Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı



Benzer belgeler
01 OCAK 2015 ELEKTRİK AKIMI VE LAMBA PARLAKLIĞI SALİH MERT İLİ DENİZLİ ANADOLU LİSESİ 10/A 436

ELEKTRİK ELEKTRONİK BİLGİSİ

ELEZ101 Ölçme Tekniği Sunu No: 01. Öğr. Gör. Dr. Barış ERKUŞ

Atom. Atom elektronlu Na. 29 elektronlu Cu

DEVRELER VE ELEKTRONİK LABORATUVARI

AYDINLATMA DEVRELERİNDE KOMPANZASYON

Fizik ve Ölçme. Fizik deneysel gözlemler ve nicel ölçümlere dayanır

II. Bölüm HİDROLİK SİSTEMLERİN TANITIMI

ANALOG LABORATUARI İÇİN BAZI GEREKLİ BİLGİLER

MALZEMELERİN FİZİKSEL ÖZELLİKLERİ

Bu konuda cevap verilecek sorular?

Problem Çözmede Mühendislik Yaklaşımı İzlenecek Yollar Birimler ve ölçekleme Yük, akım, gerilim ve güç Gerilim ve akım kaynakları Ohm yasası

ELEKTRİK DEVRE TEMELLERİ

Bu iletkenin uçları arasında gerilim oluşturmak için pil, akümülatör, jeneratör, dinamo gibi araçlar kullanılır.

FİZİKÇİ. 2. Kütlesi 1000 kg olan bir araba 20 m/sn hızla gidiyor ve 10 m bir uçurumdan aşağı düşüyor.

6 MADDE VE ÖZELL KLER

5. ÜNİTE KUMANDA DEVRE ŞEMALARI ÇİZİMİ

Üç-fazlı 480 volt AC güç, normalde-açık "L1", "L2" ve "L3" olarak etiketlenmiş vida bağlantı uçları yoluyla kontaktörün tepesinde kontak hale gelir

BĐSĐKLET FREN SĐSTEMĐNDE KABLO BAĞLANTI AÇISININ MEKANĐK VERĐME ETKĐSĐNĐN ĐNCELENMESĐ

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

MÜHENDİSLİK ve MİMARLIK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUVARI DENEY FÖYÜ 1

Kondansatörlerin çalışma prensibi

DENEY 2: PROTOBOARD TANITIMI VE DEVRE KURMA

DEVRE DEĞİŞKENLERİ Bir elektrik devresinde enerji ölçülebilen bir değer değildir fakat ölçülebilen akım ve gerilim değerlerinden hesaplanır.

DOĞRU AKIM DEVRE ANALİZİ Ö. ŞENYURT - R. AKDAĞ ÜÇÜNCÜ BÖLÜM: OHM KANUNU, İŞ, ENERJİ VE GÜÇ

Elektrik Makinaları I. Senkron Makinalar Stator Sargılarının oluşturduğu Alternatif Alan ve Döner Alan, Sargıda Endüklenen Hareket Gerilimi

<<<< Geri ELEKTRİK AKIMI

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz?

MAK 4026 SES ve GÜRÜLTÜ KONTROLÜ. 6. Hafta Oda Akustiği

BÖLÜM 2: REZONANS DEVRELERI

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI 1. BASINÇ, AKIŞ ve SEVİYE KONTROL DENEYLERİ

50 ELEKTR K VE ELEKTRON K

T.C. MİLLÎ EĞİTİM BAKANLIĞI EĞİTİM TEKNOLOJİLERİ GENEL MÜDÜRLÜĞÜ Ölçme Değerlendirme ve Açıköğretim Kurumları Daire Başkanlığı

6. ÜNİTE TRANSFARMATÖR VE REDRESÖR BAĞLANTILARI

Fizik I (Fizik ve Ölçme) - Ders sorumlusu: Yrd.Doç.Dr.Hilmi Ku çu

Veri Toplama Yöntemleri. Prof.Dr.Besti Üstün

SÜREÇ YÖNETİMİ VE SÜREÇ İYİLEŞTİRME H.Ömer Gülseren > ogulseren@gmail.com

KLASİK MANTIK (ARİSTO MANTIĞI)

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB)

ÜÇGEN,TESTERE işaret ÜRETEÇLERi VE veo

Bölüm 4 Doğru Akım Devreleri. Prof. Dr. Bahadır BOYACIOĞLU

Deney 4: Güç Ölçümü. Şekil 4.1 : Alternatif akımda alıcıların akım ve gerilim vektörleri ile faz farkı

Ek 1. Fen Maddelerini Anlama Testi (FEMAT) Sevgili öğrenciler,

Elektrik ve Manyetizma

DENEY 1 Direnç Ölçümü

9. ÜNİTE TRANSFORMATÖRLER

OPERATÖRLER BÖLÜM Giriş Aritmetik Operatörler

Yedi Karat Kullanım Klavuzu. Yedi Karat nedir? Neden Karat?

OTOMATİK TRANSMİSYONLAR

Güç, enerji ve kuvvet kavramları, birimler, akım, gerilim, direnç, lineerlik nonlineerlik kavramları. Arş.Gör. Arda Güney

Atom Y Atom ap Y ısı

FOTOGRAMETRİK DEĞERLENDİRME - ÇİFT FOT. DEĞ. Analog ve Analitik Stereodeğerlendirme. Yrd. Doç. Dr. Aycan M. MARANGOZ

KIRILMA MEKANİĞİ Prof.Dr. İrfan AY MALZEME KUSURLARI

İLERİ YAPI MALZEMELERİ DERS-6 KOMPOZİTLER

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Görünüşler - 1

DA DEVRE. Ege Üniversitesi Ege MYO Mekatronik Programı ANALIZI

EEM 202 DENEY 5 SERİ RL DEVRESİ

MAT223 AYRIK MATEMATİK

KOMPANZASYON ve HARMONİK FİLTRE SİSTEMLERİ


Uluslararası beraberliği sağlamak ve birim kargaşasını önlemek amacıyla, fizikte birçok birim sistemi kullanılmaktadır.

Elektro Kaplamada Optimum Ko ullar

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır.

0 dan matematik. Bora Arslantürk. çalışma kitabı

REAKTİF GÜÇ KOMPANZASYONU VE HARMONİKLER

ENERJĠ DAĞITIMI-I. Dersin Kredisi

B02.8 Bölüm Değerlendirmeleri ve Özet

SEYAHAT PERFORMANSI MENZİL

EK III POTANSİYELİN TANIMLANMASI

VECTOR MECHANICS FOR ENGINEERS: STATICS

Basit Kafes Sistemler

EEM 334. Elektrik Makinaları Laboratuvarı

Bölüm 1. Elektriksel Büyüklükler ve Elektrik Devre Elemanları

MAKİNE VE MOTOR DERS NOTLARI 1.HAFTA

Yapı Kabuğunda Isı Kayıplarının Azaltılması ve Bir İyileştirme Projesi Örneği

Demir, nikel, kobalt gibi maddeleri çekme özelliği gösteren cisimlere mıknatıs denir.

RİSK ANALİZİ VE. İşletme Doktorası

ELEKTRİK FATURALARINIZDA REAKTİF CEZA ÖDÜYORMUSUNUZ? ELEKTRİK FATURALARINIZI DÜZENLİ OLARAK KONTROL EDİYORMUSUNUZ?

KAPLAMA TEKNİKLERİ DERS NOTLARI

DENEY DC Gerilim Ölçümü

ÖLÇÜ TRANSFORMATÖRLERİNİN KALİBRASYONU VE DİKKAT EDİLMESİ GEREKEN HUSUSLAR

BİLGİ TEKNOLOJİLERİ VE İLETİŞİM KURULU KARARI

TEMEL KAVRAMLAR BİRİM SİSTEMİ TEMEL NİCELİKLER DEVRE ELEMANLARI ÖZET

Elektrik Mühendisliğinin Temelleri-I EEM 113

UZUN ENERJİ NAKİL HATLARI İLE ENERJİ İLETİMİNİN ZORLUKLARI ve SİSTEM GÜVENİLİRLİĞNİ ARTIRMAK İÇİN ALINAN ÖNLEMLER Türkiye de elektrik enerjisinin

MİKRO İKTİSAT ÇALIŞMA SORULARI-10 TAM REKABET PİYASASI

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği

Akışkanlar Mekaniği. Dr. Osman TURAN. Makine ve İmalat Mühendisliği.

16. Yoğun Madde Fiziği Ankara Toplantısı, Gazi Üniversitesi, 6 Kasım 2009 ÇAĞRILI KONUŞMALAR

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon

Hızlandırıcı Fiziği-1. Veli YILDIZ (Veliko Dimov)

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz?

Konu 4 Tüketici Davranışları Teorisi

3- Kayan Filament Teorisi

ALPHA ALTIN RAPORU ÖZET 10 Kasım 2015

Saplama ark kaynağı (Stud welding) yöntemi 1920'li yıllardan beri bilinmesine rağmen, özellikle son yıllarda yaygın olarak kullanılmaktadır.

SAYI BASAMAKLARI. çözüm

Ders 2- Temel Elektriksel Büyüklükler

Transkript:

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207 Temel ElektronikI Doç. Dr. Hüseyin Sarı

1. Bölüm İçerik Enerji ve Enerji İletimi: İş, Enerji, Güç Elektrik Yükü Elektrik Akımı Potansiyel Farkı ve Gerilim Elektriksel Güç ve Enerji Elektrik Kaynakları ve Devre Öğeleri Direnç: Ohm Yasası İndüktans Sığa Temel Devre Yasaları: Kirchhoff Yasaları 2

Dersin Amacı Elektrik Mühendisliği, elektroniğin ve elektronik aygıtların, enerji dönüşüm ve elektromekanik dönüşüm aygıtlarının, denetim aygıtlarının ve düzeneklerinin devre kuramı ile ilgilenir. Bu derste bu mühendislik dalı için gerekli temel kavramların geliştirilmesi ve temel terimlerin tanımlanması ele alınacaktır. 3

İletken ve Yalıtkan e e e e e e Dielektrik ρ=0, J=0 Net yük yoğunluğu sıfırdır ve serbest dolaşan yük bulunmaz! Cam Porselen Plastik Metal ρ=0, J 0 Net yük yoğunluğu sıfırdır ancak serbest dolaşan yük (elektron) bulunur Alüminyum Bakır Altın 4

İletken, Yarıiletken, Yalıtkan Maddelerin elektriksel özellikleri bu maddelerin elektronik bant yapısı ile yakından ilgilidir Enerji T=0 o K T > 0 o K E g E g İletim Bandı Yasak Bant Değerlik Bandı Metal Yalıtkan Yarıiletken Enerji bantları tamamen dolu veya tamamen boş ise kristal yalıtkan gibi davranır çünkü elektrik alan uygulandığında bant içinde boş yerler olmadığı için elektronlar hareket edemezler (yük taşıyamazlar)! E g yalıtkan >> E g yarıiletken E g (Ge)=0,6 ev (yarıiletken) Eg (Si)=1,12 ev (yarıiletken) E g (C)=5,4 ev (yalıtkan) 5

Elektriksel İletim E Elektrik Alan=0 Elektrik Alan 0 Elektrik Alan=0 Elektrik Alan 0 E c E v n n T=0 o K T > 0 o K 1/T V A 1/T V A 6

Enerji ve Enerji İletimi: Enerji, İş, Güç F x İş=(Kuvvet).(Yer değiştirme) W=F.d İş birimi (SI birim sisteminde) Joule (kısaca J) [joule]=[newton].[metre] Dairesel harekette, kuvvet (F) ve yerdeğiştirme (x) dik olduğu için iş yapılmaz! Enerji, iş yapabilme yeteneğidir Güç=Enerji / Zaman P=W/t Güç birimi (SI birim sisteminde) Watt (kısaca W) [watt]=[joule] / [saniye] Güç, iş yapma hızıdır (enerji iletim hızı) Güç ile enerji arasındaki bağlılık nedeni ile çoğu kez biri diğeri cinsinden ifade edilir: Örneğin enerji birimi joule wattsaniye ya da kilowattsaat (1000x3600=3,6x10 6 wattsaniye) birimleri ile ifade edilir 7

Örnek 1.1: Elektrik enerjisi sabit bir hızla bir pile iletip orada 400 Watt ı kimyasal enerjiye dönüştürülerek saklanmaktadır. Olay süresince pile iletilen gücün % 20 si ısı biçimde kaybolmaktadır. Elektriğin kwsaat i 1.25 TL ise pili 10 saat yüklemek için harcanan enerji değerini ve maliyetini bulunuz. Çözüm: Isı ve pile giren toplam güç P b ise: 400 W0.2P b =P b => P b =500 W 10 saatte toplam enerji W b =(500 W)x(10 saat)=500 Wsaat=5 kwsaat Harcanan enerjinin maliyeti= (5 kwsaat)x(1.25 TL/(kWsaat))=6.25 TL Verim % 80 (kayıp % 20) 8

12 Elektrik Yükü Yük, Q ile gösterilir ve coulomb (kısaca C) olarak gösterilir. 1 elektronun yükü= 1.6x10 19 C dur. Buna göre 1 Coulomb a eşit bir elektrik niceliğinin oluşması için yaklaşık olarak 6.3x10 18 elektronun bir araya gelmesi gerekir. Yükler arasında oluşan kuvvet (F) Coulomb Yasası F Q. Q = k d 1 1 2 Q 1 F F Q 1 Elektrik Alan (E) E = Q k d 1 2 Q 1 E F Q 1 Q F = k d. Q = E. Q 1 2 1 1 Yükler arasındaki kuvvet, alan kavramı ile yorumlanabilir. Q 1 yükü (veya Q 2 ) etrafında bir elektrik alan (E) oluşturur. Bu alan içinde bulunan Q 2 (veya Q 1 ) etkilenir ve arada bir kuvvet oluşur. 9

13 Elektrik Akımı Mühendislik amaçları için durgun olan yüklerden çok hareket halindeki yüklerle ilgileniriz, çünkü enerji iletimi ancak hareket eden yüklerle sağlanabilir Akım, yalıtkanlar tarafından sınırlandırıldığı bu özel iletken yola devre denir. Akım, bir devre içindeki yükün akış hızına denir. Bir noktada bulunduğumuzu ve önümüzden geçen yükleri gözlediğimizi düşünelim. Her t saniyede Q Coulomb luk yükün düzgün hızda geçtiğini varsayalım Akımın (I) kararlı değeri Ani akım Notasyon I, Q (zamanla değişmeyen nicelikler) i, q (zamanla değişen nicelikler) i(t), q(t) Geçen yük miktarı I I i Q = t Genellikle yüklerin akış hızı zamanla değişir, böylece akımın değeri de değişir. Bu durumda bir devredeki ani akım i(t): = dq dt q = i( t) dt 10

Elektrik Akımı Akımın birimi (SI birim sisteminde) amper (kısaca A) 1 saniyede 1 coulomb luk yük aktığı zaman ortaya çıkan akım 1 amper dir [ amper] = [ coulomb] [ s] Ödev: Bir telden geçen akım 1 µa ise 4 saniyede kaç tane elektron akar? Akımın büyüklüğü kadar yönünü de belirlemeliyiz. Önceden yüklerin hareket ettiği düşünülerek yüklerin hareket yönü akımın yönü olarak kabul edilirdi. Şimdi de aynı kabul geçerli ancak iletimi çoğunlukla elektronlar (metallerde) sağladığı için akım yönü elektron hareketinin tersi yönüdür. I 11

Farklı Akım Şekilleri Doğru Akım Akım, I Akım, i(t) Alternatif Akım I t (zaman) t (zaman) 1 tam dönü (periyod) Doğru akım, zaman süresi içinde tüm yüklerin akışı yalnız bir yöndedir Pil, akü doğru akım kaynaklarına örnek olarak verilebilir. Alternatif akım, zaman süresi içinde yükler önce bir yönde ve sonra diğer yönde akarlar ve bu dönü belli frekanslarda yinelenir periyot=1/frekans Birimler: periyod [zaman]=saniye frekans [1/zaman]=1 /saniye= hertz (Hz) Türkiye deki şehir akımı (ve aynı zamanda gerilimi) alternatiftir ve frekansı 50 Hz dir (1 saniyede 50 12kez tam dönü yapar)

14 Potansiyel Farkı ve Gerilim: Kapalı Devre b c Pil E I I Lamba Amaç, pilden lambaya elektrik enerjisi taşınmasıdır a d Bunun için pil ve lamba arasına I akımını iletebilmek için tel bağlanır. Böylece tam bir iletken yol sağlanır ve bir tam devre ya da kapalı devre oluşur. 13

Açık ve Kapalı Devreler Devredeki tellerden biri çözülür (veya anahtar yardımı ile açılırsa) bir açık devre oluşur. Böyle devreye Açık Devre denir b c Pil E a I=0 AÇIK DEVRE Lamba d Açık decrede akım sıfırdır ve enerji taşınmaz. Lambanın uçları (cd) veya pilin uçları (ab) birleştirilirse (yanlışlıkla!) farklı bir devre elde edilir. Böyle devreye Kısa Devre denir. Pil E a b I=0 KISA DEVRE c d Lamba Kaynağın çıkış akımı oldukça yüksek (yıkıcı olabilecek) olacak ve akımın çok az bir kısmı lambadan geçecek ve lamba etkili enerji iletimi olmayacaktır. Böyle durumları önlemek için devreye sigorta bağlanır 14

Pil Normal bir devreyi düşünelim: b c Pil E I I Lamba a Devredeki I akımının sürekliliğini sağlamak için enerji sağlanması gerekir. Yüklerin tellerden ve lambadan akarken dağıttıkları (kaybettikleri) enerjileri bu yüklere vermek için yükler üzerinde iş yapılmalıdır. Bu iş ya da enerji kaynaktan elde edilir. Örneğin bu enerji pilde kimyasal enerjinin elektrik enerjisine dönüşmesi ile sağlanabilir. d Piller devreye enerji verir Pil E Gösterimi 15

Potansiyel FarkıGerilim Bir devredeki iki nokta arasında bir birimlik pozitif yükü hareket ettirmekle yapılan işe o noktalar arasındaki Potansiyel Farkı yada Gerilim denir. Başka bir deyişle gerilim, birim yük başına yapılan iştir. 1 coulomb luk yükü bir noktadan başka bir noktaya hareket ettirmek için yapılan iş 1 joule ise bu noktalar arasındaki potansiyel farkı 1 Volt (kısaca V) dur. Potansiyel farkı, elektrik enerji kaynağının potansiyel farkı olduğu zaman, buna çoğu kez elektromotor kuvvet ya da kısaca EMK denir b c Pil EMK Potansiyel artar (gerilim yükselmesi) E ab =120 V E a I I Lamba d Potansiyel azalır (gerilim azalması) E bc = 2.5 V E cd = 115 V E da = 2.5 V Gerilimin işareti, yükseltmeyi () veya azalmayı () göstermektedir. 16

AkımGerilim Ölçümü Akım devrenin her yerinde aynıdır. Bir devredeki akımı ölçmek için akımölçer (ampermetre) devredeki herhangi bir noktaya bağlanabilir. b I A c E Akım Ölçümü I a d Gerilim ise her noktada farklı olduğu için voltmetre, devrede gerilimin ölçüleceği noktalara bağlanır. b I c E a V ab I V cd d Gerilim Ölçümü Ölçü aletleri, idealde hiç güç tüketmez. (Ampermetrenin iç direnci sıfır, voltmetrenin ise sonsuzdur) 17

Elektriksel Güç ve Enerji Enerjiyi, elektriksel nicelikler cinsinden (Elektriksel Güç ve Enerji) nasıl ifade edebiliriz? Bir elektrik devresinde ya da devrenin bir kesiminde yapılan (W) iş ya da iletilen enerji, gerilimin ve yükün çarpımı olarak verilir. Elektriksel Enerji W = E. Q İş, sabit bir hızda yapılırsa ve toplam Q yükü, t saniyede E voltluk bir gerilim altında hareket ederse, güç Elektriksel Güç P W = = t E. Q t Uygulamada, yükten ziyade akım ile ilgilendiğimizden güç ifadesi P = E. I Güç Bu güç, uçlarındaki gerilim E, üstünden geçen akım I olan devre elemanının birim zamanda soğurduğu veya dışarıya verdiği enerjidir. Akım ve gerilimin her ikisi de zamanla değişiyor ise anlık güç p(t); p( t) = e( t). i( t) Ani Güç 18

TabloElektriksel Nicelikler Elektriksel Nicelik Simge Birim (SI) Eşitlik Mekanik Eşdeğer Yük q, Q Coulomb (C) Konum Akım i,i Amper (A) i=dq/dt Hız Potansiyel fark veya Gerilim e, E veya v, V Volt (V) e=dw/dt Kuvvet 19

Elektrik Birimleri ile Kullanılan Ön Ekler Büyük Nicelikler Küçük Nicelikler Kilo (k) 10 3 Mili (m) 10 3 Mega (M) 10 6 Mikro (µ) 10 6 Giga (G) 10 9 Nano (n) 10 9 Tera (T) 10 12 Piko (p) 10 12 20

Enerji ve Enerji İletimi: Enerji, İş, Güç Örnek 1.2: Şekildeki devrede lamba üzerinde 115 V luk bir gerilim vardır. I devre akımı 2.61 A dir. Lamba tarafından alınan güç nedir? Enerjinin kwsaat i 1.25 TL ise lambanın 10 saat kullanılması sonunda ödenecek ücret nedir? E=115 V I=2,61 A Lamba Çözüm: P=E.I=(115 V).(2.61 A)= 300 W W=E.I.t=(300 W).(10 saat)=3000 Wsaat=3.0 kwsaat Maliyet=(3.0 kwsaat).(1.25 TL/kWsaat)=3.75 TL 21

Elektrik Kaynakları ve Devre Öğeleri Elektrik Devresi, bir ya da daha çok elektrik enerjisini alıcısı ya da soğurucusu ile birleştirebilen bir ya da birçok kaynakla belirlenir. Kaynaklar R e(t) Soğurucular Akım Gerilim i(t) L Direnç İndüktans Sığa C 22

Elektrik Kaynakları İdeal Kaynaklar: Sabit bir gerilim ya da akım kaynağı sabit bir akım verir (uçlarına bağlanan devre elemanı ile değişmez) e(t), E i(t), I İdeal Gerilim Kaynağı İdeal bir gerilim kaynağının gerilim uçlarına bağlanan bağlantılarla değişmez. İdeal Akım Kaynağı İdeal bir akım kaynağının devreye sağladığı akım uçlarına bağlanan bağlantılarla değişmez. Gerçekte elektriksel kaynaklar ideal değildir ve 2. bölümde ele alınacaklardır. 23

Bağımlı (Denetli) Kaynak Türleri Bazı kaynak türlerinde ise kaynağın uçları arasındaki akım ya da gerilim, devrede bulunan bir başka gerilim ya da akımın bir fonksiyonudur. Bu kaynaklara bağımlı (denetli) kaynaklar denir ve elektrik üreteçleri ve transistoru içerir. Bağımlı kaynakların dört olası durumu aşağıda verilmiştir e 2 =Ae 1 e 1 i 2 =Ae 1 e 1 Gerilime bağlı gerilim kaynağı Gerilime bağlı akım kaynağı e 2 =Ai 1 i 2 =Ai 1 i 1 i 1 Akıma bağlı gerilim kaynağı Akıma bağlı akım kaynağı 24

Devre Elemanları (Öğeleri) Elektrik devresinin alıcı ya da soğurucu kesimini içeren bireysel bileşenlerine devre öğeleri ya da parametreleri denir. Devre öğelerindeki akım ve gerilimler arasındaki bağıntılar deneysel verilere dayanarak elde edilmiştir. Bu bağıntılar farklı üç türde olduğu için devre üç tür devre öğesi tanımlamak mümkündür 1. Tür: Üzerinden geçen akımla orantılı gerilim oluşan devreler. Bu tür devre elemanlarına direnç denir. Devre elemanı üstünde harcanan enerji ısı olarak kaybolur. 2. Tür: Üzerinden geçen akım, üzerindeki gerilimin zamana göre değişimi (türevi) ile orantılı devre elemanlarıdır. Orantı sabitine indüktans denir. Bu devre elemanı manyetik alan ile yakından ilişkilidir. 3. Tür: Üzerindeki gerilim, üzerindeki akımın zamana göre değişimi (türevi) ile orantılı devre elemanlarıdır. Orantı sabitine sığa denir. Bu devre elemanı, elektrik alan ile yakından ilişkilidir. 25

Direnç; Ohm Yasası Uçları arasındaki gerilim, üstünden geçen akım ile doğru orantılı olduğu devre elemanına direnç denir. e = R. i Birimi ise ohm (Ω) dur. Genel olarak, gerilimin akım ile orantılı olması Ohm Yasası olarak bilinir. Direnç üzerindeki güç kaybı: i R e Direnç, gerilim ve akım arasındaki orantı katsayısıdır ve R ile gösterilir. Gösterimi: R Birimi= Ohm (Ω) (1 Ω= 1 V/1 A) R=e/i => [ohm]=[volt] / [amper] Devrede gösterimi: Direncin mekanik eşdeğeri sürtünmedir. Direnç, elektrik yüklerine ya da harekete karşı koyar ve bu karşı koymayı yenmek için harcanan enerji ısı olarak kaybolur ( ) 2 p = e. i = R. i. i = Ri Akım cinsinden 2 e e p = e. i = e = R R Bir elektrik yükü bir direncin içinden geçerken enerji kaybettiğinden akım yönünde bir gerilim düşer Yüksek potansiyel i R e Gerilim cinsinden düşük potansiyel 26

İletkenlik, G Direnç için gerilim cinsinden akımı veren eşdeğer bir ifade yazılabilir. Bu durumda Ohm yasası i = G. e Burada G, direncin tersidir ve iletkenlik olarak bilinir. G 1 R İletkenlik Birimi ise mho (1 mho=1/ohm) İletkenlik G nin birimi mho dur ve özel bir anlamı yoktur. İletkenlik, dirençin tersi olduğundan birimi de direnç birimi olan ohm un tersten yazılışı mho dur. Direnç üzerindeki (iletkenlik cinsinden) güç kaybı: i p = e. i =. i = G 2 i G ( ) 2 p = e. i = e G. e = Ge Akım cinsinden Gerilim cinsinden 27

e = L di dt İndüktans1 Üzerindeki gerilim, kendisinden geçen akımın değişme hızı ile doğru orantılı olduğu devre elemanına indüktans denir. i L e Gerilim ve akım arasındaki orantı sabiti L, devrenin özindüktansı veya basitçe indüktansıdır. Birimi ise henry (kısaca H) olarak gösterilir. İndüktans, yük akış hızındaki değişimlere karşı koymanın bir ölçüsüdür. İndüktans üzerindeki gerilim biliniyor ise geçen akım İndüktans etkisi, mekanikte kuvvet ve hız arasındaki ilişkiye (kütle) benzer. F=dp/dt=m(dv/dt) olduğu için, mekanik sistemlerde kütle harekete karşı koyan orantı sabitidir (duran cismin hızlanmasını, hızlı cismin durmasını zorlaştırır. 1 i = e. dt L t= t 1 i = e. dt i(0) L t= 0 i(0): değişme olmadan önce akımın değeri 28

İndüktans2 İndüktans, artan akıma karşı koyar, azalan akıma yardım eder. e = L di dt İndüktans içinden geçen akım manyetik alan oluşturarak bu manyetik alandan etkilenir. İndüktans etkiden doğan güç Enerji di di p = e. i = L. i = il dt dt di 1 w = pdt = Li dt = Lidi = Li dt 2 2 İndüksel enerji, korunumlu ve geri alınabilen enerjidir (dirençte enerji ısı enerjisi olarak korunumsuz olarak harcanmaktadır) 29

Karşılıklıİndüktans Aynı manyetik alan içinde bulunan devrenin çiftlenmiş olduğu söylenir. Böyle bir devreye karşılıklı indüktans denir. i 1 akımı indükleme yolu ile II. devrede e 2 gerilim farkını oluşturur. i 1 M = di e2 M dt 1 e 2 I II Karşılıklı indüktans, M ile gösterilir devrenin özindüktansı veya basitçe indüktansıdır. Birimi ise henry (kısaca H) dir. 30

Karşılıklıİndüktans Eğer her iki devrede de akım var ise, her iki devrede de indükleme ve karşılıklı indükleme gerilimleri oluşur. i 1 M i 2 e 1 L 1 L 2 e 2 I II Devrelerde, özindüksiyon ve karşılıklı indüksiyondan kaynaklanan gerilim eşitliği di1 di2 e1 = L1 M dt dt di di e2 = L2 M dt dt 2 1 31

Örnek 1.3: Aşağıdaki devre ideal bir akım kaynağı ile uyarılmaktadır. Zamanın fonksiyonu olan akım eğrisi aşağıdaki şekilde verilmektedir. Zamanın fonksiyonu olarak e geriliminin, p ani gücünün ve depo edilen enerji w nın dalga biçimlerini çiziniz. i(t) e 10 H i(t)(amper) 2 t (saniye) 0 1 2 3 4 32

i(t)(a) 2 e(t) (V) 20 Çözüm i( t) = 2t 0 < t < 1 i( t) = i( t) = 2 1 < t < 3 i( t) = 2t 3 < t < 4 f ( t) = 2 0 < t < 1 di( t) f ( t) = = f ( t) = 0 1 < t < 3 dt f ( t) = 2 3 < t < 4 20 p(t) (W) 40 e( t) = 20 0 < t < 1 di( t) e( t) = L = Lf ( t) = e( t) = 0 1 < t < 3 dt e( t) = 20 3 < t < 4 p( t) = 40t 0 < t < 1 di( t) p( t) = e( t). i( t) = Li = e( t) = 0 1 < t < 3 dt e( t) = 40t 3 < t < 4 40 w(t) (J) 20 0 1 2 3 4 t (s) 2 w( t) = 20t 0 < t < 1 1 2 w( t) = Li = w( t) = 0 1< t < 3 2 w t = t < t < 2 ( ) 20(4 ) 3 4 33

de i = C dt Sığa Üzerinden geçen akım, uçları arasındaki gerilim değişme ile orantılı olan devre elemanına sığa denir. i(t) C e(t) Sığa, gerilimdeki değişme ve akım arasındaki orantı katsayısıdır ve C ile gösterilir. Birimi ise Farad (F) dır. Gösterimi: C Birimi= Farad(F) [Farad]= [Amper] / [Volt/s] Devrede gösterimi: Yüksek potansiyel i(t) C e düşük potansiyel Sığa üzerinden geçen akım biliniyorsa gerilim 1 e = ( i( t) dt ) = C q C 1 e = i( t) dt C Yük cinsinden q = Ce 34

Sığa2 Sığa üzerindeki güç kaybı: de de p = e. i = e C = Ce watt dt dt Depo edilen enerji de dt 2 w = pdt = Ce dt = Cede = Ce joule 1 2 Sığa üzerindeki enerji, sıkıştırılan ya da gerilen bir yayın potansiyel enerji depo etmesinde olduğu gibi sığada depo edilir. Bu enerjinin değeri yalnız gerilimin büyüklüğüne bağlıdır, bu değere nasıl olaştığından bağımsızdır. 35

Örnek 1.4: Aşağıdaki devrede 0,1 F lık bir sığa ideal bir akım kaynağı ile uyarılmaktadır. Zamanın fonksiyonu olan akım eğrisi aşağıdaki şekilde verilmektedir. Zamanın fonksiyonu olarak sığa üzerindeki e geriliminin, q yükünün, p gücünün ve depo edilen enerji w nın dalga biçimlerini çiziniz. i(t) e 0,1 F i(t)(a) 2.0 t (s) 0 0.5 1.0 36

i(t)(a) 2.0 e(t)(v) 10.0 q(t)(c) 1.0 Çözüm i( t) = 2 0 < t < 0.5 i( t) = i( t) = 0 0. 5 < t < 1.0 i( t) = 2t 0 < t < 0.5 f ( t) = i( t) dt = i( t) = sabit 0.5 < t < 1.0 1 i( t) = 20t 0 < t < 0.5 e( t) = idt = C i( t) = 10 0.5 < t < 1. 0 q( t) = 2t 0 < t < 0.5 q( t) = Ce( t) = q( t) = 10 0.5 < t < 1. 0 p(t)(w) 20.0 w(t)(j) 5.0 0 0.5 1.0 t (s) de p( t) = 40t 0 < t < 0.5 p( t) = Ce = dt p( t) = 0 0.5 < t < 1.0 1 = < < w( t) = Ce = 2 w( t) = 5 0.5 < t < 1. 0 2 2 w( t) 40t 0 t 0.5 37

Devre ElemanlarıÖzet Devre Elemanı Devre sembolü Sembol Birim Mekanik eşdeğer Enerji Direnç İndüktans Sığa R L C Ohm (Ω) Henry (H) Farad (F) Sürtünme Kuvveti Kütle Yay 2 2 e Ri veya R 1 2 2 Li 1 2 2 Ce 38

Elektrik Devreleri Elektrik devrelerinin temel yasaları elektrik devre elemanlarının özelliklerinden elde edilir. Bu temel yasalar karmaşık elektrik devrelerinin sistematik bir biçimde incelenmesini ve çözümlenmesini sağlar. R 1 R 3 e(t) i(t) L 1 C 1 R 2 C 2 R 4 i(t) R 2 üzerindeki gerilim (akım) nedir? Devreden akım dolaştırabilmek (bir iş yapmak) için ne kadarlık bir kaynak 39 ile besleme yapmam gerekir?

Temel Devre Yasaları: Kirchhoff Yasaları Elektrik devrelerinin temel yasaları elektrik devre elemanlarının özelliklerinden elde edilir. Bu temel yasalar karmaşık elektrik devrelerinin sistematik bir biçimde incelenmesini ve çözümlenmesini sağlar. Bu yasalar Kirchhoff yasaları olarak bilinir ve iki temel yasadan oluşur. Bunlarda 1 Akım Yasası (KAY) (Yüklerin Korunumu) 2 Gerilim Yasası (KGY) (Enerjinin Korunumu) 40

Kirchhoff Akım Yasası (KAY) 1Bir kavşak noktasına doğru yönelmiş tüm akımların cebirsel toplamı sıfırdır. Kavşak noktası, devre elemanlarına ya da kaynaklarına üç ya da daha fazla bağlantının yapıldığı bir noktadır. Kavşak noktası Kavşak noktası değil! Kavşak noktasına: gelen akımlar pozitif ayrılan akımlar negatif alınır. i 1 i 2 i 5 i 3 i 4 i1 i2 i3 i4 i5 = 0 41

Örnek 1.5: Aşağıdaki devrede verilen akım ve gerilimler biliniyor; i 2 =10e 2t A, i 4 =4sin(t) A ve e 3 =2e 2t V. e 1 değerini bulunuz. i 1 i 2 =10e 2t A e 1 =? i 2 e 3 3 H i 4 i 3 2 F e 3 =2e 2t V R e i 4 =4sin(t) A 42

Çözüm: KAY ereği A noktasına gelen akımların cebirsel toplamı sıfır olmak zorunda olduğundan i1 i2 i3 i4 = 0 e 1 i 1 i 2 =10e 2t A e 3 =2e 2t V 3 H i 4 =4sin(t) A A i 3 2 F R e i 2 ve i 4 akımları biliniyor, i 3 akımı bulunabilir. de d 3 2 (2 ) 4( 2) 8 dt dt 3 2t 2t 2t i = C = e = e = e A i 1 akımı i = i i i 1 4 2 3 i1 = 4sin t 10e 8e = 4sin t 2e e 3 gerilimi 2t 2t 2t di d e L t e dt dt 2t = 12 cost 12e V 1 2t 1 = = 3 (4sin 2 ) bulunur 43

Kirchhoff Gerilim Yasası (KGY) 2 Kapalı bir ilmek çevresinde belirlenen bir yönde alınan tüm gerilimlerin cebirsel toplamı cebirsel toplamı sıfırdır. Kavşak noktası, devre elemanlarına ya da kaynaklarına üç ya da daha fazla bağlantının yapıldığı bir noktadır. R e 1 L e R Kapalı ilmek e L İlmek boyunca: potansiyelin arttığı noktalar pozitif potansiyelin azaldığı noktalar negatif R e 1 L e R e L e e e = 1 R L 0 44

Örnek 1.6: Aşağıdaki devrede bir elektrik devresinin bir kesimini göstermektedir. Bu kesimde; e 1 =4 V, e 2 =3cos(2t) V ve i 3 =2e t/5 A. i 4 akımını bulunuz. e 2 e 1 10 F e 3 e 4 i 3 5 H i 4 =? 45

Çözüm: KGY gereği ilmek boyunca gerilimlerin cebirsel toplamı sıfır olduğundan e3 e2 e1 e4 = 0 e 2 e 1 e 3 10 F e 4 i 5 H 3 i 4 e 1 ve e 4 gerilimleri biliniyor, e 3 gerilimi bulunabilir. e 4 gerilimi i 4 akımı di d 3 5 (2 ) 2 dt dt 3 t 5 t 5 e = L = e = e V e = e e e 4 3 2 1 e = e t V t 5 4 2 3cos(2 ) 4 de d i4 C e t dt dt t 5 = 4e 60sin(2 t) A 4 t 5 = = 4 ( 2 3cos(2 ) 4) bulunur 46

Bundan sonra ne yapılacak?.. Temel elektrik devre elemanları ve devre elemanlarının karakteristiği ve tepkileri öğrenildi. Bir devrenin analizi, Kirchhoff un yasalarından elde edilebilir. akım ve gerilim Bu kuralların uygulanmasını düzene koyan ve böylece özel problemlerin çözümünü kolaylaştıran Devre Kuramı bir sonraki bölümde ayrıntılı olarak incelenecektir. 47