SÖNÜM MODELLERİ VE YAPISAL DİNAMİK ANALİZLERİN GÜVENİRLİĞİ



Benzer belgeler
REOLOJĐ. GERĐLME, ŞEKĐL DEĞĐŞĐMĐ ve ZAMAN ĐLĐŞKĐLERĐ

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. fatihay@fatihay.net

Yapı Sistemlerinin Hesabı İçin. Matris Metotları. Prof.Dr. Engin ORAKDÖĞEN Doç.Dr. Ercan YÜKSEL Bahar Yarıyılı

1.1 Yapı Dinamiğine Giriş

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

INM 308 Zemin Mekaniği

DALGA YAYILMASI Sonsuz Uzun Bir Çubuktaki Boyuna Dalgalar SıkıĢma modülü M={(1- )/[(1+ )(1-2

FİZ217 TİTREŞİMLER VE DALGALAR DERSİNİN 2. ARA SINAV SORU CEVAPLARI

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Deprem Kayıtlarının Seçilmesi ve Ölçeklendirilmesi

Bölüm 3. Tek Serbestlik Dereceli Sistemlerin Zorlanmamış Titreşimi

2. Amaç: Çekme testi yapılarak malzemenin elastiklik modülünün bulunması

Fotoğraf Albümü. Zeliha Kuyumcu. Mesnetlerinden Farklı Yer Hareketlerine Maruz Kablolu Köprülerin Stokastik Analizi

BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ

MAKİNE ELEMANLARI DERS SLAYTLARI


BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

Musa DEMİRCİ. KTO Karatay Üniversitesi. Konya

AASHTO-LRFD kriterleri (Madde )

DERS-3 -REOLOJİ- VİSKOZİTE VE AKIŞ TİPLERİ

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

TRANFER FONKSİYONLARI SİSTEMLERİN MATEMATİKSEL MODELİ BASİT SİSTEM ELEMANLARI

YAPI ZEMİN ETKİLEŞİMİ. Yrd. Doç. Dr Mehmet Alpaslan KÖROĞLU

MUKAVEMET DERSİ. (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ

Makina Mühendisliği Bölümü Makine Laboratuarı

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU


DOKUZ KATLI TÜNEL KALIP BİNA SONLU ELEMAN MODELİNİN ZORLAMALI TİTREŞİM TEST VERİLERİ İLE GÜNCELLENMESİ

TAŞINIMIN FİZİKSEL MEKANİZMASI

T.C. MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü

Polimer Reolojisi. Yrd. Doç. Dr. Ali DURMUŞ. Ders içeriği. Reoloji Bilimine Giriş. Tanımlar ve Kavramlar

BACA DİNAMİĞİ. Prof. Dr. Hikmet Hüseyin H

Fiziksel Sistemlerin Matematik Modeli. Prof. Neil A.Duffie University of Wisconsin-Madison ÇEVİRİ Doç. Dr. Hüseyin BULGURCU 2012

. TAŞIYICI SİSTEMLER Çerçeve Perde-çerçeve (boşluklu perde) Perde (boşluksuz perde) Tüp Iç içe tüp Kafes tüp Modüler tüp

Binaların Deprem Dayanımları Tespiti için Yapısal Analiz

FZM 220. Malzeme Bilimine Giriş

Data Merkezi. Tunç Tibet AKBAŞ Arup-İstanbul Hüseyin DARAMA Arup- Los Angeles. Tunç Tibet AKBAŞ

ELASTİK DALGA YAYINIMI

MUKAVEMET FATİH ALİBEYOĞLU

BÜLENT ECEVİT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK490 Makine Laboratuarı Dersi Akışkanlar Mekaniği Deneyi

SONUÇLAR : Deneylerde ansal birim uzama varlığı nedeni. e = s/e 2. -f-s/e, (1.0-exp (Ei/v) t) formülünün kullanılması daha uygun gözükebilir.

DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri

SÜRTÜNME Buraya kadar olan çalışmalarımızda, birbirleriyle temas halindeki yüzeylerde oluşan kuvvetleri etki ve buna bağlı tepki kuvvetini yüzeye dik

Bir katı malzeme ısıtıldığında, sıcaklığının artması, malzemenin bir miktar ısı enerjisini absorbe ettiğini gösterir. Isı kapasitesi, bir malzemenin

DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

FZM 220. Malzeme Bilimine Giriş

Malzeme Bilgisi ve Gemi Yapı Malzemeleri

AERODİNAMİK KUVVETLER

MUKAVEMET TEMEL İLKELER

Sistem Dinamiği. Bölüm 4-Mekanik Sistemlerde Yay ve Sönüm Elemanı. Doç.Dr. Erhan AKDOĞAN

ÖN SÖZ... ix BÖLÜM 1: GİRİŞ Kaynaklar...6 BÖLÜM 2: TEMEL KAVRAMLAR... 7

AKIŞKANLAR MEKANİĞİ. Doç. Dr. Tahsin Engin. Sakarya Üniversitesi Makine Mühendisliği Bölümü

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları

CALLİSTER - SERAMİKLER

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi

Ders Notları 3 Geçirimlilik Permeabilite

REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc

5.NEWTONIAN VE NEWTONIAN OLMAYAN AKIŞKANLARIN VİSKOZİTESİNİN BELİRLENMESİ (ROTASYONEL REOMETRE)

1.7 ) Çelik Yapılarda Yangın (Yüksek Sıcaklık) Etkisi

PROSTEEL 2015 STATİK RAPORU

Malzemelerin Mekanik Özellikleri

TAHRİBATLI YÖNTEMLE (KAROT) YERİNDE BETON BASINÇ DAYANIMININ BELİRLENMESİ VE DEĞERLENDİRİLMESİ TS EN NİSAN 2010

MMU 420 FINAL PROJESİ

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ 10. HAFTA

KOMPOZİTLER Sakarya Üniversitesi İnşaat Mühendisliği

SARSMA TABLASINA YERLEŞTİRİLMİŞ 3 KATLI HASARLI VE HASARSIZ ÇELİK YAPI MODELİNİN DİNAMİK KARAKTERİSTİKLERİNİN BELİRLENMESİ

BETONARME YAPILARDA BETON SINIFININ TAŞIYICI SİSTEM DAVRANIŞINA ETKİSİ

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU

Zorlamalı Titreşim ş Testleri

BURULMA DENEYİ 2. TANIMLAMALAR:

Yapısal Analiz Programı SAP2000 Bilgi Aktarımı ve Kullanımı. Doç.Dr. Bilge Doran

Ders 3- Direnç Devreleri I

Deney 2: FARK YÜKSELTEÇ

İNŞAAT MALZEME BİLGİSİ

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme

MECHANICS OF MATERIALS

Dislokasyon hareketi sonucu oluşan plastik deformasyon süreci kayma olarak adlandırılır.

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

PERDELĠ BETONARME YAPILAR ĠÇĠN DOĞRUSAL OLMAYAN ANALĠZ METOTLARI

MAK 305 MAKİNE ELEMANLARI-1

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI

İletim Hatları ve Elektromanyetik Alan. Mustafa KOMUT Gökhan GÜNER

Uluslararası Yavuz Tüneli

T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 2

BC237, BC338 transistör, 220Ω, 330Ω, 4.7KΩ 10KΩ, 100KΩ dirençler ve bağlantı kabloları Multimetre, DC güç kaynağı

ÇEV-220 Hidrolik. Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV)

ÖZHENDEKCİ BASINÇ ÇUBUKLARI

MEKANİZMA TEKNİĞİ (1. Hafta)

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

MALZEME SEÇİMİ ve PRENSİPLERİ

YAYLAR. Bu sunu farklı kaynaklardan derlenmiştir.

2.3. Dinamik Benzeri Yöntemler ile Ölçekli Beton Barajda Deprem Simulasyonu

MAK 210 SAYISAL ANALİZ

Transkript:

ÖZET: SÖNÜM MODELLERİ VE YAPISAL DİNAMİK ANALİZLERİN GÜVENİRLİĞİ N. Shaban 1 ve A. Caner 2 1 Doktora Öğrencisi, İnşaat Müh. Bölümü, ODTÜ, Ankara 2 Doçent, İnşaat Müh. Bölümü, ODTÜ, Ankara Email: nefize.saban@metu.edu.tr Yapısal dinamik analizlerin en önemli parametrelerinden biri sönüm modelidir. Sönüm oranının ve modelinin doğru (gerçeğe yakın ) tayin edilmesi nümerik yapı modelinin gerçekçiliğini ve güvenirliğini doğrudan etkilemektedir. Bu aşamada doğru bir tayin daha detaylı araştırmalar gerektirmektedir. Makale kapsamında, en yaygın kullanıma sahip olan sönüm modellerinin özellikleri ve yapısal dinamik analizler üzerindeki etkisi incelenmiştir. Yapı özelliklerinin ve dinamik davranışının değişmesiyle sönüm modellerinin etkileri arasındaki fark da değişmektedir. Diğer yandan, sönüm oranındaki değişkenlik de sönüm modellerinin etkinlik alanları arasındaki farkı belirlemekte oldukça önemlidir. Sönüm modeli tayinindeki bu etkenler sınıflandırılarak incelenmiş ve yapı özelliklerine göre dinamik analizlerde kullanılmak üzere sönüm modelleri için tavsiyeler verilmiştir. ANAHTAR KELİMELER: Yapısal dinamik analiz, Sönüm modeli, Nümerik model güvenirliği 1. GİRİŞ Sönüm, genel olarak, enerji kaybı sonucu yapıların dinamik tepkisini azaltan özellik olarak tanımlanır. Dolayısıyla sönüm, yapıların depreme dayanıklı tasarımında çok etkili bir parametredir, özellikle rezonans bölgesine yakın elemanlar için. Örneğin, sönüm oranının %0.5 ten %2 ye çıkması elemanların beklenen rezonans bölgesindeki deprem yükünü 2 katı ve üzeri kadar azaltabilmektedir. Rezonans bölgesinden uzaklaştıkça bu etki azalmaktadır. Sönüm, önemli olduğu kadar hassas da bir parametredir ve doğru tayin edilmesi yapısal dinamik analizlerin güvenirliğini doğrudan etkilemektedir. Bununla birlikte sönüm, dinamik analizlerde ve depreme dayanıklı tasarımda belki de en az anlaşılan parametre ve analizlerin de en zayıf noktasıdır. Sönüm, malzemelerin ve yapısal sistemlerin çok düşük gerilimler altında bile tamamıyla elastik davranmamasına dayalıdır. Birçok farklı şekilde meydana gelebilen bu inelastik davranış döngüsel yükleme altında enerji kaybına yol açar. Bu süreçte yutulan enerji ise gerilim-gerinme eğrisinin döngüsel yük altında çizdiği histerezis çevriminin iç alanı ile orantılıdır. Örnek histerezis çevrimleri Şekil 1 de verilmiştir.

Şekil 1. Tipik doğrusal ve doğrusal olmayan histerezis çevrimleri (a) Doğrusal malzeme için eliptik çevrim; (b) Yüksek gerilme altında metaller; (b) Bağlantı noktaları; (d) Asimetrik çevrim; (e) Burulma altında kil; (f) Tek yönlü yükleme altında çevrim Malzemelere ve yapısal sistemlere has olan sönüm özellikleri iki ana başlık altında sınıflandırılabilir: hıza bağlı sönüm (rate-dependent damping) ve hıza bağlı olmayan sönüm (rate-independent damping). İki sönüm türünde de yutulan enerji uygulanan yükün veya gerinimin genliğine bağlı olabilir. Bunun haricinde hıza bağlı (rate - dependent) sönüm yüklemenin hızına ve frekansına göre de değişmektedir. Sönümün önemli bir özelliği, yutulan enerjinin diğer koşullar saibitken gerilim genliğine göre nasıl değiştiğidir. Sönüm-gerilme bağlantılarının çoğu zaman karmaşık olmasına rağmen bazı reolojik mekanizmalar için bu bağlantı Denklem 1 deki gibi ifade edilebilir. D = Jσ (1) Buarada σ gerilme genliği; J ve n ise, J sönüm sabiti veya birim gerilim genliği altında yutulan enerji ve n de sönüm üstü olmak üzere malzeme sabitleridir. Düşük gerilme genlikleri altında iki koşul gözlemlenmektedir: (1) sönüm üstü n = 2 (ikinci derece sönüm) ve (2) eliptik histerezis çevrimi. Bu koşullar doğrusal viskoziteyi (yağ kutusu) de tanımladıklarından, bu durum için doğrusal (lineer) sönüm terimi kullanılmaktadır. Orta ve yüksek gerilim genlikleri altında iki çeşit doğrusal olmayan davranış gözlemlenmektedir: (1) eliptik olmayan histerezis çevrimleri ve (2) sönüm üssü n nin 2 den farklı, genelde daha büyük; değerleri olması. Böylelikle hıza bağlı sönüm ve hıza bağlı olmayan sönüm ikişer alt başlığa ayrılabilir: (1) doğrusal (ikinci derece) sönüm ve (2) doğrusal olmayan sönüm. 2. DOĞRUSAL SÖNÜM

Metallerde düşük gerilimler altında ve polimer malzemelerde düşük ve orta seviyeli gerilmeler altında gözlemlenen görüngübilim (fenomenoloji) oldukça benzer dir ve doğrusal olarak tanımlanabilir. Ayrıca, iki malzeme türünde de frekansın (ve sıcaklığın) etkileri gevşeme (relaxation) olayıyla ilişkilendirilebilir. Fakat malzemelerin reolojik mekanizmaları oldukça farklıdır: metallerde anelastik ve başka doğrusal mekanizmalar, polimerlerde ise viskoelastisite. 2.1. Metallerdeki anelastik mekanizmalar Eğer bir numune düzgün (uniform) olmayan bir gerilime hızlı bir şekilde maruz kalırsa, numunenin yerel gerilme seviyelerine ve özelliklerine bağlı yerel (lokal) sıcaklık f arklılıkları oluşmaktadır. Yükün numunedeki sıcaklık gradyanlarını yok edecek şekilde boşaltılmadığı durumda numunedeki bileşke sıcaklık gradyanları ısı akışı (heat flow) yaratmaya çalışır. Bu süreç, yüksek frekanslı (belirgin bir ısı akışı için gerekli olan zamandan çok daha küçük bir periyot) titreşimlerde ısı değişimsiz ve tersinebilirdir (adiabatic and reversible). Böylelikle döngüsel ısı akışı çok hafif ve gözlemlenen sönüm de çok düşüktür. Buna karşı, çok küçük frekansta süreç eşısıl (izotermal) ama hala tersinebilirdir ve yutulan enerji yine çok düşüktür. Ama döngüsel gerilmelerin periyodu önemli bir ısı akışı için gerekli olan zamana benzer ise mekanik enerji tersinemez şekilde ısıya dönüşür ve sönümleme gözlemlenir. 2.2. Polimerlerde etki eden sıcaklık-frekans parametreleri Polimerlerde görülen dağılım (dispersiyon) olayları polimer özelliklerini frekansa ve ısıya önemli derecede bağlı kılar. Depolama modülü ve kompleks modül, frekansın artmasıyla veya sıcaklığın azalmasıyla kritik bir bölgede oldukça hızlı bir artış göstermektedir. Bu kritik bölgede sönüm modülü (loss modulus) ve sönüm tanjantı (loss coefficient) en yüksek değerlerine ulaşır. Bu etkiler Şekil 2 de tipik bir viskoelastik malzeme için verilmiştir. Şekil 2. Sicaklık ve frekansın depolama modülü ve sönüm faktörü üzerindeki etkisi Düşük frekanslarda (veya yüksek sıcaklıkta) kauçuksu olarak adlandırılan bölgede gerilimdeki yavaş değişimleri gevşeme süreci izler (ikisi de aynı fazda) ve neticede sağlanan denge enerji yutulmasına katkı sağlamaz. Böylelikle kauçuksu bölgede bütün modüller ve sönüm değerleri oldukça düşüktür. Frekansın ve sıcaklığın ara değerleri için sönüm modülünün en yüksek olduğu geçiş bölgesi gözlemlenmektedir. Bu bölgede gözlemlenen döngüsel gerinimdeki faz farkı (phase lag) enerjiyi yutan bir mekanizma oluşturur. Yüksek frekanslarda (veya düşük sıcaklıkta) depolama modülü değeri yüksektir, sönüm modülü ise oldukça küçüktür ve bu davranış katı bir elastik malzemeyi andırır. camsı olarak adlandırılan bu bölgede malzemedeki gevşeme gerilim izleyebilecek kadar hızlı meydana gelemez ve malzeme bu yüzden elastik davranışa yakın bir davranış sergiler. Bütün bu gözlemlerde frekanstaki artışın etkisi sıcaklıktaki düşüşün etkisine eşdeğerdir. 2.3. Modelleme 2.3.1. Voigt modeli Bu model (Voigt cismi) gecikmiş elastik davranış olarak da anılan viskoelastik davranışı gösterir. Kelvin cisminde bulunan yay ve yağ kutusu elemanları birlikte uyum içinde hareket ederler (her ikisinin de gösterdiği deformasyon aynıdır). Uygulanan yüke yağ kutusu yavaşça açılarak karşılık verir. İlk önce bütün gerilme yağ kutusunun üzerinde iken, uzama payı arttıkça gerilim yavaş yavaş yaya geçecektir. Bu modelde yaya paralel bağlanmış yağ kutusu, elastik yayın dengeye gelmesi sırasında sönüm direnci gösterir. Bu sebeple elastik geri toparlanma gecikmeli olarak gözlemlenir. Modelin şematik çizimi Şekil 3 te gösterilmiştir.

Şekil 3. Voigt modeli 2.3.2. 3 Parametreli anelastik model Voigt modelinin kısıtlamalarına ve kusurlarına karşın Şekil 4 te verilen 3 parametreli anelastik model anelastik davranışı en iyi modelleyen en basit modeldir. Şekil 4. 3 Parametreli anelastik model 3. DOĞRUSAL OLMAYAN SÖNÜM Küçük genlikteki gerininm veya gerilim altında metaller, polimer ve elastomerler genelde hıza bağlı doğrusal sönüm sergilemektedir. Belirgin derecede doğrusal olmayan davranışın gözlemlendiği durumlar ise yüksek gerininm altında yapı malzemelerinin çoğunda; genel olrak metallerde, betonda, camsı ve jeolojik malzemlerde. Gerilim genliğinin artmasıyla, özellikle yorulma sınırına yakın, sönümün de hem genliği hem de doğrusal olmama derecesi artmaktadır. Doğrusal olmayan histerezis çevrimleri üzerinde gerilim genliği ve gerilim belleği (stress history) etkilidir. 3.1. Metaller Metallerdeki sönüm faktörü genliğe bağlı (sönüm üstü n genelde 2 den büyük) ve frekanstan bağımsızdır. Belirli bir gerilim genliğinin üzerinde sönüm faktörü hızlı bir şekilde artmaktadır ve gerilim belleği de sönüm üzerinde önemli ölçüde etkili olabilmektedir. Simetrik malzemelerin hıza bağlı olmayan histerezis çevrimlerinin tipik şekli Şekil 5 te gösterilmiştir. Sivri uçlu olan bu çevrimler, doğrusal malzemelere has olan eliptik histerezis çevrimlerinden birçok önemli noktada farklılık göstermektedir. Doğrusal olmayan bu çevrimler iki tane pürüzsüz eğriden oluşmaktadır. Bu eğrilerin kesiştiği noktalarda histerezis çevriminin sivri uçları meydana gelir, özellikle orta seviyeli gerilmeler altında.

Şekil 5. Hıza bağlı doğrusal olmayan sönüme has sivri uçlu histerezis çevrimi Dinamik analizlerde kullanılmak üzere sönüm özellikleri üç farklı şekilde ifade edilebilir: (1) sönüm kuvveti (yağ kutusu veya viskoz kuvvet); (2) histerezis çevriminin gerilim -gerinim denklemleri veya (3) histerezis çevriminin içindeki alan (bir çevrimde yutulan enerji). Sönüm kuvveti temsili doğrusal sönüm ve doğrusal olmayan hıza bağlı sönüm için uygundur ama histerezis çevrimlerinin sivri uçlu olduğu hıza bağlı olmayan enerji kaybı için genelde uygun değildir. Doğrusal malzemeler için çok yüksek sönümde veya geniş çevrimlerde bile tek bir depolama modülü tanımlanabilir. Ama doğrusal olmayan çevrim geniş ise tek bir depolama modülü tanımlanamaz ve gerinimin elastik bileşenini (gerinim enerjisi depolayan bileşen) sönümleyen bileşenden ayırt etmek oldukça zordur. Histerezis çevrimiyle ifade edilen yutulan enerji çevrimin iç alanıyla Denklem 2 de belirtilen şekilde orantılıdır. D = H (2) Burada H histerezis çevriminin şekline bağlı bir katsayı; ise histerezis çevriminin sıfır gerilimdeki yarı genişliğidir. H sabitinin değeri için üst sınır dikdörtgen histerezis çevrimini ifade eden 4 tür. Alt sınır ise iki üçgenden oluşan histerezis çevrimi için elde edilen 2 dir. Bu iki sınır değer arasındaki H = 2.7 pratikte kullanılan metallerin davranışını makul bir biçimde yansıtabilmektedir. 3.2. Diğer Malzemeler Elastomerlerde %25 oranındaki gerinim ve üzerinde doğrusal olmayan davranış gözlemlenmektedir. 3.3. Modelleme 3.3.1. Hıza bağlı sönüm elemanları Yapı malzemelerinin gerçekteki davranışını ifade etmek için farklı doğrusal olmayan sönüm kutu modelleri geliştirilmiştir. Şekil 6 da gösterilen bu modellerden (a) Newton cismi (lineer sönüm kutusu) tek parametreli bağlantıyı ifade etmektedir. Şekil 6 (b) ve (c ) de verilen modeller ise iki parametreli bağlantılardır ve bazı malzemelerin davranışı için daha gerçekçi yaklaşımlardır. Bütün modellerde sönüm kutusundaki kuvveti temsil eder.

(a) (b) (c) Şekil 6. Doğrusal olmayan viskozite modelleri (a) Doğrusal viskozite (Newton ismi) P = μ ; (b) Üstlü viskozite (power law viscosity) P = μ ; (c) Hiperbolik viskozite = μ sinhdp Şekil 6 da verilen modellerin hıza bağlı doğrusal olmayan sönüm elemanlarının hiçbiri viskozitenin zamanla değişebilme ve yaşlanma etkilerini modelleyememektedir. Bu etkiler ise metallerde, betonda ve diğer yapı malzemelerinde sönüm, sünme ve gevşeme olaylarının analizleri için önemlidir. Denklem 3 ile verilen zamana bağlı viskozite bağlantısı yaşlanma olaylarını ifade eden bağlantılardan birdir. P = μ (3) Burada μ viskozite katsayısı; yaşlanma üstü; de gerinim hızı. Eğer < 0 ise malzemenin zamanla katılaştığını göstermektedir ( P ve histerezis çevriminin genişliği zamanla azalır). Eğer > 0 (zamanla genişleyen çevrim) ise malzemede zamanla yumuşayan viskozite veya döngüsel yumuşama gözlemlenmektedir. Bu iki durum da gerçek malzemelerde gözlemlendiği için bu bağlantı önemlidir. 3.3.2. Hıza bağlı sönüm elemanları ve yaylar Şekil 6 te verilen modellere yaylar ilave edilerek yeni modeller oluşturulabilir. Hata daha gerçekçi bir temsil için yaylar doğrusal olmayabilir (elastik enerji sönümlemeyen elemanlar). Şekil 7 de buna örnek bir model verilmiştir. Bu model doğrusal olmayan sönüm kutusu ve doğrusal olmayan yay içermenin haricinde yaşlanma etkilerini de modeller. Beton üzerindeki deneysel veriler bu modelin betonun davranışını gerçekçi ifade edebildiğini göstermektedir. Şekil 7. Doğrusal olmayan yay-sönüm kutusu modeli 3.3.3. Hıza bağlı olmayan Coulomb kayma modelleri Bu modellerin viskoelastik malzeme modellerinden farkı, sönüm kutusunun yerine Coulomb kayma elemanı içermesidir. Bu modeller hıza değil de gerinim ve gerilim genliğine bağlı özellikleri ifade eder. Yapıların birleşme yerlerindeki davranış için Şekil 8 deki modeller kullanılabilir.

3 Şekil 8. Yapı birleşim yerlerindeki davranışı modelleyen Coulomb kayma elemanları 4. RAYLEIGH SÖNÜM MODELİ Yapısal dinamik analizlerde en yaygın olan sönüm modeli doğrusal viskoz sönümü modelleyen Rayleigh sönüm modelidir. Bu modelin yaygın olarak kullanılmasının sebebi yapısal sistemin kütlesinin ve katılığının orantılı toplamı olması sonucu hesaplamalarda sağladığı kolaylıktır. Rayleigh sönüm modeli kullanıldığında sönüm matrisi [C] Denklem 4 ile ifade edilebilir. (4) = + Burada [M] yapısal sistemin kütle matrisi, [K] ise katılık matrisidir. ve ise sırasıyla (s -1 ) ve (s) birimine sahip katsayılardır. Buna göre sistemin i modunun sönümü,, Denklem 5 ile verilmektedir. = + (5) Burada sistemin i modunun dairesel frekansıdır. Yukarıda verilen ilişkilerden, ve katsayılarının sistemin iki modu için belirlenmiş sönüm oranlarını sağlayacak şekilde tayin edilebileceği görülmektedir. Bu durumda sistemin diğer modlarına Denklem 5 e göre hesaplanan sönüm oranları tayin edilmektedir. Sönüm oranının frekansa göre değişimi Şekil 9 da verilmiştir.

Şekil 9. Rayleigh sönüm modeli Rayleigh sönüm modelinin katılığa orantılı kısmı Voigt modelini (viskoelastisite modeli) ifade etmektedir. Kütleye orantılı olan kısım ise yapısal sistemin serbestlik derecelerinin viskoz sönümleyicilerle sabit desteklere bağlanmasını modellemektedir; yani gerçekte var olan bir elemanı modellemez ama modal sönüm oranları üzerinde ilave kontrol sağladığı için kullanılmaktadır. Doğrusal viskoz sönüm modeli olan Rayleigh sönüm modeli, daha önce detaylı bir şekilde ifade edilen doğrusal ve doğrusal olmayan sönüm mekanizmalarını sınırlı bir alanda gerçekçi olarak ifade edebilmektedir. Deprem analizlerinin formülasyonunda toplam hareket kullanıldığında kütle orantılı sönümden dolayı çok yüksek sönümleme kuvvetleri oluşmaktadır. Bu sorun, formülasyonlarda yere göre göreli hareket kullanılarak giderilebilir. Temel yalıtımı kullanılan sistemlerde ise Rayleigh sönüm matrisi sadece üstyapının katılığı kullanılarak oluşturulduğunda kütle orantılı kısımdan dolayı sönümleme kuvvetleri gerçek değerlerinin çok üstünde hesaplanmaktadır. Rayleigh sönüm modelinin katılık orantılı kısmından dolayı ise doğrusal olmayan analizlerde yumuşama gerçekleştiğinde ve sönüm matrisinde de başlangıç katılığı kullanıldığında, sönüm kuvvetleri yine gerçek değerlerin çok üstünde hesaplanmaktadır. Bu sorunlara genel bir çözüm olarak kütle orantılı sönüm kısmının kullanılmaması ve katılık orantılı sönüm kısmı için de bir sınır belirlenmesi önerilmiştir. 5. SONUÇLAR Sönüm, dinamik analizlerin çok önemli ve hassas bir parametresidir ve modellenmesi analiz sonuçlarının güvenirliğini doğrudan etkilemektedir. Sönümü oluşturan mekanizmaların ve reoiojik süreçlerin çeşitliliği ve karmaşıklığı sönümün modellemesini oldukça zorlaştırır ve onu analizlerin en zayıf noktası haline getirir. Bu çeşitliliğe ve karmaşıklığa karşın en yaygın olarak kullanılan sönüm modeli doğrusal viskoz Rayleigh sönüm modelidir. Sönümün reolojik süreçleri ve Rayleigh modellinin kullanımında dikkat edilmesi gereken hususlar bildiri içerisinde verilmiştir. TEŞEKKÜR Bu çalışmaya verdikleri destekten dolayı TÜBİTAK BİDEB 2215 Programı na teşekkür ederiz! KAYNAKLAR Deepak, R., Wijeyewickrema, A. C. And ElGawady, M. A. (2013). Appropriate viscous damping for nonlinear time-history analysis of base-isolated reinforced concrete buildings. Earthquake Engineering and Structural Dynamics 42: 2321-2339.

Erduran, E. (2012). Evaluation of Rayleigh damping and its influence on engineering demand parameter estimates. Earthquake Engineering and Structural Dynamics 41: 1905-1919. Hall, J. F. (2006). Problems encountered from the use (or misuse) of Rayleigh damping. Earthquake Engineering and Structural Dynamics 35: 525-545. Lazan, B. J. (1968). Damping of materials and members in structural mechanics, Pergamon Press, Oxford, U.K.