MARMARA ÜNİVERSİTESİ TEKNİK EĞİTİM FAKÜLTESİ



Benzer belgeler
MARMARA ÜNİVERSİTESİ TEKNİK EĞİTİM FAKÜLTESİ

MARMARA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI Numara: Adı Soyadı: SORULAR-CEVAPLAR

Güç Aktarma Organları -Giriş-

MARMARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNE MÜHENDİSLİĞİ YÜKSEK LİSANS. TAŞITLARDA GÜÇ İLETİMİ -Hesaplamalar-

Isı Kütle Transferi. Zorlanmış Dış Taşınım

FLUID MECHANICS PRESSURE AND MOMENTUM FORCES A-PRESSURE FORCES. Example

(b) Model ve prototipi eşleştirmek için Reynolds benzerliğini kurmalıyız:

Unlike analytical solutions, numerical methods have an error range. In addition to this

Tekirdağ&Ziraat&Fakültesi&Dergisi&

ÇEV-220 Hidrolik. Çukurova Üniversitesi Çevre Mühendisliği Bölümü Yrd. Doç. Dr. Demet KALAT

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4

SORU #1. (20 p) (İlişkili Olduğu / Ders Öğrenme Çıktısı: 1,5,6 Program Çıktısı: 1)

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

AKIŞKANLAR MEKANİĞİ-II

ÇEVRESEL TEST HİZMETLERİ 2.ENVIRONMENTAL TESTS

GEMİ DİRENCİ ve SEVKİ

MARMARA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

Atıksu Arıtma Tesislerinde Hava Dağıtımının Optimize Edilmesi ve Enerji Tasarrufu

Uluslararası Yavuz Tüneli

Viskozite, Boyutsuz Reynolds Sayısı, Laminer ve Türbülanslı akımlar

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

GERİ KAZANIMLI FREN SİSTEMİ "REGENERATIVE ENERGY" REGEN ENERGY REJENERATİF ENERJİ

SBR331 Egzersiz Biyomekaniği

3. AKIŞKANLARDA FAZ DEĞİŞİKLİĞİ OLMADAN ISI TRANSFERİ

PROFİL LİSTESİ P 232 Sürme Seri Sistemi Ana ve Yardımcı Profiller

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU

Tek ve İki Bina Etrafındaki Rüzgar Etkilerinin Sayısal Olarak İncelenmesi

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii

AKM BÖLÜM 11 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı

Akışkanlar Mühendisliği 1. Giriş ve genel bilgiler. İçerik: Jet Motoru

Alınan Puan NOT: Yalnızca 5 soru çözünüz, çözmediğiniz soruyu X ile işaretleyiniz. Sınav süresi 90 dakikadır. SORULAR ve ÇÖZÜMLER

FLOWING FLUIDS and PRESSURE VARIATION

THE DESIGN AND USE OF CONTINUOUS GNSS REFERENCE NETWORKS. by Özgür Avcı B.S., Istanbul Technical University, 2003

Bölüm 8: Borularda sürtünmeli Akış

Ad Soyad: Öğrenci No:...

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Grup Adı: Sıvı Seviye Kontrol Deneyi.../..

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

DENEY MONTAJ ŞEMASI I II III ON-OFF VALF BORU KESİTİ

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFERİ LABORATUARI

AERODİNAMİK KUVVETLER

YELKEN FİZİĞİ. Murat AYCİBİN

SIĞ SUDA YAN YANA SIRALI İKİ SİLİNDİR ARKASINDA OLUŞAN AKIŞ YAPISININ PASİF YÖNTEMLE KONTROLÜ 1

Bölüm 5: Sonlu Kontrol Hacmi Analizi

WEEK 11 CME323 NUMERIC ANALYSIS. Lect. Yasin ORTAKCI.

SORU #1. (20 p) (İlişkili Olduğu / Ders Öğrenme Çıktısı: 1,5,6 Program Çıktısı: 1)

Yüz Tanımaya Dayalı Uygulamalar. (Özet)

AKIŞKAN STATİĞİNİN TEMEL PRENSİPLERİ

Damperler / Dampers. RGS International HVAC Equipment.

MALZEME Ürün kasası 1 mm DKP sacdan sıvama yöntemiyle imal edilirken, kanatlar ise galvaniz veya DKP sacdan imal edilmektedir.

TAŞINIMIN FİZİKSEL MEKANİZMASI

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER

YER HİZMETLERİ VE RAMP - I. Öğr. Gör. Gülaçtı ŞEN

AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

ÇÖZÜM 1) konumu mafsallı olup, buraya göre alınacak moment ile küçük pistona etkileyen kuvvet hesaplanır.

SES-ÜSTÜ KANARD KONTROLLÜ FÜZELER İÇİN SERBEST DÖNEN KUYRUĞUN ŞEKİL OPTİMİZASYONU

DENEYSAN EĞİTİM CİHAZLARI SAN. VE TİC. LTD. ŞTİ.

T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 2

2: MALZEME ÖZELLİKLERİ

1. Aşağıda verilen fiziksel büyüklüklerin dönüşümünde? işareti yerine gelecek sayıyı bulunuz.

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNE MÜHENDİSLİĞİ ANABİLİM DALI

MARMARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNE MÜHENDİSLİĞİ YÜKSEK LİSANS. TAŞITLARDA GÜÇ İLETİMİ -Hesaplamalar-

KAYMALI YATAKLAR I: Eksenel Yataklar

Performans Tabloları Yalınkat Camlar

FÜZE KANADININ SES-ÜSTÜ UÇUŞ KOŞULUNDAKİ AEROELASTİK ANALİZİ

VENTURİMETRE DENEYİ 1. GİRİŞ

3. GEMİ DİRENCİ, GEMİ DİRENCİNİN BİLEŞENLERİ, SINIR TABAKA

KLİMA SANTRALLERİNDEKİ BOŞ HÜCRELER İÇİN TASARLANAN BİR ANEMOSTAT TİP DİFÜZÖRÜN AKIŞ ANALİZİ

Yrd. Doç. Dr. Tolga DEMİRCAN. Akışkanlar dinamiğinde deneysel yöntemler

R1234YF SOĞUTUCU AKIŞKANININ FİZİKSEL ÖZELLİKLERİ İÇİN BASİT EŞİTLİKLER ÖZET ABSTRACT

Engineering Mechanics: Statics in SI Units, 12e. Equilibrium of a Particle

Wick Drain. Machines - 7 -

AÇIK KANAL AKIMI. Hopa Yukarı Sundura Deresi-ARTVİN

Kar Mücadelesi. Prof.Dr.Mustafa KARAŞAHİN

AKM 205 BÖLÜM 8 - UYGULAMA SORU VE ÇÖZÜMLERİ

Hareket Kanunları Uygulamaları

VHR ER ENERJİ GERİ KAZANIM CİHAZLARI VHR ER ENERGY RECOVERY UNITS

Akışkanların Dinamiği

AĞIR YAĞ SIVI YAKIT BRÜLÖRLERİ FUEL OIL BURNERS

BÜLENT ECEVİT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK490 Makine Laboratuarı Dersi Akışkanlar Mekaniği Deneyi

SU ÜRÜNLERİNDE MEKANİZASYON

Otomotiv Kabloları Automotive Cables

GÜZ DÖNEMİ AKIŞKANLAR MEKANİĞİ ÇÖZÜMLÜ SORULARI Bölüm 7 (Boyut Analizi ve Benzerlik) Prof. Dr. Tahsin Engin

Orifis, Nozul ve Venturi Tip Akışölçerler

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ

MAKİNE MÜHENDİSLİĞİNE GİRİŞ Ders 4

Akışkanlar Mekaniği Yoğunluk ve Basınç: Bir maddenin yoğunluğu, birim hacminin kütlesi olarak tanımlanır.

Beton-Tasarım Koleksiyonu. Cement-Design Collection. Daha fazla beton dekorları ve bilgiler için:

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü

3.1. Basınç 3. BASINÇ VE AKIŞKAN STATİĞİ

ISI DEĞĠġTĠRGEÇLERĠ DENEYĠ

( ) ARASI KONUSUNU TÜRK TARİHİNDEN ALAN TİYATROLAR

DÜZ FLAPLI POZİTİF KAMBURA SAHİP NACA 4412 KANAT PROFİLİNİN AERODİNAMİK PERFORMANSININ BİLGİSAYAR DESTEKLİ ANALİZİ

GÜÇ-TORK. KW-KVA İlişkisi POMPA MOTOR GÜCÜ

SÜRTÜNME Buraya kadar olan çalışmalarımızda, birbirleriyle temas halindeki yüzeylerde oluşan kuvvetleri etki ve buna bağlı tepki kuvvetini yüzeye dik

RÜZGAR ETKİLERİ (YÜKLERİ) (W)

MM103 E COMPUTER AIDED ENGINEERING DRAWING I

BINDER GROUP. Latest Innovation for Energy Efficient Aeration Air Control Systems Verimli Havalandırma Sistemlerinde En Yeni Çözümler

Determining the Static Pressure Distribution over the Circular Finite Cylinder in Low Speed Wind Tunnel

Transkript:

MARMARA ÜNİVERSİTESİ TEKNİK EĞİTİM FAKÜLTESİ Aerodinamik Özellikler ve Direnç Katsayısının Ölçülmesi HAZIRLAYAN: Yrd. Doç. Dr. Abdullah DEMİR

Aerodinamik Geometrik benzerlik: Boyutlar(uzunluklar) arasındaki oranı esas alır. Bir koordinat sisteminde bütün boyutlar (genişlik, uzunluk ve derinlik) aynı lineer ölçek oranına sahipse model ve prototip geometrik olarak benzer kabul edilir.

Dinamik benzerlik Akışkanlar mekaniğinde Reynolds sayısı, bir akışkanın, atalet kuvvetlerinin (v s ρ) viskozite kuvvetlerine (μ/d) olan oranıdır. Dinamik benzerliği tanımlamak için kullanılır. İki geometrik olarak benzer akış modeli, akış değerleri farklı olan iki farklı sıvı içinde olsalar bile, eğer aynı ilgili katsayıya sahip iseler, bunlara dinamik benzer denir. Örneğin bir sineğin kanadının nasıl çalıştığını anlayabilmek için sinek kanadının büyütülmüş modelleri su içerisinde çalıştırılıp daha yavaş bir hızda aynı olay gerçekleştirilip gözlenebilmektedir. Burada önemli olan suyun ve havanın çalışma koşullarında aynı Re sayısına sahip olmalarıdır. Aerodinamik Dynamic Similarity exists between the model and the prototype when forces at corresponding points are similar

Aerodinamik Akış ayrılması: Akış ayrılması, sınır tabakanın ters basınç gradyanından yeteri kadar uzakta hareket etmesi durumunda oluşur ki bu durumda sınır tabakasının hızı neredeyse sıfıra düşer. Akışkan akımı cisim yüzeyinden ayrılır ve bunun yerine girdaplar ve çevrimler oluşturur. http://www.grc.nasa.gov/www/bgh/images/reynolds.gif v s -akışkanın hızı d-boru çapı μ - akışkanın dinamik viskozitesi ν -akışkanın kinematik viskozitesi: ν = μ / ρ ρ - akışkanın yoğunluğu

Araç Aerodinamiği Effect of cd A on fuel consumption (mid-sized vehicle) Bosch Automotive Handbook

Araç Aerodinamiği Bosch Automotive Handbook Aerodynamic effects on vehicle functions

Rüzgar Tüneli Lift, drag and pitching moment Side force, yawing moment and rolling moment

Araçlarda aerodinamik direncin en önemli kaynakları Gövde direnci: Basınç dağılımının yatay bileşeninden dolayı oluşur. Akışkan direnci: Türbülansların oluşmasından ve aerodinamik kaldırma kuvvetinden dolayı oluşur. Sürtünme direnci: Taşıt dış yüzeyinin hava ile temasından dolayı oluşur İç hava akımı: Taşıt sistemi içindeki boşluklarda havanın dolaşmasından dolayı oluşur. Mak. Müh. Tayfur Kerem Demircioğlu, Bir Araç Modelinin Aerodinamik Analizi ve Sonlu Elemanlar Yöntemi İle Simülasyonu, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Makine Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, Balıkesir, Ağustos 2007.

Araç Aerodinamiği Composed of: 1. Turbulent air flow around vehicle body (85%) 2. Friction of air over vehicle body (12%) 3. Vehicle component resistance, from radiators and air vents (3%) P M V Subbarao, Energy Consumption & Power Requirements of A Vehicle

Rüzgar tüneli testleri küçük ölçekli modeller ile başlamıştır. Küçük ölçekli modeller ile test işlemi tam ölçekli modellere göre daha ucuz ve basit olması bakımından avantajlıdır. Ancak ölçekli modeller ile elde edilen sonuçlar tam ölçekli modeller ile elde edilen sonuçların doğruluğunu verememektedir. Bunun temel nedeni geometrik benzerliğin tam olarak sağlanamaması ve Reynolds sayısının beklenmeyen etkileridir. Ayrıca küçük ölçekli test işleminde model ve prototip arasında Reynolds sayısı eşliğinin sağlanabilmesi oldukça güçtür. Rüzgar Tüneli

Rüzgar Tüneli Taşıtların direnç katsayıları hava (rüzgar) tüneli yardımıyla ölçülür. Direnç katsayısı bulunurken hava tünelinin büyüklüğüne göre orijinal veya model taşıt kullanılmaktadır. Direnç kuvvetini ölçmek için uzama telli kuvvet ölçer/ler/ kullanılmaktadır.

Araç Aerodinamiği Aerodynamic drag is calculated as FL = 0.5 ρ cd A (v+ v 0 ) 2 A taşıt kesit alanını, V taşıtın rüzgâra göre bağıl hızını, ρ havanın yoğunluğunu (1,255 kg/m³) göstermektedir. ρ = 1.226 kg/m^3 hava yoğunluğu (1.0133 bar ve 15 ocda) Cd*: hava direnci katsayısı Otomobillerde : 0.3-0,4; kamyonlarda : 0.8 A : kesit alanı. Otomobillerde 1.85 m^2 ; kamyonlarda 8 m2 alınabilir. Not: Bazı kaynaklarda cd bazı kaynaklarda cw olarak kullanılmaktadır Aerodynamic effects on vehicle functions Bosch Automotive Handbook

Automotive Handbook 1) No headwind (υ0 = 0).

Araç Aerodinamiği Table 1. cw values for various vehicles Vehicle (Examples) cd A / m2 Audi A8 0,29 2,25 Porsche 911 0,29 1,95 Mercedes C 200 D 0,30 2,05 Bosch Automotive Handbook

Araç Aerodinamiği Figure (a) Typical static pressure coefficient distribution; (b) The force acting on a surface element An Introduction to Modern Vehicle Design Edited by Julian Happian-Smith

Araç Aerodinamiği Figure (a) Typical static pressure coefficient distribution; (b) The force acting on a surface element An Introduction to Modern Vehicle Design Edited by Julian Happian-Smith

Araç Aerodinamiği Araçlarda aerodinamik direncin en önemli kaynakları Gövde direnci: Basınç dağılımının yatay bileşeninden dolayı oluşur. Akışkan direnci: Türbülansların oluşmasından ve aerodinamik kaldırma kuvvetinden dolayı oluşur. Sürtünme direnci: Taşıt dış yüzeyinin hava ile temasından dolayı oluşur İç hava akımı: Taşıt sistemi içindeki boşluklarda havanın dolaşmasından dolayı oluşur. Tekerleklerin dönmesinden dolayı ve taşıtın altından geçen hava aerodinamik direnci arttırır. Akışın bölgesel olarak hızlanmasına ve yavaşlamasına sebep olan veya akışın yönünü değiştiren taşıt yüzeyindeki her şekil gövde direncine eklenir. Yolcu bölümünde hava ön cama geldiği zaman ivmelenir ve yön değiştirir bu yüzden taşıtın kesit alanındaki ani değişiklikler mümkün olduğu kadar azaltılmalıdır. Hava akışının kanallardan iletilmesi işleminden kaçınılmalıdır. Bölgesel hava akışlarını taşıt üzerinden kolaylıkla ileten şekiller bölgesel hız artışlarına sebep olurlar. Bunun gibi bölgesel hava jetleri taşıtın üzerindeki ana hava akış şeklini keserler ve çevresindeki havadan daha hızlı hareket etmesinden dolayı türbülansa sebep olurlar, bu da gövde direncine eklenir. Kaynak: Mak. Müh. Tayfur Kerem Demircioğlu, Bir Araç Modelinin Aerodinamik Analizi ve Sonlu Elemanlar Yöntemi İle Simülasyonu, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Makine Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, Balıkesir, Ağustos 2007.

Araçlarda aerodinamik direncin en önemli kaynakları Taşıtın arka tarafında, kesit alanındaki ani değişiklikten dolayı hava akışının yavaşladığı bir viskoz sınır tabaka vardır. Bu basıncın artmasına ve ayrılma noktasına kadar ya da hava akışı dış ortamın hava şartlarına uyana kadar akışın basınca karşı iş yapmasına yol açar. Ayrılma çizgisi (separation line) yüzey üzerindeki oldukça küçük objeler sebebiyle veya tasarımdaki ufak detaylardan dolayı aniden meydana gelebilir, bunun için bu bölgenin tasarımına oldukça dikkat edilmelidir. Taşıtın arka tarafının tasarımının aerodinamik direncinin düşürülmesi; deneysel ölçümlerden taşıtın arka kısmının bölgesel hava akışına göre negatif eğimli olması gerektiği görülür. Gelen hava akımındaki türbülans oranı veya yüzeyin pürüzlülüğü gibi durumlar kritik açının değerini belirler, taşıtın arka tarafında yüzeyin bölgesel hava akımına göre eğimi 3 ila 5 yi geçmemelidir, geçilirse hava akışı ayrılışı tetiklenir. Bu fast-back olarak bilinen taşıt tasarımlarının ortaya çıkmasına sebep olmuştur (Şekil: a, b). Taşıtın yan kısımlarının tasarımı da gözönüne alındığı takdirde taşıtın arka yüzey alanı küçülür ve aerodinamik direnç düşer. Araç Aerodinamiği Şekil: (a) Fastbackotomobil, (b) normal binek otomobil Kaynak: Mak. Müh. Tayfur Kerem Demircioğlu, Bir Araç Modelinin Aerodinamik Analizi ve Sonlu Elemanlar Yöntemi İle Simülasyonu, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Makine Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, Balıkesir, Ağustos 2007.

Araç Aerodinamiği Figure: (a) Squareback large scale flow separation. (b) Hatchback/Fastback vortex generation Figure demonstrates two alternative flow structures that may occur at the rear of the vehicle. The first (Figure a) occurs for squareback shapes and is characterized by a large, low pressure wake. Here the airflow is unable to follow the body surface around the sharp, rear corners. The drag that is associated with such flows depends upon the cross-sectional area at the tail, the pressure acting upon the body surface and, to a lesser extent,uponenergythatisabsorbedbythecreationofeddies.boththemagnitudeofthe pressure and the energy and frequency associated with the eddy creation are governed largelybythespeedofthevehicleandtheheightandwidthofthetail.averydifferent flowstructurearisesiftherearsurfaceslopesmoregentlyasisthecaseforhatchback, fastback and most notchback shapes(figure b). An Introduction to Modern Vehicle Design Edited by Julian Happian-Smith

Araç Aerodinamiği Araçlarda aerodinamik direncin en önemli kaynakları Bu tasarım bize ayrılma çizgisinin hemen hemen taşıtın arka kenarında oluşmasından dolayı bir optimizasyon sağlar. Hava akışının ayrılmasına diğer bir etkende arka yüzeyler üzerine yerleştirilen çeşitli çıkıntılardır. Örnek olarak taşıt gövdesine iyi yerleştirilememiş camlar ayrılma çizgisini taşıtın arka kenarından daha önce olmasına yol açar ve aerodinamik direnci arttırır. Lastiklerin oluşturduğu ark, içinde bulundukları boşluktan hava akışının geçmesiyle meydana gelmektedir. Lastiğin dönmesi ve alttan gelen hava ile karşılaşması ön ve arka tekerleklerde havanın lastik boşluğunu izlemesine ve türbülanslar oluşturarak uzaklaşmasına yol açar. Yağışlı bir gün sonrasında taşıtın ön ve arka çamurluklarına bakıldığında oluşan bölgesel türbülans, çamur ve diğer pisliklerin çamurluğa yapışmasına yardımcı olurlar. Kaynak: Mak. Müh. Tayfur Kerem Demircioğlu, Bir Araç Modelinin Aerodinamik Analizi ve Sonlu Elemanlar Yöntemi İle Simülasyonu, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Makine Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, Balıkesir, Ağustos 2007.

Şekil 2 den görüldüğü gibi ön lastikten sonra hava akımı, oluşan türbülanslarla taşıtın yan kenarı boyunca hareket ederken tekrar birleşirler. Arka lastiklerde meydana gelen hava akımı ayrılması genellikle taşıtın arka tarafındaki hava akımı ile birleşir. Bu durum arkada meydana gelen hava boşluğunun daha da büyümesine yol açar ve aerodinamik kuvveti artırır. Lastiklerin bulunduğu boşluğu kısmen veya tamamen kapatmak bu sorunu çözebilir. Arka lastiklerde tamamen kapatılabilinmesine rağmen ön lastikler hareketli olduğu için çok zordur. Üstü açık spor otomobillerde hava akışının ayrılması genellikle ön camın bittiği noktada başlar. Taşıtın neredeyse tüm kesit alanında hava boşluğu meydana gelmesini sağlar ve oluşan aerodinamik direnç oldukça artar. Maksimum kesit alanını mümkün olduğunca azaltmak aerodinamik direnci düşürmenin en iyi yoludur. Araç Aerodinamiği Şekil 2: Taşıtın lastik boşluklarında meydana gelen hava akımı ayrılmasının şekli Kaynak: Mak. Müh. Tayfur Kerem Demircioğlu, Bir Araç Modelinin Aerodinamik Analizi ve Sonlu Elemanlar Yöntemi İle Simülasyonu, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Makine Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, Balıkesir, Ağustos 2007.

Araç Aerodinamiği Effectof Δcdin % Lowering vehicle height by 30 mm approx. 5 Smooth wheel covers 1... 3 Wide tires +2...+4 Windows flush with exterior approx. 1 Sealing body gaps 2... 5 Underbody panels 1... 7 Concealed headlamps +3...+10 Outside rear-view mirrors +2...+5 Airflow through radiator and engine compartment +4...+14 Brake cooling devices +2...+5 Interior ventilation approx. +1 Open windows approx. +5 Open sunroof approx. +2 Roof-mounted surfboard rack approx. +40 Note: During the early stages in the design and development process most testing is performed using smallscalemodelswhere¼scaleisthemostpopular. Bosch Automotive Handbook

Araç Aerodinamiği Etkileri c d [%] Taşıtın Yüksekliğini 30 Mm Düşürme Yaklaşık 5 Düzgün Teker Jantları -1...-3 Geniş Lastikler +2...+4 Harici Cam Parlatmayla Yaklaşık 1 Contalı Gövde/ Karoseri Boşlukları -2...-5 Düşük Gövde Panelleri -1...-7 Gizlenebilir Farlar +3...+10 Dışarıdaki Arkayı Gösteren Farlar +2...+5 Radyatör Ve Motor Kompartmanı Arasındaki Hava +4...+14 Akışı Fren Soğutma Tertibatları +2...+5 Harici Havalandırma Yaklaşık +1 Açık Camlar Yaklaşık +5 Açık Tavan Yaklaşık +2 Dikey Açılı Olan Tavan Yaklaşık +40 Bosch Automotive Handbook

Araç Aerodinamiği α cd cd in % 50 0.345 55 0.342 0.8 65 0.340 1.4 40 0.349 + 1.1 30 0.349 + 1.1 0 0.369 + 7.0 Effectof windshieldslopeα on thecdvalueseetable( = better, + = worse) Bosch Automotive Handbook

Coast-Down Test Not: Ürün doğrulama ve test pistleri kısmında incelenecektir Propulsion Systems for Hybrid Vehicles, IET Power and energy series 45 Series Editors: Professor A.T. Johns Professor D.F. Warne

EK KISIMLAR

Rüzgar Tüneli Wind tunnel testing Very few new cars are now developed without a significant programme of wind tunnel testing. There are almost as many different wind tunnel configurations as there are wind tunnels and comparative tests have consistently shown that the forces and moments obtained from different facilities can differ quite considerably. However, most manufacturers use only one or two different wind tunnels and the most important requirement is for repeatability and correct comparative measurements when aerodynamic changes are made. During the early stages in the design and development process most testing is performed using small scale models where 1/4 scale is the most popular. The use of small models allows numerous design features to be tested in a cost effective manner with adequate accuracy. For truly accurate simulation ofthe full scale flow it is necessary to achieve geometric and dynamic similarity. The latter requires the relative magnitudes of the inertia and viscous forces associated with themovingfluidtobemodelledcorrectlyandtheratioofthoseforces is given by a dimensionless parameter known as Reynolds number (Re): An Introduction to Modern Vehicle Design Edited by Julian Happian-Smith

Rüzgar Tüneli where ρ is the fluid (air) density, u is the relative wind speed, d is a characteristic dimensionandμisthedynamicviscosityofthefluid.fortestinginairthis expression tellsusthattherequiredwindspeedisinverselyproportionaltothescaleofthemodelbutin practice the velocities required to achieve accuracy(using the correct Reynolds number) for small scale models are not practical, and Reynolds number similarity is rarely achieved. Fortunately, the Reynolds numbers achieved even for these small models are sufficiently high to create representative, largely turbulent vehicle surface boundary layers, and the failure to achieve Reynolds number matching rarely results in major errors in the character of the flow. The highest wind speeds at which models can be tested in any particular wind tunnel are morelikelytobelimitedbythegroundspeedthanbytheairspeed.theforwardmotionofa vehicle results not only in relative motion between the vehicle and the surrounding air butalsobetweenthevehicleandtheground.inthewindtunnelitisthereforenecessaryto movethegroundplaneatthesamespeedasthebulkairflow,andthisisusuallyachievedby theuseofamovingbeltbeneaththemodel. At high speeds problems such as belt tracking and heating may limit the maximum running speed, although moving ground plane technology has improved rapidly in recent years with the developments driven largely by the motor racing industry for whom ground effect is particularly important. A considerable volume of literature is available relating to the influence of fixed and moving ground planes upon the accuracy of automotive wind tunnel measurements(for example Howell, 1994, Bearman et al., 1988). An Introduction to Modern Vehicle Design Edited by Julian Happian-Smith

Rüzgar Tüneli The use of larger models has benefits in terms of Reynolds number modelling and also facilitates the modelling of detailed features with greater accuracy, but their use also requires larger wind tunnels with correspondingly higher operating and model construction costs. The forces acting upon a wind tunnel model are usually measured directly using a force balance which may be a mechanical device or one of the increasingly common strain gauge types. The latter has clear benefits in terms of electronic data collection and their accuracy is now comparable to mechanical devices. Electronic systems are also essential if unsteady forces are to be investigated. Lift, drag and pitching moment measurements are routinely measured and most modern force balances also measure side force, yawing moment and rolling moment. These latter three components relate to the forces that are experienced in cross-wind conditions. Although direct force measurements provide essential data they generate only global information and provide little guidance as to the source of the measured changes or of the associated flow physics. That additional information requires detailed surface and wider flow-field measurements of pressure, velocity and flow direction if a more complete understanding is to be achieved. Such data are now becoming available even from transient flow studies (e.g. Ryan and Dominy, 1998), but the measurements that are necessary to obtain a detailed understanding of the flows remain surprisingly rare despite the availability of well-established measurement techniques. An Introduction to Modern Vehicle Design Edited by Julian Happian-Smith

Okuma Parçası -2 Gerçek daimi olmayan akıma iyi bir örnek olarak küt cisimlerin arkasındaki akım alanlarını göstermek mümkündür. Örneğin, şekildeki gibi bir otomobilin arkasında çok karışık ve zamanla çok çabuk değişim gösteren bir akım bulunduğunu özellikle tozlu bir yolda veya yağmurlu bir havada fark etmek mümkündür. Silindir etrafındaki akım da bu tip cisimler için iyi bir örnek teşkil eder. Silindirin gerisinde girdaplı bir bölge oluşur ki bu bölgeye iz adını veririz. Bu bölgedeki herhangi bir P(x,y) noktasındaki akım karakteristikleri zamana önemli bir şekilde bağlıdır ve akım daimi değildir. Buna karşılık silindirin ön tarafında göz önüne alınan diğer bir Q(x,y) noktasında ise akımın zamanla değişimi ihmal edilebilir mertebelerdedir. Bu nedenle bu kısımdaki akım"daimi" kabul edilebilir. Sekil: Gerçek daimi olmayan akım M. Adil Yükselen, UCK 351 Aerodinamik Ders Notları