOĞRUK** ÖZET Bu çalışmada 1962-1992 yılları arasında Türk İmalat Sanayiinde
4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ Katsayıların Yorumu
4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ 4.1. Katsayıların Yorumu Y i = β 0 + β 1 X 1i + β X i + + β k X ki + u i gibi çok açıklayıcı değişkene sahip bir modelde, anakütle regresyon fonksiyonu, E(Y i X
Normal Dağılımlılık. EKK tahmincilerinin ihtimal dağılımları u i nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.
Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları u i nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. b tahminleri için uygulanan testlerin geçerliliği u i nin normal dağılmasına bağlıdır.
ZAMAN SERİLERİNDE REGRESYON ANALİZİ
ZAMAN SERİLERİNDE REGRESYON ANALİZİ 1 1. GİRİŞ Trent, serinin genelinde yukarıya ya da aşağıya doğru olan hareketlere denmektedir. Bu hareket bazen düz bir doğru şeklinde olmaktadır. Bu tür harekete sahip
OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2
OPTIMIZASYON.... Bir Değişkenli Fonksiyonların Maksimizasyonu.... Türev...3.. Bir noktadaki türevin değeri...4.. Maksimum için Birinci Derece Koşulu...4.3. İkinci Derece Koşulu...5.4. Türev Kuralları...5
Korelasyon, Korelasyon Türleri ve Regresyon
Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.
İÇİNDEKİLER 1. BÖLÜM STATA PAKET PROGRAMINA GİRİŞ
3. BASKIYA ÖNSÖZ İleri Panel Veri Analizi kitabının 2012 yılında çıkan ilk baskısının çok hızlı tükenmesi üzerine, 2013 yılında çok daha fazla adetle ikinci baskısı yapılmıştır. Kitabın ikinci baskısı
Normal Dağılımlılık. EKK tahmincilerinin ihtimal dağılımları u i nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır.
Normal Dağılımlılık EKK tahmincilerinin ihtimal dağılımları u i nin ihtimal dağılımı hakkında yapılan varsayıma bağlıdır. β tahminleri için uygulanan testlerin geçerliliği u i nin normal dağılmasına bağlıdır.
1. KEYNESÇİ PARA TALEBİ TEORİSİ
DERS NOTU 06 IS/LM EĞRİLERİ VE BAZI ESNEKLİKLER PARA VE MALİYE POLİTİKALARININ ETKİNLİKLERİ TOPLAM TALEP (AD) Bugünki dersin içeriği: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 2. LM EĞRİSİ VE PARA TALEBİNİN
4.2 Sayfa 159. Uygulama II Sayfa Sayfa 161
1 2 4.2 Sayfa 159 Uygulama II 1 Selçuk Gül Yildiz Teknik Üniversitesi [email protected] Asagidakilerden hangisi/hangileri, OLS t istatistiklerinin geçersiz olmasina (bos hipotez altinda t dagilimina sahip
Basit Regresyon Modeli BASİT REGRESYON MODELİ. Basit Regresyon Modeli. Basit Regresyon Modeli: y = β 0 + β 1 x + u
1 2 Basit Regresyon Modeli BASİT REGRESYON MODELİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim
İSTATİSTİK STATISTICS (2+0) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI
İSTATİSTİK STATISTICS (+) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI KONU BAŞLIKLARI :. İSTATİSTİĞE GİRİŞ. VERİLERİN DÜZENLENMESİ. MERKEZİ EĞİLİM ÖLÇÜLERİ.
ÇOKLU REGRESYON MODELİ. Bir bağımlı değişkene etki eden çok sayıda bağımsız değişkeni analize dahil ederek çoklu regresyon modeli uygulanabilir.
ÇOKLU REGRESYON MODELİ Bir bağımlı değişkene etki eden çok sayıda bağımsız değişkeni analize dahil ederek çoklu regresyon modeli uygulanabilir. Y=b 1 + b X + b X + u Y=b 1 + b X + b X +...+ b k X k + u
Yatırım Analizi ve Portföy Yönetimi 5. Hafta
Yatırım Analizi ve Portföy Yönetimi 5. Hafta Dr. Mevlüt CAMGÖZ 1 Dr. Mevlüt Camgöz İçerik Tek Endeks / Pazar Modeli Sistematik Risk Sistematik Olmayan Risk Sermaye Varlıklarını Fiyatlandırma Modeli (SVFM)
H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0
YTÜ-İktisat İstatistik II Hipotez Testi 1 HİPOTEZ TESTİ: AMAÇ: Örneklem bilgisinden hareketle anakütleye ilişkin olarak kurulan bir hipotezin (önsavın) geçerliliğinin test edilmesi Genel notasyon: anakütleye
TABLO-1 KPSS DE UYGULANACAK TESTLERİN KAPSAMLARI Yaklaşık Ağırlığı Genel Yetenek
TABLO-1 KPSS DE UYGULANACAK TESTLERİN KAPSAMLARI Yaklaşık Ağırlığı Genel Yetenek Yaklaşık Ağırlığı 1) Sözel Bölüm %50 2) Sayısal Bölüm %50 Sözel akıl yürütme (muhakeme) becerilerini, dil bilgisi ve yazım
MAK 210 SAYISAL ANALİZ
MAK 210 SAYISAL ANALİZ BÖLÜM 7- SAYISAL TÜREV Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ İntegral işlemi gibi türev işlemi de mühendislikte çok fazla kullanılan bir işlemdir. Basit olarak bir fonksiyonun bir noktadaki
2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK
Soru 1 X rassal değişkeninin olasılık yoğunluk fonksiyonu x x, x> f ( x) = 0, dy. 1 werilmiş ve Y = rassal değişkeni tanımlamış ise, Y değişkenin 0< 1 X 1 y için olasılık yoğunluk fonksiyonu aşağıdaki
BÖLÜM 1: YAşAM ÇÖzÜMLEMEsİNE GİRİş... 1
ÖN SÖZ...iii BÖLÜM 1: Yaşam Çözümlemesine Giriş... 1 1.1. Giriş... 1 1.2. Yaşam Süresi... 2 1.2.1. Yaşam süresi verilerinin çözümlenmesinde kullanılan fonksiyonlar... 3 1.2.1.1. Olasılık yoğunluk fonksiyonu...
Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr.
Zaman Serileri-1 If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere
Yrd. Doç. Dr. Mehmet Güçlü
Dersin Adı DERS ÖĞRETİM PLANI Ekonometri I Dersin Kodu ECO 301 Dersin Türü (Zorunlu, Seçmeli) Dersin Seviyesi (Ön Lisans, Lisans, Yüksek Lisans, Doktora) Dersin AKTS Kredisi 6 Haftalık Ders Saati 4 Haftalık
YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 3: Çok Değişkenli Regresyon Analizi:
YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları
Ch. 3: Çok Değişkenli Regresyon Analizi: Tahmin Doç. Dr. Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi, İktisat Bölümü, Yıldız Kampüsü H Blok, Oda no. 124, Beşiktaş, İstanbul. Email: [email protected]
BAHAR DÖNEMİ MAKRO İKTİSAT 2 DERSİ KISA SINAV SORU VE CEVAPLARI
2015-2016 BAHAR DÖNEMİ MAKRO İKTİSAT 2 DERSİ KISA SINAV SORU VE CEVAPLARI 1. Toplam Talep (AD) doğrusunun eğimi hangi faktörler tarafından ve nasıl belirlenmektedir? Açıklayınız. (07.03.2016; 09.00) 2.
2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN
2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 C.1.2. Piyasa Talep Fonksiyonu Bireysel talep fonksiyonlarının toplanması ile bir mala ait
EŞANLI DENKLEM MODELLERİ
EŞANLI DENKLEM MODELLERİ Eşanlı denklem modelleri, tek denklemli modeller ile açıklanamayan iktisadi olayları açıklamak için kullanılan model türlerinden birisidir. Çift yönlü neden-sonuç ilişkisi söz
15.433 YATIRIM. Ders 7: CAPM ve APT. Bölüm 2: Uygulamalar ve Sınamalar
15.433 YATIRIM Ders 7: CAPM ve APT Bölüm 2: Uygulamalar ve Sınamalar Bahar 2003 Öngörüler ve Uygulamalar Öngörüler: - CAPM: Piyasa dengesinde yatırımcılar sadece piyasa riski taşıdıklarında ödüllendirilir.
Modern Konjonktür Teorileri ve İktisat Politikası
Modern Konjonktür Teorileri ve İktisat Politikası Giriş Modern konjonktür teorileri : - Reel iş ÇevrimleriTeorisi - Yeni Keynesyen Model Modern konjonktür teorileri iktisat politikası analizlerine neler
Çoklu Bağlanım Çıkarsama Sorunu
Çoklu Bağlanım Çıkarsama Sorunu Diğer Sınama ve Konular Ekonometri 1 Konu 27 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported
Ch. 3: Çok Değişkenli Regresyon Analizi: Tahmin
Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 3: Çok Değişkenli Regresyon
Korelasyon ve Regresyon
Korelasyon ve Regresyon Korelasyon- (lineer korelasyon) Açıklayıcı (Bağımsız) Değişken x çalışma zamanı ayakkabı numarası İki değişken arasındaki ilişkidir. Günlük sigara sayısı SAT puanı boy Yanıt (Bağımlı)
Zaman Serileri Ekonometrisine Giriş
Zaman Serileri Ekonometrisine Giriş Yöney Özbağlanım Modeli Ekonometri 2 Konu 27 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported
ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3
ÜNİTE:1 İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2 Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 Ortalamalar, Değişkenlik ve Dağılma Ölçüleri ÜNİTE:4 Endeksler ÜNİTE:5
KONU 1: TÜRKİYE EKONOMİSİNDE ( ) İŞGÜCÜ VERİMLİLİĞİ ve YATIRIMLAR İLİŞKİSİ (DOĞRUSAL BAĞINTI ÇÖZÜMLEMESİ) Dr. Halit Suiçmez(iktisatçı-uzman)
KONU 1: TÜRKİYE EKONOMİSİNDE (1987-2007) İŞGÜCÜ VERİMLİLİĞİ ve YATIRIMLAR İLİŞKİSİ (DOĞRUSAL BAĞINTI ÇÖZÜMLEMESİ) Dr. Halit Suiçmez(iktisatçı-uzman) NE YAPILDI? ÖZET - Bu çalışmada, işgücü verimliliği
Eşanlı Denklem Modelleri
Eşanlı Denklem Modelleri Eşanlı Denklem Yöntemleri Ekonometri 2 Konu 23 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported (CC
MAK 210 SAYISAL ANALİZ
MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan
QUANTILE REGRESYON * Quantile Regression
QUANTILE REGRESYON * Quantile Regression Fikriye KURTOĞLU İstatistik Anabilim Dalı Olcay ARSLAN İstatistik Anabilim Dalı ÖZET Bu çalışmada, Lineer Regresyon analizinde kullanılan en küçük kareler yöntemine
Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın.
KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin
Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş
Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Nokta Tahmini
TABLO-1 KPSS DE UYGULANACAK TESTLERİN KAPSAMLARI Yaklaşık Ağırlığı Genel Yetenek
TABLO-1 KPSS DE UYGULANACAK TESTLERİN KAPSAMLARI Yaklaşık Ağırlığı Genel Yetenek Yaklaşık Ağırlığı 1) Sözel Bölüm 0 2) Sayısal Bölüm 0 Sözel akıl yürütme (muhakeme) becerilerini, dil bilgisi ve yazım kurallarını
Dersin Amacı: Bilimsel araştırmanın öneminin ifade edilmesi, hipotez yazımı ve kaynak tarama gibi uygulamaların öğretilmesi amaçlanmaktadır.
Dersin Adı: Araştırma Teknikleri Dersin Kodu: MLY210 Kredi/AKTS: 2 Kredi/4AKTS Dersin Amacı: Bilimsel araştırmanın öneminin ifade edilmesi, hipotez yazımı ve kaynak tarama gibi uygulamaların öğretilmesi
MAK 210 SAYISAL ANALİZ
MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani
altında ilerde ele alınacaktır.
YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini
İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1
İÇİNDEKİLER ÖNSÖZ... v 1. BÖLÜM Örneklem Genişliğinin Elde edilmesi... 1 1.1. Kitle ve Parametre... 1 1.2. Örneklem ve Tahmin Edici... 2 1.3. Basit Rastgele Örnekleme... 3 1.4. Tabakalı Rastgele Örnekleme...
Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü
Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu
