Ekonometri II 14.02.2009

Benzer belgeler
Ch. 8: Değişen Varyans

MODEL KURMA HATALARI ve VERİ SORUNLARI

KATEGORİSEL VERİ ANALİZİ (χ 2 testi)

6.5 Basit Doğrusal Regresyonda Hipotez Testleri İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır.

Cebir Notları. Bağıntı. 1. (9 x-3, 2) = (27, 3 y ) olduğuna göre x + y toplamı kaçtır? 2. (x 2 y 2, 2) = (8, x y) olduğuna göre x y çarpımı kaçtır?

14 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

Vektör Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr.Grv.Dr.Nevin ORHUN

1. YAPISAL KIRILMA TESTLERİ

İstatistiksel Kavramların Gözden Geçirilmesi


TEMEL İSTATİSTİK KAVRAMLAR

Test Geliştirme. Testin Amacı. Ölçülecek Özelliğin Belirlenmesi Yrd. Doç. Dr. Çetin ERDOĞAN

Almanca da Sıfatlar (Adjektive) ve Sıfat Tamlamaları - Genç Gelişim Kişisel Gelişim

BÖLÜM 7 BİLGİSAYAR UYGULAMALARI - 1

Kukla Değişkenlerle Bağlanım

DERS 1. ki De i kenli Do rusal Denklem Sistemleri ve Matrisler

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

Ch. 12: Zaman Serisi Regresyonlarında Ardışık Bağıntı (Serial Correlation) ve Değişen Varyans

CSD-OS İşletim Sistemi Projesi - Fonksiyon Açıklama Standardı

Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri

6. Ders. Genelleştirilmiş Lineer Modeller (Generalized Linear Models, GLM)

14 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

6.6. Korelasyon Analizi. : Kitle korelasyon katsayısı

Değişen Varyans (Heteroscedasticity) Sabit Varyans (Homoscedasticity) Varsayımı Altında Basit Regresyon Modeli

ĐHRACAT AÇISINDAN ĐLK 250 Prof. Dr. Metin Taş

Ders içeriği (10. Hafta)

HAYALi ihracatln BOYUTLARI

SANAYİNİN KÂRLILIK ORANLARI ÖNEMLİ ÖLÇÜDE AZALDI

KORELASYON VE REGRESYON ANALİZİ

Veri Toplama Yöntemleri. Prof.Dr.Besti Üstün

Kalkınma Politikasının Temelleri

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

Deneysel Verilerin Değerlendirilmesi

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

-Bursa nın ciroları itibariyle büyük firmalarını belirlemek amacıyla düzenlenen bu çalışma onuncu kez gerçekleştirilmiştir.

Proje konularından istediğiniz bir konuyu seçip, hazırlamalısınız.

İKİ BOYUTLU GÖRSEL ARAÇLAR HARİTALAR

Görsel Tasarım İlkelerinin BÖTE Bölümü Öğrencileri Tarafından Değerlendirilmesi

Appendix C: İstatistiksel Çıkarsama

KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ

DÜNYA EKONOMİK FORUMU KÜRESEL CİNSİYET AYRIMI RAPORU, Hazırlayanlar. Ricardo Hausmann, Harvard Üniversitesi

Algoritmalara Giriş 6.046J/18.401J

Emeklilik Taahhütlerinin Aktüeryal Değerlemesi BP Petrolleri A.Ş.

7. SINIF ÖĞRETİM PROGRAMI

MİKRO İKTİSAT ÇALIŞMA SORULARI-10 TAM REKABET PİYASASI

Faaliyet Alanları. 22 Aralık Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü

İYON DEĞİŞİMİ AMAÇ : TEORİK BİLGİLER :

Amaç Günümüzde birçok alanda kullanılmakta olan belirtisiz (Fuzzy) kümelerin ve belirtisiz istatistiğin matematik kaygısı ve tutumun belirlenmesinde k

Davranışçı Yaklaşımda Öğrenme Kuramları

Şekil İki girişli kod çözücünün blok şeması. Tablo İki girişli kod çözücünün doğruluk tablosu. Şekil İki girişli kod çözücü devre

Akaryakıt Fiyatları Basın Açıklaması

SIRADAN EN KÜÇÜK KARELER (OLS)

uzman yaklaşımı Branş Analizi öğretim teknolojileri ve materyal tasarımı Dr. Levent VEZNEDAROĞLU

01 OCAK 2015 ELEKTRİK AKIMI VE LAMBA PARLAKLIĞI SALİH MERT İLİ DENİZLİ ANADOLU LİSESİ 10/A 436

Bölüm 6 Tarımsal Finansman

DENEY NO: 9 ÜÇ EKSENLİ BASMA DAYANIMI DENEYİ (TRIAXIAL COMPRESSIVE STRENGTH TEST)

Araştırma Notu 15/177


Soma Belediye Başkanlığı. Birleşme Raporu

BÜLTEN. KONU: Bağımsız Denetime Tabi Olacak Şirketlerin Belirlenmesine Dair Bakanlar Kurulu Kararına Đlişkin Usul ve Esaslar hk karar yayınlanmıştır

Bu konuda cevap verilecek sorular?

İDARİ VE MALİ İŞLER DAİRE BAŞKANI 25 TEMMUZ 2015 KİK GENEL TEBLİĞİ VE HİZMET ALIMLARI UYGULAMA YÖNETMELİĞİNDE YAPILAN DEĞİŞİKLİKLER DURSUN AKTAĞ

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI YÜZEY DOLDURMA TEKNİKLERİ

Türk Musikisinde Makamların 53 Ton Eşit Tamperamana Göre Tanımlanması Yönünde Bir Adım

BAVYERA BUNU YAPABİLİYOR!

2014 EYLÜL AYI ENFLASYON RAPORU

Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon

REW İSTANBUL 2016 FUAR SONUÇ RAPORU

MESS ALTIN ELDİVEN İSG YARIŞMASI BAŞVURU VE DEĞERLENDİRME PROSEDÜRÜ

ALPHA ALTIN RAPORU ÖZET 26 Ocak 2016

KLASİK MANTIK (ARİSTO MANTIĞI)

ANKARA EMEKLİLİK A.Ş GELİR AMAÇLI ULUSLARARASI BORÇLANMA ARAÇLARI EMEKLİLİK YATIRIM FONU ÜÇÜNCÜ 3 AYLIK RAPOR

Dünya Turizm Organizasyonu 2011 Turizminin Öne Çıkanları

Alıştırma Toleransı -TERMİNOLOJİ

2015 MART AYI ENFLASYON RAPORU

MESLEKİ GELİŞİM DERSİ 2. DÖNEM 1. YAZILI ÇALIŞMA SORULARI

t xlo ) boyutlarında bir alan yükü etkir (P k ). t xlo )+( 2 t xlo ) boyutlarında bir alan yükü etkir (P m ).

i) söz konusu fazla veya eksik değer hakkındaki mevcut bilgileri; i) ilgili fazla veya eksik değerin belirlenmesinde kullanılan yöntemi;

Türkiye Cumhuriyet Merkez Bankası 4 Mart 2008

ENERJĠ EKONOMĠSĠ R. HAKAN ÖZYILDIZ

Basit Bir Elektrik Süpürgesi

ALES / İLKBAHAR 2008 DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-2 TESTİ

PAS oyununda, kırmızı (birinci oyuncu) ve beyaz (ikinci oyuncu) şeklinde adlandırılan 2 oyuncu vardır. Oyun şu şekilde oynanır:

RİSK ANALİZİ VE. İşletme Doktorası

TOPLAM TALEP TOPLAM ARZ SORULAR. Dr. Süleyman BOLAT 1

Bilardo: Simetri ve Pisagor Teoremi

Basit Kafes Sistemler

II- İŞÇİLERİN HAFTALIK KANUNİ ÇALIŞMA SÜRESİ VE FAZLA MESAİ ÜCRET ALACAKLARI

ANALOG LABORATUARI İÇİN BAZI GEREKLİ BİLGİLER

Satış Amaçlı Elde Tutulan Duran Varlıklar ve Durdurulan Faaliyetlere İlişkin Türkiye Finansal Raporlama Standardı (TFRS 5)

Fon Bülteni Haziran Önce Sen

ALPHA ALTIN RAPORU ÖZET 10 Kasım 2015

BAŞARI İÇİN HEDEFE ODAKLANMAK ŞART!

4.2. SAYISAL MANTIK SEVİYELERİ VE DALGA FORMLARI

360- ÖDENECEK VERGİ VE FONLAR HESABINA (GELİR VERGİSİ KESİNTİSİ) İLİŞKİN say2000i UYGULAMASI

Çok Katlı Yapılarda Perdeye Saplanan Kirişler

Bülent Gündağ Mert ile Söyleşi

ENFLASYON ORANLARI

DOĞRU AKIM DEVRE ANALİZİ Ö. ŞENYURT - R. AKDAĞ BEŞİNCİ BÖLÜM:PARALEL DEVRELER

Transkript:

Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri II Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 8: Değişen Varyans 1 Ch.8 : Değişen Varyans (Heteroscedasticity) Ch. 3, MLR.5: sabit varyans (homoscedasticity) varsayımı, gözlenemeyen hata terimi u nun açıklayıcı x değişkenlerine koşullu varyansının sabitliği anlamına geliyordu. Eğer anakütlenin (population) farklı kesimlerinde bu varyans değişiyorsa varsayım sağlanamıyor demektir. Örneğin, bir tasarruf fonksiyonu regresyonunda eğer tasarrufları etkileyen gözlenemez faktörlerin (u) varyansı gelir düzeyiyle birlikte değişiyorsa heteroscedasticity var demektir. 2 Ch 3 ve 4 de doğrusal SEKK (OLS) tahmininde homoscedasticity varsayımının t, F testleri yapabilmek ve güven aralıkları oluşturmak için gerekli olduğunu gördük. Büyük örneklem hacimleri için bile bu gereklilik vardır. Bu bölümde değişken varyansın olup olmadığını nasıl anlayacağımızı ve heteroscedasticity varsa ne gibi çözüm yolları geliştireceğimizi göreceğiz. 3 2nd ed. 1

SEKK (OLS) de değişen varyans ne gibi sorunlara yol açar? CH.3 ve CH.5 de gördüğümüz gibi, regresyonda betaların sapmasızlık (unbiasedness) ve tutarlılık (consistency) özellikleri MLR.1-MLR.4 varsayımlarına bağlıydı ve homoscedasticity (MLR.5) varsayımına ihtiyaç duymuyorlardı. Örneğin, önemli bir değişkenin dışarıda bırakılması sapma ve tutarsızlığa yol açtığı halde değişen varyans açmamaktadır. 4 Peki, sapmaya ve tutarsızlığa yol açmıyorsa, homoscedasticity yi neden Gauss-Markov varsayımları arasına katıyoruz? Yanıt : Çünkü bu varsayım yoksa sapmalı çıkacaktır. Betaşapkaların standart hataları (se) doğrudan bu varyanslardan elde edildiği için, heteroscedasticity varsa t istatistikleri ve onlara dayanan güven aralıkları geçerli olmayacaktır. OLS t istatistiği heteroscedasticity varsa t dağılımı izlemeyecektir. Benzer şekilde F istatistiği F dağılımı izlemeyecek, LM istatistiği asimtotik ki kare dağılımı izlemeyecektir. Üstelik sorun büyük örneklem kullanmakla da aşılamayacaktır. 5 Yine, OLS tahmin edicilerin BLUE olduğunu söyleyen Gauss-Markov teoremi de kuvvetli bir şekilde homoscedasticity varsayımına bağlıdır. Bu varsayım olmaksızın OLS nin asimtotik etkinliği (asymptotical efficiency) de kaybolur. 8.4 de göreceğimiz gibi, heteroscedasticity altında OLS den daha etkin tahmin ediciler mevcuttur. Örneklem görece olarak büyükse OLS test istatiklerini, asimtotik olarak geçerli olacak şekilde düzeltmeye tabi tutmak mümkün olacaktır. 6 2nd ed. 2

Değişen varyanstan etkilenmeyen (heteroscedasticity-robust) standart hatalar Hipotez testleri değişen varyans durumunda geçerli olmuyorsa, OLS den tamamen vaz mı geçeceğiz? Hayır! Son 20 yılda ekonometride değişen varyans altında standart hataların nasıl düzeltileceği konusunda önemli gelişmeler kaydedildi. Biçimi bilinmeyen heteroscedasticity nin varlığında betaşapkaların se lerini, t, F ve LM istatistiklerini nasıl bir düzeltmeye tabi tutacağımızı artık biliyoruz. 7 Heteroscedasticity dan etkilenmeyen (robust) yöntemler sayesinde u ların varyansı sabit olsun ya da olmasın en azından büyük örneklemlerrde hipotez testleri yapabileceğiz. Heteroscedasticity den etkilenmeyen varyans hesaplama formülleri çok karmaşık olduğu için burada türetmeyeceğiz. Hazır ekonometri paket programlarında bu yöntemler mevcuttur. 8 Bu basit regresyon modelinde Gauss-Markov varsayımlarının ilk dördünün gerçekleştiğini varsayalım. Eğer hata terimlerinde heteroscedasticity varsa şöyle yazacağız : σ 2 formülündeki i alt-endeksi,hata terimleri varyansının x i değerlerine bağlı olarak değiştiğini göstermektedir. 9 2nd ed. 3

Basit regresyonda beta(1) in OLS tahmin edicisini yazalım : Yine basit regresyonda var (β1hat) de şuna eşitti : 10 (8.2), homoscedasticity altında basit regresyon için hesaplanan varyansın heteroscedasticity altında geçerli olmayacağını gösteriyor. Beta1hat in standart hatası (se) doğrudan Var(β1hat) in karekökü olduğu için heteroscedasticity altında (8.2) nin tahminini bir şekilde yapmamız gerektir. White (1980) bunun nasıl yapılacağını gösterdi. 11, orijinal regresyonumuzun artıkları olsun. Herhangi bir biçim (form) altında ortaya çıkan heteroscedasticity (ki, bu, homoscedasticity yi özel bir hal olarak içerir) için Var(β1hat) in geçerli bir tahmini şudur : (8.3) veriden kolayca hesaplanabilir. (8.3) ün geçerli bir varyans tahmini olduğunun teorik dayanağı şudur : (8.3) ün örnek hacmi n ile çarpılmış hali olasılık olarak ifadesine yakınsar. 12 2nd ed. 4

Büyük sayılar yasası ve merkezi limit teoremine dayanan bu yakınsama, standart hataların hipotez testleri ve güven aralıkları için kullanılabilmesinin gerekçesini oluşturur. Çoklu regresyon için de MLR.1-MLR.4 varsayımları altıda benzer bir formül yazılabilir: (8.4) ün kareköküne değişen varyanstan etkilenmeyen standart hatalar (heteroscedasticityrobust standard errors) 13 denir. White (1980) dan önce Eicker (1967) ve Huber (1967) de bu tür sağlam (robust) standart hatalar üzerinde çalışmışlardı. Bu yüzden bazen bu yöntemle bulunan standart hatalara White, Huber ve Ecker standart hataları da diyoruz. Bazen (8.4) ün karekökü alınmadan önce df düzeltmesi yapılarak (8.4) n/(n-k-1) ile çarpılır. Heteroscedasticity den etkilenmeyen se ler hesaplandıktan sonra bunları kullanarak Heteroscedasticity den etkilenmeyen t istatistiklerini hesaplayabiliriz. (bkz s.251) 14 Değişen varyanstan etkilenmeyen standart hatalar köşeli parantez içinde gösterilmiştir. 15 2nd ed. 5

(8.6) dan görüldüğü gibi, homoscedasticity varsayımı altında hesaplanan se ler (parantez içinde) ile heteroscedasticity den etkilenmeyen se ler (köşeli parantez içinde) test sonuçlarını değiştirecek kadar farklı çıkmamışlardır.ama bu her zaman böyle çıkmaz. (8.6) daki regresyondan da görüldüğü gibi heteroscedasticity den etkilenmeyen se ler (robust se s) geleneksel se lerden büyük ya da küçük olabilmektedirler. Ancak, genellikle robust se ler geleneksel se lerden daha büyük çıkma eğilimindedirler. 16 (8.6) daki robust se ler, kitlede ne tür bir heteroscedasticity olduğu, hatta heteroscedasticity olup olmadığı bile bilinmeden hesaplanan asimtotik olarak geçerli se lerdir. Uygulamada çoğu kez heteroscedasticity den etkilenmeyen (robust) se ler geleneksel se lerden daha geçerlidir. Buna rağmen ikisi de hesaplanır. Çünkü, robust se ler örneklem büyükken kullanılır. Küçük örneklerde ise, eğer homoscedasticity ve artıkların normal dağıldığı varsayımları geçerli ise hesaplanan t istatistiği t 17 dağılımı izler, dolayısıyla t dağılımını kullanırız. Regresyonda her iki se lerin verilmesinin bir amacı da, test sonuçlarının se tanımına göre değişip değişmediğini görmektir. Örneğin, (8.6) da test sonuçları se tanımına göre değişmemektedir, yani, se türüne karşı hassas değildir. Se ve t değerlerine benzer şekilde, F ve LM istatistiklerini de heteroscedasticity den etkilenmeyecek şekilde (heteroscedasticity-robust F statistics or Wald statistics) hesaplayabiliriz. (bkz. ss. 252-255) 18 2nd ed. 6

Değişen-varyans (heteroscedasticity) testleri Heteroscedasticity den etkilenmeyen (robust) se lerden hesaplanan t değerleri asimptotik olarak t dağılmıştır, dolayısıyla, başka herhangi bir teste ihtiyaç duymadan t testlerimizi yaparız. Ancak, yine de veride heteroscedasticity olup olmadığını bilmek isteriz. Bunun için çeşitli testler geliştirilmiştir. Eğer heteroscedasticity varsa OLS artık BLUE değildir, best (min varyans) özelliği kaybolmuştur. 19 Çok sayıda heteroscedasticity testi geliştirilmiştir. Burada, geleneksel (usual) OLS istatistiklerini geçersiz kılan heteroscedasticity nin tespitine yönelik modern testler göreceğiz. MLR.1-MLR.4 varsayımları geçerli olsun. Böylece OLS tahmin edicileri sapmasız ve tutarlı olacaktır. Model : H o a MLR.5 in sağlandığı hipotezini koyacağız : 20 Eğer belli bir anlamlılık düzeyinde veriler H o ı reddetmemize olanak vermiyorsa heteroscedasticity yoktur ya da ciddi bir sorun değildir diyeceğiz. u ların koşullu beklenen değerinin sıfır olduğunu varsaydığımız için, Var(u x)=e(u2 x) dir. Dolayısıyla, (8.11) şöyle de yazılabilir : Demek ki, homoscedasticity varsayımının ihlal edilip edilmediğinin testi, u 2 nin x lerden birisi ya da bazılarıyla ilişkili olup olmadığının testine dönüşmektedir. 21 2nd ed. 7

Eğer H o yanlış ise, u 2 nin x lere koşullu beklenen değeri herhangi bir x in, (x(j),bir fonksiyonu olabilir. En basit yaklaşım şöyle bir doğrusal fonksiyon varsaymaktır : H o daki homoscedasticity varsayımı burada şu hali alır : (8.12) de artık terim v, x lerden bağımsız ise, ki öyle varsayacağız, (8.13) ü F veya LM istatistiği hesaplayarak test edebiliriz. 22 u 2 normal dağılmasa bile asimptotik olarak F ve LM istatistiklerini kullanabiliriz. (8.12) yi, u yerine örnek regresyonunu artıklarını (uhat) kullanarak tahmin edeceğiz : (8.14) ün determinasyon katsayısını, F istatistiğini hesaplayacağız: kullanarak k, (8.14) deki bağımsız değişken sayısıdır. 23 LM istatistiği ise şuna eşittir: Ho doğru iken, LM istatistiği, asimtotik olarak dağılmıştır. Bu testin LM versiyonu Breusch_Pagan(BP) heteroscedasticity testi diye bilinir. Adımlar : 24 2nd ed. 8

ÖRNEK: Bu regresyon bize kitlede hata terimleri varyansının değişken olup olmadığı konusunda bilgi vermaz. BP testi yapacağız. (8.17) nin artıkları karelerinin x ler üzerine regresyonunun R 2 si 0.1601 dir. n=88, k=3. Buradan F=5.34 (p:0.002), LM=14.09 (p:0.0028). Demek ki, H o ı kabul edemeyeceğiz, heteroscedasticity var. (8.17) deki se lere güvenemeyiz. 25 Ch.6 da değişkenlerin log alınması halinde heteroscedasticity nin azalacağını söylemiştik. Gerçekten (8.18) deki regresyonda BP testi sonuçları şöyle çıkmaktadır: F=1.41 (p:0.245), LM=4.22 (p:0.239). Yani, log regresyon biçiminde heteroscedasticity çıkmamaktadır. 26 WHITE Heteroscedasticity testi Ch. 5 de, Gauss-Markov varsayımlarının tümünün sağlanması halinde OLS standart hatalarının ve test istatistiklerinin asimtotik olarak geçerli olacaklarını gördük. Bu, homoscedasticity varsayımının, daha zayıf şu varsayımla yer değiştirebileceği anlamına gelir: u2, tüm bağımsız değişkenlerle, x(j), onların kareleriyle, x(j)2, ve çapraz çarpımlarıyla, x(j)*x(h), j h, ilişkisizdir. Bu fikir White (1980) heteroscedasticity testinin esasını oluşturdu. Test, OLS se lerini ve test istatistiklerini geçersiz kılan heteroscedasticity biçimlerinin (forms) testine yöneliktir. 27 2nd ed. 9

k=3 için White testi şu regresyonun tahminine dayanır : Breusch-Pagan testiyle kıyaslarsak, bu denklemdeki bağımsız değişken sayısının 6 değişken daha fazla olduğunu görürüz. White testi LM istatistiğini kullanır. (8.19) da sabit hariç tüm δ(j) katsayılarının aynı anda sıfır olup olmadığını test eder. Bu örnekte 9 kısıt test edilmektedir. 28 Bu hipotez için F testi de yapabilirdik. Her iki test de asimtotik geçerliliğe sahiptir. x sayısının 6 olduğu bir regresyonda White testi 27 açıklayıcı değişken kullanır. Bu, serbestlik derecesi kaybına yol açar. White testinin zayıf yanı budur. White testini daha az açıklayıcı değişken kullanarak yapmak mümkündür. (8.19) un sağ tarafında açıklayıcı değişken olarak çok sayıda x, x kare ve x lerin çapraz çarpımını kullanmak yerine OLS regresyonumuzdan elde ettiğimiz yhat i ve onun karesini kullanabiliriz. Zira, yhat, x lerin doğrusal bir fonksiyonudur : 29 Bu denklemde her iki tarafın karesini alırsak, sağ tarafda x lerin kareleri ve birbirleriyle çapraz çarpımları olacaktır. Yani, (8.19) un sağ tarafına benzeyecektir. O halde, heteroscedasticity yi şöyle test edebiliriz : (8.20) de y nin değil yhat in kullanıldığı unutulmamalı. Zira x lerin ve tahmin edilen beta katsayılarının doğrusal bir fonksiyonu olan y değil yhat dir. H o hipotezi F ya da LM istatistiği ile test edilebilir : 30 2nd ed. 10

Bu testte, orijinal modeldeki x sayısı ne olursa olsun, sadece 2 kısıt vardır. Böylece, testin orijinal halindeki serbestlik derecesi (df) kaybı burada söz konusu değildir. yhat y nin x e koşullu beklenen değeri olduğu için, yhat = E(y x), (8.20) deki test, varyansın bu koşullu beklenen değerle birlikte değiştiği durumlarda oldukça yararlı bir testtir. (8.20), White testin özel bir hali olarak görülebilir. Zira (8.20), (8.19) daki parametreler üzerine kısıtlar koyar. 31 32 Yukarıdaki heteroscedasticity testlerini yaparken MLR.1-MLR.4 varsayımlarımızın sağlandığını varsayıyoruz. Sağlanmazsa, örneğin, regresyonun fonksiyonel biçimi yanlış belirlenmiş ise (ihmal edilmiş değişken varsa ya da log-log yerine level model seçilmişse vs.), heteroscedasticity testi varyans sabitken bile Ho ı reddedebilir. Bu yüzden, ekonometriciler heteroscedasticity testlerini yanlış biçim seçimi (misspecification) testleri olarak değerlendirirler. Ancak, biçim (form) seçimi doğrudan başka testler kullanılarak test edilmeli. Yanlış biçim seçimi heteroscedasticity den daha ciddi bir sorundur. 33 2nd ed. 11

Ağırlıklı EKK (Weighted Least Squares) Bölüm 8.3 deki testlerden biriyle heteroscedasticity yi tesbit etmiş olalım. Bir almaşık, Bölüm 8.2 de gördüğümüz heteroscedasticity den etkilenmez (robust) se ve test istatistikleri hesaplamaktır. Ancak, bu robust se leri hesaplamadan önce heteroscedasticity nin türünü tahmin etmeliyiz. Ne türden bir heteroscedasticity olduğunu belirleyebilirsek, OLS den daha etkin tahmin ediciler bulabileceğiz. 34 Heteroscedasticity çarpan bir sabit cinsinden biliniyor olsun x, (8.10) daki tüm açıklayıcı değişkenleri temsil etsin. unu varsayalım : Burada, h(x), x lerin herhangi bir fonksiyonudur ve heteroscedasticity yi belirler. Varyans pozitif olacağı için, tüm x değerleri için, h(x) >0 olacaktır. Burada, h(x) fonksiyonunun bilindiğini varsayacağız. Bilinmeyen kitle varyansıσ 2 yerine onun örnekten bulunan tahminini kullanacağız. 35 Örneğin, şu basit tasarruf fonksiyonunu ele alalım : Burada, h(inc) = inc dır. Hata terimleri varyansı gelir seviyesine orantılı olarak değişmektedir. Gelir arttıkça tasarruflardaki değişkenlik artacaktır (β 1 > 0 ise). Gelir (inc) her zaman pozitif olduğu için (8.23) deki varyans da pozitif olacaktır. u ların gelire koşullu standart sapması olacaktır. 36 2nd ed. 12

(8.21) deki enformasyondan β ların tahmini için nasıl yararlanabiliriz? Orijinal denklemimiz (8.24) de hata terimleri heteroscedastic dir. Bu regresyonu öyle dönüştürmeliyiz ki, hata terimleri homoscedastic olsun ve diğer Gauss-markov koşullarını da sağlasın. h(i), x(i) nin bir fonksiyonu olduğu için, nin x e koşullu beklenen değeri sıfırdır. Ayrıca oluğu için, nin x e koşullu varyansı dir. 37 38 (8.26) daki dönüştürülmüş regresyondan elde edilen beta tahminleri OLS ninkelerine göre daha etkin olacaktır. Dönüştürülmüş regresyonun sabiti, eski (orijinal) sabitin ile çarpımından meydana gelmektedir. Tasarruf örneğinde dönüştürülmüş regresyon şöyledir : 39 2nd ed. 13

(8.26), parametreler bakımından doğrusaldır (linear). Dolayısıyla, MLR.1 varsayımını sağlar. Rasgele örnek (random sampling) varsayımımız yine korunmaktadır. u*(i), x* a göre koşullu olarak, sabit varyansa (σ2) sahiptir. Demek ki, eğer orijinal regresyonumuz Gauss-markov varsayımlarından 4 ünü sağlıyorsa, (8.26) bu varsayımların tümünü sağlayacaktır. Eğer u(i) ~ N ise, u* da N dağılacak, böylece dönüştürülmüş regresyon tüm CLRM varsayımlarını (MLR.1-MLR.6) sağlamış olacaktır. (8.26) nın beta tahminleri (β1*,..., βk*) orijinal modelin betalarından farklı olacaktır. Bu β* lar genelleştirilmiş en küçük kareler (GEKK) tahminidir : generalized least squares (GLS) estimators. 40 Burada, GLS tahmin edicilerini hata terimlerindeki değişken varyansı düzeltmek için kullandık. Ch.12 de diğer GLS tahmin edicileri de göreceğiz. Dönüştürülmüş regresyon tüm klasik model varsayımlarını sağladığı için bu regresyondan elde edeceğimiz standart hatalar (se), t ve F istatistikleri geçerli tahminlerdir. GLS tahmin ediciler (β* lar) BLUE oldukları için OLS tahmin edicilerinden (βhat ler) daha etkindirler. Dönüştürülmüş regresyonun yorumunu orijinal regresyonun ışığında yapmamız gerektiğini unutmamalıyız. (8.26) nın R 2 si F istatistiğinin hesabında kullanılır. Ancak, artık uyumun iyiliğinin bir ölçüsü değildir. Dönüştürülmüş regresyonun R 2 si x* ların y* daki değişmelerin % ne kadarını açıkladığını gösterir, ki, bu da fazla bir anlam ifade etmez. 41 Ağırlıklandırılmış EKK (Weighted least Squares, WLS) Heteroscedasticity yi düzeltmek için kullandığımız GLS tahmin edicileri Ağırlıklı En Küçük Kareler tahmin edicileri (weighted least squares (WLS) estimators) adını alır. Zira, β* lar (GLS estimators) ağırlıklandırılmış artık kareleri toplamını minimize eder. Her bir u(i) kare, ile ağırlıklandırılmıştır. Yüksek varyansa sahip u lar daha küçük ağırlığa sahiptirler. 42 2nd ed. 14

OLS de tüm u lar aynı (eşit) ağırlığa sahiptir. Dolayısıyla, ana kitlenin tümünde hata terimleri varyansı aynı olduğunda OLS minimum varyanslı (en iyi- best) tahmini verecektir. WLS beta katsayılarını şu denklem minimize olacak şekilde seçer : (8.27) de 1/h(i) nin kare kökünü parantez içine dahil edersek, ağırlıklandırılmış artık kareler toplamının dönüştürülmüş regresyonun SSR sine eşit olduğunu görürüz. : 43 OLS, WLS in özel bir halidir. Her bir u(i) kareye, başka bir ifadeyle her bir gözleme aynı ağırlığı verir. GLS, her bir u(i) kareyi var(u(i) x) nin tersi ile ağırlıklandırır. Regresyon doğrusundan (düzleminden) uzak gözlemler cezalandırılmış olur. Tablo 8.1, aynı örneğe ait verilere (SAVING.RAW) OLS ve WLS uygulanması ile elde edilmiş regresyonları içeriyor. n=100 aile (1970). WLS uygularken varyansın (8.23) deki gibi olduğunu varsayıyoruz. OLS marjinal tasarruf eğilimini (marginal propensity to save) 0.147 bulurken WLS 0.172 buluyor. İki regresyonun R2 leri birbirleriyle mukayese 44 edilemezler. 45 2nd ed. 15

Denklemlere eklenen demografik faktörler hem tek tek (t testi) hem de bir arada (F testi) anlamsız çıkmaktadırlar. Demek ki, ilk denklem, yani sadece gelirin açıklayıcı değişken olarak alınması yeterli olmaktadır. Marjinal tasarruf oranı olarak hangisini (0.147 ya da 0.172) alacağımız çok büyük farklılık yaratmayacaktır. Örnek hacmi küçük olduğu için (sadece 100 aile) bulunan katsayılardan birisi için oluşturacağımız %95 lik güven aralığı diğer katsayıyı da içerecektir. Pratikte varyansın x lerden hangisine bağlı olarak değiştiğini genellikle bilemeyiz. Örneğin, yukarıda varyans gelire değil de eğitim düzeyine ya da yaşa bağlı olarak da değişebilirdi. Pek çok durumda var(y x 1, x 2,..., x k ) konusunda 46 kesin bilgiye sahip değilizdir. ehir ya da ülke düzeyinde adam başına ortalama veriler (gelir, tüketim, araba sayısı vs.) kullanıyorsak, bireysel regresyonlar Gaussmarkov varsayımlarını sağladıklarında, adam başına regresyonların artıkları heteroscedastic olacaktır. Örneğin, çeşitli ülkelerin kişi başına geliri, tasarrusu vs. Kullanılıyorsa, nüfusu büyük olan ülkelere ait artıkların varyansı küçük olacaktır. Bu durumda WLS de ağırlık olarak ülke nüfuslarını kullanabiliriz. Örnek : şehirler düzeyinde bira tüketimi regresyonu : beerpc :kişi başına (per capita, pc) bira tüketimi (ounces), incpc: kişi başına gelir. 47 ehirler-düzeyinde adam başına bira tüketimi regresyonu : Bu regresyonun artıkları değişken varyansa sahiptir. ehir nüfuslarını ağırlık olarak kullanıp WLS tahmin edebiliriz. Burada, gözlemleri şehir nüfuslarıyla ağırlıklandırırken bireysel regresyonların homoscedastic olduğunu varsayıyoruz. Eğer bireysel regresyonların artıkları da değişken varyansa sahipse, o zaman, ne tür ağırlıklar kullanacağımız heteroscedasticity nin biçimine bağlı 48 olacaktır. 2nd ed. 16

Bu nedenle, kişi başına verilerin kullanıldığı araştırmalarda daha çok heteroscedasticity den etkilenmeyen (robust) se tahminleri verilir Feasible GLS (FGLS) / Estimated GLS (EGLS) Yukarıdaki örneklerde, heteroscedasticity nin çarpan biçiminde olduğunu bildiğimizi varsaymıştık. Oysa, pratikte çoğu kez bunu bilmeyiz. Yani, h(x(i)) fonksiyonun biçimini bilemeyiz. Ancak, örnekten bu fonksiyonun parametrelerini tahmin edebiliriz. Böylece, h(i) yerine onun örnekten elde edilen tahminini,, kullanabiliriz. Bu durumda elde edilen tahmin ediciler FGLS ya da EGLS adını alır. 49 Heteroscedasticity pek çok farklı biçimde modellenebilir. Ancak burada oldukça esnek özelliklere sahip şu üssel (exponential) modeli göreceğiz : Burada (8.30) un avantajı her zaman pozitif bir varyans tahmini verebilmesidir. (8.12) deki doğrusal alternatifler bu koşulu sağlamaz 50 (8.30) da δ ları şöyle tahmin edeceğiz : 51 2nd ed. 17

52 1. WLS de tüm değişkenler (kuklalar da dahil) e bölünecektir.yani, kullanılacak ağırlık hhat in karekökünün tersidir, hhat in tersi değil. 2. Sabit terim beta(0).( ) şeklinde tahmin edilecektir. ÖRNEK: (8.36) nolu regresyon şöyle tahmin edilmiştir: Cigs/hhat^0.5= beta(0).(1/hhat^0.5)+beta(1).log(income)/ hhat^0.5+..+beta(5).age2/hhat^0.5+ beta(6).restaurn/hhat^0.5 53 54 2nd ed. 18

807 gözleme ait yhat in 13 ü negatif çıkmıştır. Doğrusal modellerin bazen negatif tahmin verdiklerini biliyoruz. Ancak, negatif değerler toplamın %2 sinden azdır. Önemli bir sorun oluşturmuyor. Ne gelir ne de sigara fiyatı istatistiksel olarak anlamlıdır. Üstelik etkileri çok ufaktır. Örneğin, eğer gelir %10 artarsa, bir günde içilen sigara sayısı (0.880 / 100)*(10) = 0.088 sigara kadar artmaktadır. Bir yıllık ilave bir eğitim içilen günlük sigara sayısını yarım sigara kadar azaltmaktadır. İstatistiksel olarak anlamlıdır. Sigara içmek yaşla karesel (quadratic) biçimde ilişkilidir. Tiryakilik 42.83 yaşa kadar yaşla birlikte artmakta sonra azalmaktadır : 0.771 / [2 (0.009)] = 42.83. Restoranlarda sigara yasağı ortalama günlük tüketimi 3 sigara kadar azaltmaktadır. 55 (8.35) de heteroscedasticity var mı? Breusch-Pagan regresyonu {uhat2 nin, x1,..., xk üzerine regresyonu} 0.040 büyüklüğünde bir R 2 veriyor. LM = 807x (0.040) = 32.28. Serbestlik derecesi 6 olan Ki kare dağılımının tablo değeri = 12.59. H o red. Heteroscedasticity lehine çok güçlü kanıt var. FGLS kullanarak modeli yeniden tahmin edelim: 56 Gelirin etkisi şimdi biraz daha büyük ve istatistiksel olarak anlamlıdır. Diğer değişkenlerin katsayıları biraz değişti, ancak sonuçlar yine aynı. Tiryakilik eğitimle ters yönlü ilişkili, yaşla karesel ilişki içinde ve restoran yasağı tüketimi 57 düşürüyor. 2nd ed. 19

LPM modelinde hata terimlerinin varyansı değişkendir. Robust se ler hesaplamamız gerekmektedir. 58 Doğrusal olasılık modelinin (LPM) WLS ile tahmini LPM de y nin koşullu varyansı şuna eşittir: Burada, p(x), başarı olasılığını (y=1 olma olasılığı) göstermektedir. Varyans x lere bağlı olarak değiştiği için WLS kullanabiliriz. 59 (8.39) da bilinmeyen kitle beta ları yerine OLS betahat tahminlerini (ki, bunlar sapmasız tahmin edicilerdir) kullanabiliriz. Bu halde, (8.39) yhat i verecektir. Buradan bulduğumuz yhat i (8.38) de yerine koyarak her bir i gözlemi için ayrı bir koşullu varyans bulmuş oluruz: Artık, tüm gözlemleri ile çarparak Bölüm 8.4 de gördüğümüz feasible GLS yöntemini uygulayabiliriz. 1 den büyük ya da 0 dan küçük (negatif) yhat çıkmış ise, bunları 0.99 ve 0.01 olarak alıp daha sonra WLS uygulamamız gerekecektir. 60 2nd ed. 20

61 62 2nd ed. 21