FEMUR PROTEZLERİNDE BİYOMEKANİK UYGULAMALAR



Benzer belgeler
FEMUR PROTEZLERİ. Son güncelleme:

AKMA VE KIRILMA KRİTERLERİ

PLASTİK ZİNCİRLİ İLETİCİLER. Kaynak: Mühendis ve Makina Cilt : 48 Sayı: 571

MAKİNE ELEMANLARI DERS SLAYTLARI

Başlıca ANALİZ TİPLERİ. ve Özellikleri

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması.

Kırılma Hipotezleri. Makine Elemanları. Eşdeğer Gerilme ve Hasar (Kırılma ve Akma) Hipotezleri

DEU MUH.FAK. MAKİNA MUH.BL. BDM VİZE SINAVI

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

Makine Elemanları I. Yorulma Analizi. Prof. Dr. İrfan KAYMAZ. Erzurum Teknik Üniversitesi. Mühendislik Fakültesi Makine Mühendisliği Bölümü


2. Amaç: Çekme testi yapılarak malzemenin elastiklik modülünün bulunması

MAK 305 MAKİNE ELEMANLARI-1

Statik ve Dinamik Yüklemelerde Hasar Oluşumu

İNŞAAT MALZEME BİLGİSİ

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ

2009 Kasım. MUKAVEMET DEĞERLERİ KONU İNDEKSİ M. Güven KUTAY

Şekil Çekmeye veya basmaya çalışan kademeli milin teorik çentik faktörü kt

Shigley s Mechanical Engineering Design Richard G. Budynas and J. Keith Nisbett

BARTIN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ METALURJĠ VE MALZEME MÜHENDĠSLĠĞĠ

MMU 420 FINAL PROJESİ

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü

FRACTURE ÜZERİNE. 1. Giriş

BİLGİSAYAR DESTEKLİ TASARIM VE ANALİZ (ANSYS) (4.Hafta)

Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması

BURULMA (TORSİON) Dairesel Kesitli Çubukların (Millerin) Burulması MUKAVEMET - Ders Notları - Prof.Dr. Mehmet Zor

MUKAVEMET SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-I DERS NOTU

MUKAVEMET DERSİ. (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ

MMU 420 FINAL PROJESİ. 2015/2016 Bahar Dönemi. Bir Yarı eliptik yüzey çatlağının Ansys Workbench ortamında modellenmesi

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY 9A GERİNİM ÖLÇER KULLANARAK GERİLİM ANALİZİ YAPILMASI

Burma deneyinin çekme deneyi kadar geniş bir kullanım alanı yoktur ve çekme deneyi kadar standartlaştırılmamış bir deneydir. Uygulamada malzemelerin

MUKAVEMET-2 DERSİ BAUN MAKİNA MÜHENDİSLİĞİ VİZE ÖNCESİ UYGULAMA SORULARI MART Burulma 2.Kırılma ve Akma Kriterleri

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

Ara Sınav. Verilen Zaman: 2 saat (15:00-17:00) Kitap ve Notlar Kapalı. Maksimum Puan

Pnömatik Silindir Tasarımı Ve Analizi

FZM 220. Malzeme Bilimine Giriş

BURULMA DENEYİ 2. TANIMLAMALAR:

Malzeme yavaşça artan yükler altında denendiği zaman, belirli bir sınır gerilmede dayanımı sona erip kopmaktadır.

Uygulanan dış yüklemelere karşı katı cisimlerin birim alanlarında sergiledikleri tepkiye «Gerilme» denir.

ÇİMENTO DÖNER FIRINI DESTEK GALESİ

MMU 402 FINAL PROJESİ. 2014/2015 Bahar Dönemi

Malzemelerin Mekanik Özellikleri

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ

MALZEME SEÇİMİ ve PRENSİPLERİ

Malzeme Bilgisi ve Gemi Yapı Malzemeleri

BURULMA DENEYİ 2. TANIMLAMALAR:

YAPI MALZEMELERİ DERS NOTLARI

genel denklemin elde edilebilir. Şekil 1' den, M=P.V yazılabilir. Böylece elastik eğri denklemi

BETONARME-I 3. Hafta. Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

TAHRİBATLI MALZEME MUAYENESİ DENEYİ

İstanbul Teknik Üniversitesi Uçak ve Uzay Bilimleri Fakültesi

Makine Elemanları I Prof. Dr. İrfan Kaymaz. Temel bilgiler-flipped Classroom Mukavemet Esasları

MALZEME BİLGİSİ DERS 8 DR. FATİH AY. fatihay@fatihay.net

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler

Makine Elemanları I Prof. Dr. Akgün ALSARAN. Temel bilgiler-flipped Classroom Mukavemet Esasları

STATİK GERİLMELER a) Eksenel yükleme Şekil 4.1 Eksenel Yükleme b) Kesme Yüklemesi Şekil 4.2 Kesme Yüklemesi

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

MALZEME BİLİMİ. Mekanik Özellikler ve Davranışlar. Doç. Dr. Özkan ÖZDEMİR. (DERS NOTLARı) Bölüm 5.

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

MalzemelerinMekanik Özellikleri II

MMT310 Malzemelerin Mekanik Davranışı 3 Tokluk özelliklerinin belirlenmesi Kırılma Mekaniği

FZM 220. Malzeme Bilimine Giriş

FZM 220. Malzeme Bilimine Giriş

DAİRESEL KESİTLİ TELDEN SOĞUK OLARAK SARILAN ÇEKME YAYLARININ HESABI

KOÜ. Mühendislik Fakültesi Makine Mühendisliği Bölümü (1. ve 2.Öğretim / B Şubesi) MMK208 Mukavemet II Dersi - 1. Çalışma Soruları 23 Şubat 2019

İNŞAAT MÜHENDİSLİĞİNE GİRİŞ

BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ

METALİK MALZEMELERİN ÇEKME DENEYİ

- Gerilme ve Gerinme ikinci dereceden tensörel büyüklüklerdir. (3 puan)

METALURJİ VE MALZEME MÜH. LAB VE UYG. DERSİ FÖYÜ

ZEMİNLERİN GERİLME-ŞEKİL DEĞİŞTİRME DAVRANIŞI VE KAYMA MUKAVEMETİ

11/6/2014 İNŞAAT MÜHENDİSLİĞİNE GİRİŞ. MEKANİK ve MUKAVEMET BİLGİSİ MEKANİK VE MUKAVEMET BİLGİSİ

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. fatihay@fatihay.net

BİLGİSAYAR DESTEKLİ TASARIM HAFTA 6 COSMOSWORKS İLE ANALİZ

MUKAVEMET FATİH ALİBEYOĞLU

Tanım: Boyuna doğrultuda eksenel basınç kuvveti taşıyan elemanlara Basınç Çubuğu denir.

= σ ε = Elastiklik sınırı: Elastik şekil değişiminin görüldüğü en yüksek gerilme değerine denir.

BİLGİSAYAR DESTEKLİ TASARIM VE ANALİZ (ANSYS)

MECHANICS OF MATERIALS

MAKİNE ELEMANLARI I Mukavemet Esasları (Flipped Classroom)

REZA SHIRZAD REZAEI 1

DENEY 2 ANKASTRE KİRİŞLERDE GERİNİM ÖLÇÜMLERİ

PLASTİK ŞEKİLLENDİRME YÖNTEMLERİ

Şekil 1.1. Beton çekme dayanımının deneysel olarak belirlenmesi

Malzemelerin Deformasyonu

ÇEKME DENEYİ 1. DENEYİN AMACI

INM 308 Zemin Mekaniği

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Bölüm-4 MALZEMELERDE ÇEKME-BASMA - KESME GERİLMELERİ VE YOUNG MODÜLÜ Malzemelerde Zorlanma ve Gerilme Şekilleri

TOKLUK VE KIRILMA. Doç.Dr.Salim ŞAHĠN

YTÜ Mimarlık Fakültesi Statik-Mukavemet Ders Notları

SÜRTÜNME Buraya kadar olan çalışmalarımızda, birbirleriyle temas halindeki yüzeylerde oluşan kuvvetleri etki ve buna bağlı tepki kuvvetini yüzeye dik

MALZEME BİLGİSİ DERS 6 DR. FATİH AY.

GERİLME Cismin kesilmiş alanı üzerinde O

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ ve MALZEME MÜHENDİSLİĞİ BÖLÜMÜ METALİK MALZEMELERİN DARBE DENEY FÖYÜ. Arş. Gör.

Prof.Dr.İrfan AY. Arş.Gör.T.Kerem DEMİRCİOĞLU. Öğr. Murat BOZKURT. Balıkesir

Beton Yol Kalınlık Tasarımı. Prof.Dr.Mustafa KARAŞAHİN

İNSAN UYLUK KEMİĞİ VE KALÇA PROTEZİNİN GERİLME VE DEPLASMAN DAVRANIŞININ KIYASLANMASI

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu

Transkript:

FEMUR PROTEZLERİNDE BİYOMEKANİK UYGULAMALAR Dr. İbrahim Üçsular D.E.Ü. İzmir Meslek Yüksekokulu Doç.Dr.Mümin Küçük E.Ü. Ege Meslek Yüksekokulu Prof.Dr. Mehmet Zor D.E.Ü.Müh.Fak.Mak.Müh.Böl. 1

FEMUR PROTEZLERĠ 2

1-PROBLEMĠN VEYA UYGULAMANIN ANLAġILMASI VE TANIMLANMASI Öncelikle Problemin Anlaşılması ve birkaç cümle ile Tanımlanması Gereklidir. Anteversion açısı (10 o -15 o ) 3

1-PROBLEMİN VEYA UYGULAMANIN ANLAŞILMASI VE TANIMLANMASI 4

1-PROBLEMĠN VEYA UYGULAMANIN ANLAġILMASI VE TANIMLANMASI Femur Kemiğinde Boyun Bölgesi Kırıkları 5

1-PROBLEMĠN VEYA UYGULAMANIN ANLAġILMASI VE TANIMLANMASI Kırık Bölgesinin Tedavisi 6

1-PROBLEMĠN VEYA UYGULAMANIN ANLAġILMASI VE TANIMLANMASI Farklı Tip Geometrideki Protezler İzmir de üretici firma HİPOKRAT A.Ş 7

1-PROBLEMĠN VEYA UYGULAMANIN ANLAġILMASI VE TANIMLANMASI Tedavi sonrası kemikte, çimentoda ve protezde zamanla ikinci kırıklar ve hasarlar oluşmaktadır. Bu hasarlar protezin yenilenmesini gerektirmektedir. Problemin Tanımlanması: Femur Kırık Tedavisi Sonrası OluĢan Hasarlar 8

2-PROBLEMĠN MÜHENDĠSLĠK AÇISINDAN SEBEPLERĠNĠN TARTIġILMASI VE BELĠRLENMESĠ Bu aşamada, herhangi bir inceleme yapmadan, sadece problemin muhtemel sebepleri üzerinde düşünülür. 2.1-Yükleme Durumuna Bağlı Muhtemel Sebepler a-) Tedavi Sonrası Hastanın Ayakta Durması İstenir. Bu ise Protez bölgesinin vucut yükünün yarısını taşıması demektir. Daha kritik durum ise hastanın tek ayak üzerinde durmasıdır ki, tedavi bölgesinin vucut yükünün tamamını taşıması demektir. Muhtemel Sebep: Statik yükler sonucunda tedavi bölgesinde gerilmeler oluşacaktır. Bu gerilmeler mukavemet sınırlarını aştığında hasarlar oluşabilir. Ön Yorumlar: -Statik yüklerle mukavemet sınırlarının aşılması çok düşük bir ihtimaldir. Bu nedenle problemin gerçek sebebinin bu olduğu söylenemez. -Farklı Protez tiplerini karşılaştırmak için statik yükleme etkisi incelenebilir. Bu yüklemede daha avantajlı sonuçlar veren protezlerin tercih edilmesi tavsiye edilebilir. Zira diğer bazı yüklemelerde de bu protezler daha avantajlı çıkması beklenir. 9

2-PROBLEMĠN MÜHENDĠSLĠK AÇISINDAN SEBEPLERĠNĠN TARTIġILMASI VE BELĠRLENMESĠ b-) Tedavi Sonrası hastanın yürüyebilmesi istenir. Bu durumda tedavi bölgesi tekrarlı yüklemeye maruz kalacaktır. Muhtemel Sebep: Tekrarlı yükler sonucunda tedavi bölgesinin herbir noktasında gerilme değerleri zamanla değişir. Bu gerilmeler statik yüklemedeki mukavemet sınırlarını aşmasa bile zaman içinde yorulmalara ve dolayısıyla hasarlara sebep olabilir. Ön Yorumlar: -Tekrarlı Yükleme sonucu oluşan yorulmalar, tedavi bölgesinde oluşan hasarların en önemli sebebi olduğu söylenebilir. 10

2-PROBLEMĠN MÜHENDĠSLĠK AÇISINDAN SEBEPLERĠNĠN TARTIġILMASI VE BELĠRLENMESĠ c-) Hastanın tedavi sonrası yaptığı zıplama, bir yerden atlama, sportif faaliyetler gibi ani hareketler darbeli yüklemelere ve hasarlara yol açabilir. Ancak bu tip hareketleri hastanın yapması istenmez ve hastada bu tip davranışlardan kaçınır. Bununla birlikte istem dışı kazalarda da darbeli yüklemeler sözkonusu olabilmektedir. Sportif faaliyetlerdeki darbeli yüklemeye bir örnek İstem dışı kazalarda darbeli yüklemeye bir örnek Muhtemel Sebep: Tedavi bölgesine gelen darbeli yüklemeler sonucunda ani kırılmalar oluşabilir. Ön Yorumlar: -Darbeli yüklemeler statik yüklerden çok daha fazla şiddette etkiye sahiptirler. Böyle bir durumun meydana gelmesinde hasar oluşma olasalığı oldukça yüksektir. -Hastanın bu tip davranışlardan kaçınması hasar oluşumunu azaltıcı önemli bir faktördür. 11

2-PROBLEMĠN MÜHENDĠSLĠK AÇISINDAN SEBEPLERĠNĠN TARTIġILMASI VE BELĠRLENMESĠ 2.2 Tedavi Bölgesinin Geometrisine Bağlı Muhtemel Sebepler a-) Kemik Yapısı ve Geometrisindeki bozukluklar Muhtemel sebep: Kemik Yapısında bozukluklar aşırı gerilme yığılmalarına yol açabilir. Ön yorumlar: Bir hastada başarıyla kullanılan protez kemik yapısı bozuk olanda olumsuz sonuçlara yol açabilir. 12

2-PROBLEMĠN MÜHENDĠSLĠK AÇISINDAN SEBEPLERĠNĠN TARTIġILMASI VE BELĠRLENMESĠ b-) Protez Geometrisi Muhtemel Sebep: Geometrisi iyi seçilmeyen protezler aşırı gerilme yığılmalarına sebep olabilir. Ön Yorumlar: - Farklı Protez geometrileri, Kemik yapısı ve geometrisine bağlı olarak diğerlerine göre daha iyi sonuçlar verebilir. 13

3-ĠNCELEME ALTERNATĠFLERĠ VE ĠNCELEME ġeklġne KARAR VERĠLMESĠ a) Geometri Açısından İnceleme: Farklı Protez Geometrilerinin, Farklı Kemik geometrilerine göre avantaj ve dezavantajları araştırılabilir. b) Yüklemeler açısından inceleme: Yorulma açısından yapılacak incelemeler çok daha önemlidir: 1. inceleme alternatifi 3 farklı protez geometrisi, 3 farklı anteversiyon açısına karşılık gelecek şekilde 9 farklı model kurulup yorulma analizleri yapılabilir. Kazançları: Böylece hangi protez hangi anteversiyon açısında daha iyi sonuç verdiği görülebilir ve hastanın anteversiyon açısına göre bu protez tiplerinden birisi tavsiye edilebilir. 14

3-ĠNCELEME ALTERNATĠFLERĠ VE ĠNCELEME ġeklġne KARAR VERĠLMESĠ 2. Ġnceleme Alternatifi 3 farklı protez geometrisi, 3 farklı anteversiyon açısına karşılık gelecek şekilde 9 farklı model kurulup darbeli yükleme analizleri yapılabilir. Kazancı: Kemik yapısına göre darbeli yüklemeler açısından önerilebilecek protez tipleri ortaya çıkacaktır. 3. ve 4. Ġnceleme Alternatifleri 3 farklı protez geometrisi, 3 farklı boyun açısına karşılık gelecek şekilde 9 farklı model kurulup yorulma açısından (3) veya darbeli yükleme (4) açısından inceleme yapılabilir. 15

3-b) ĠNCELEME ġeklġne KARAR VERĠLMESĠ Karar: Hastanın tedavi sonrası yürümesi istendiğinden yorulma durumunun ortaya çıkması kaçınılmazdır. Ayrıca anteversion açısı bozuklukları, boyun açısı bozukluklarına göre daha sıklıkla görülmektedir. Bu nedenle 1 nolu İnceleme Alternatifi ile problemin incelenmesine karar verilmiştir. 1. inceleme alternatifini hatırlayacak olursak 3 farklı protez geometrisi, 3 farklı anteversiyon açısına karşılık gelecek şekilde 9 farklı model kurulup yorulma analizleri yapılabilir. 16

4- Temel ve Teorik Bilgiler Gerilme ve Gerilme çeşitleri Bu kısımda Gerilme, Gerilme Bileşenleri, Asal Gerilmeler, Von-mises gerilmesi, Mohr Çemberi gibi kavramların tekrar gözden geçirilmesinde fayda vardır. 17

5- BDM AÇISINDAN YAPILABĠLECEK KOLAYLIKLAR Tekrarlı yüklemeler sırasında gerilmeler 0 s max arasında değişir. s max değerinin düşmesi yorulma ömrünü de artıracaktır. Farklı protez geometirilerin birbirleriyle karşılaştırılması için, s max değerlerinin hesaplanması yeterli olacaktır. s max değerlerinin analizi -Tek Ayak üzerine statik yüklemede binen kuvvet ile yürürken binen kuvvet yaklaşık aynı olacağı düşünülürse, statik yüklemede bir noktada hesaplanan gerilme aslında yorulma sırasındaki s max gerilmesi ile aynı kabul edilebilir. Statik Yüklemede s max değerinin daha düşük olmasına sebep olan protez tipinin, tekrarlı yüklemelerde de aynı şekilde daha düşük s max değerine sebep olacağı söylenebilir. O halde Bu problemde, Farklı Protez tiplerinin yorulma ömrü açısından karģılaģtırması için, Statik Yapısal Analiz Yapmak Yeterli Bir YaklaĢımdır. 18

6- BDM ANALĠZ GĠRDĠLERĠ 6.1 Protez Tiplerinin Seçimi ve Modellerinin Kurulması Sırt bölgeleri farklı 3 tip protez seçilmiştir. 19

6.2 Kemik, Çimento ve Protez Sistemi Katı Modellerinin Kurulması 8 farklı anteversion açısı q (0 o, 5 o, 10 o, 12.5 o, 15 o, 20 o, 25 o, 30 o ) ve 3 farklı protez tipi için toplam 24 farklı model kurulup analizleri yapılacak ve birbirleriyle karşılaştırılacaktır. Sonuçta, anteversiyon açılarına göre daha avantajlı protez tipleri belirlenecektir. -Femurun üst yarısının modellenmesi yeterlidir. Alt kısımdan sabitlenir. 20

6.3 Sonlu eleman tipi ve Elemanlara Ayırma ĠĢlemi -Geometrinin karmaşıklığından dolayı elemanlara ayırma işleminin yapılabilmesi için tetrehedral eleman tipi seçilmek zorunda kalınabilir. Sadece Statik Yapısal Analiz yapılacağından, 6 Serbestlik Dereceli eleman seçilir.(ux Uy Uz Rot-x Rot-y Rot-z ) -Sonuçların hassasiyeti, eleman sayısı, tipi ve düğüm sayısı ile yakından ilişkilidir. 6.3.1. Sınır ġartları -Femurun alt kısımdan anastre alınabilir. Bu bölgedeki tüm düğümlerin deplasman ve dönmeleri sıfır alınınca bu şart sağlanmış olur. Ux=Uy=Uz=Rot-x=Rot-y=Rot-z=0 -Kemik, Çimento ve protez hacimlerinin birbirine tamamen yapışmış (bonded) olduğu kabul edildiğinden temas bölgelerinde ortak alanlara sahiptirler. Dolayısıyla bu yüzeylerde ortak düğüm noktalarına sahiptir. Eğer bu yüzeyler birbiri üzerinde hareket edebilseydi arayüzeylerde kontak elemanlar ve sürtünme katsayısının tanımlanması gerekirdi. 21

6.4 Malzeme Özelliklerinin Girilmesi - Kemik ve Çimento gevrek bir yapıya sahip olduğundan lineer elastik malzeme olarak kabul edilebilirler ve yapısal analizlerde sadece Elastiklik modülleri (E) ve poisson oranlarının ( n ) tanımlanması yeterlidir. - Protez Malzemesi ise paslanmaz çeliktir elasto-plastik davranış gösterir. Bu durumda yapısal analizlerde plastik bölgesinin de dikkate alınması gerekir. Akma gerilmesi geçilmediği zaman protezin E ve n değerleri analizler için yeterli olur. Protez malzemesinin plastik bölgeye kadar yüklenmesi önemli işlevsel bozuklukların oluşmasına yol açacaktır. Bu nedenle böyle bir yükleme olmamalıdır. Yani protez elastik bölge sınırları içinde yüklenmelidir. O halde sadece E ve n değerleri yeterli olacaktır. 22

Elasto-plastik bir malzemede plastik bölgenin tanımlanmasına gerek olmadığı analiz sonuçlarından ispatlanabilir: Malzemenin sadece elastik özellikleri (E ve n ) girilerek analizler yapılır. Sonuçta malzemede ortaya çıkan maksimum gerilmeye bakılır. Eğer akma gerilmesini aşmıyorsa sadece elastik özelliklerin tanımlanmasının yeterli olduğu, plastik bölgeye girilmeyeceğinden tanımlanmasına da gerek olmadığı anlaşılır. Sonuç olarak tüm malzemelerin E ve n değerlerinin tanımlanması yeterlidir. E ve n değerleri bilinmiyorsa çekme deneyi ile bulunabilir. Ancak deneylerde mutlaka uzama ölçümleri numune üzerinden alınmalı ve bu amaçla strain-gage (gerinme ölçer) ler veya ekstansometre kullanılmalıdır. Çünkü elastik uzama ölçümlerinde cihazın göstergesinden okunan değerler cihazın çenelerindeki elastik uzamaları da gösterir. 23

6.5- Yükleme Vucut ağırlığı dolayısıyla tedavi bölgesine gelen dış yüklerin şiddetleri, doğrultuları ve uygulama bölgeleri doğru br şekilde belirlenmeli ve modellere uygulanmalıdır. Vucut yükünün yanısıra femura bağlı kas kuvvetleri de gözönüne alınmalıdır. Deneysel olarak bu kuvvetlerin belirlenmesi farklı bir kapsamlı çalışmayı gerektirir. Bunun yerine daha önce yapılmış çalışmalardaki değerler alınarak bu çalışmalar referans gösterilebilir. (Akay & Aslan, 1996) Farklı bir çalışmadan alınan dış yükler başka bir çalışmadaki model ve geometriye tam olarak uymaması sözkonusu olabilir. Böyle bir durumda bulunan gerilmeler gerçek duruma göre biraz fark çıkabilir. Ancak tüm modellere aynı yük uygulandığından ve tüm modellerde aynı malzemeler kullanıldığından, analizler arasındaki sonuç farklılıkları model geometrisindeki farklardan kaynaklanır. O halde Dış yükler gerçek değerinden çok farklı olmamak şartıyla hedeflediğimiz geometriler arasındaki kıyaslama yine doğru bir şekilde yapılabilir. 24

Kas Kuvveti (P) bilinmiyorsa, ancak kasın malzeme özellikleri biliniyorsa bu durumda kasın etkisinin hesaba katılması: Modelde kas bölgesi bir hacim olarak tanımlanır. Leğen kemiğine bağlı olduğu üst kısımdan ankastre yapılır. Alt Kısımda ise femura bağlanır. Gerekli malzeme özellikleri girilir. 25

7- ANALĠZ PROGRAMINDA DĠKKAT EDĠLMESĠ GEREKEN NOKTALAR VE ANALĠZLERĠNĠN YAPILMASI -Tüm girdiler programa yüklendikten sonra sonlu eleman çözümlemeleri herbir model için yapılır. Dikkat edilmesi gereken bazı hususlar: 1-Analizler sırasında bilgisayarın kapasitesinden kaynaklanan hatalar çıkabilir bu durumda eleman sayısını düşürmek bir çözümdür. Ancak sonuçların hassasiyeti de o ölçüde azalacaktır.. 2- Örneğin malzeme özelliklerinin birisini yazarken hata yapılması bile sonuçları yüksek seviyelerde saptırabilir. Bu nedenle bir modelin analizi yapıldıktan sonra sonuçların makul seviyelerde çıkıp çıkmadığının kontrol edilmesi ve sonra diğer modellerin analizlerine geçilmesi faydalıdır. Aksi taktirde önemli bir zaman ve emek kaybı söz konusu olabilir. 26

8-SONUÇLAR VE DEĞERLENDĠRME Tüm modellerin çözümleri yapıldıktan sonra sonuçların görülmesi ve değerlendirilmesi gerekir. Karşımıza bir çok sonuç çıkacaktır. Ancak burada en önemli 3 sorunun cevabının verilmesi gerekir. Soru 1-Çıkan sonuçlar Mantıklı mı? Soru 2- Sonuçların gerçeğe yakınlığı nasıl test edilebilir. Soru 3- Sonuçlar nasıl yorumlanabilir? 27

1- Çıkan sonuçlar Mantıklı mı? Ele alınan problemin uygulamadan gelen pratik bilgileri sonuçların mantıklı olup olmadığına karar vermemizi kolaylaştırır. -Uygulamalarda, statik yükten dolayı kırılma oluşmayacağı bilindiğinden üç malzemedeki gerilmeler de mukavemet sınırlarının altında çıkması gerekir.. -Protezler değiştirilirken hiçbir plastik deformasyona uğramadığı ve kırılmaya maruz kalmadığı gözlendiğinden, protezdeki gerilmelerin akma sınırının oldukça altında çıkması gerektiği sonucuna varılabilir. Zaman içinde hasarların daha çok çimentoda çıkması sebebiyle, çimentodaki yorulma sınırılarını (Smith diyagramındaki sınırıları) aşması normal karşılanabilir. 28

2- Sonuçların gerçeğe yakınlığını nasıl test edilebilir? Sonuçlar mantıklı olsa bile gerçeğe yakın olmayabilir. Sonuçların farklı şekillerden desteklenebilmesi son derece önemli bir konudur. Destekleme yöntemlerinden bazıları: 1-Deneysel Ölçümler: en önemli destekleme yöntemlerinden birisidir. 2- Teorik hesaplamalarla karşılaştırma 3-Benzer çalışmalardaki sonuçlarla uyumluluk 29

3- Çıkan Sonuçlar Nasıl Yorumlanabilir? Problemin ve Analizin cinsine göre karşımıza birçok sonuç çıkacaktır. Öncelikle sonuçlardan hangisinin yorumlanması gerektiğine karar verilmesi gerekir. Bu problemde yapısal bir analiz yapılmıştır. Sistemdeki hasarların en önemli sebebi gerilme yığılmaları olduğunu düşünerek gerilmeler açısından değerlendirme yapılması gerektiğine karar verilebilmelidir. 30

Ancak karşımıza birçok gerilme çeşidi çıkmaktadır. Acaba bu gerilme çeşitlerinden hangilerini yorumlamak doğrudur? 31

8.1 Akma ve Kırılma Kriterleri Kemik ve Çimento gevrek bir yapıya sahiptir. Gevrek malzemelerin kırılması açısından Rankie, Coulomb veya Mohr kriterleri esas alınmalıdır. Protez ise Sünek (elasto-plastik-ģekil alabilir) bir yapıya sahiptir. Sünek malzemelerin akmasında Von-Mises veya Tresca kriterleri esas alınmalıdır. 32

1. Sünek Malzemeler için Akma Kriterleri a-) Tresca (Maksimum Kayma Gerilmesi) Kriteri Bu kritere göre bir malzemenin herhangi bir noktasında akma olmasının şartı, o noktadaki maksimum kayma gerilmesinin, basit çekme halinde akma sınırındaki kayma gerilmesine eşit veya büyük olmasıdır. Akma olmasının şartı: max 0 max s1 s 3 2 s 0 0 2 33

b-) Von-Mises (Eşdeğer Gerilme veya Maksimum Çarpılma Enerjisi) Kriteri Bu kritere göre çok eksenli yükleme durumundaki eşdeğer gerilme (vonmises gerilmesi) malzemenin akma gerilmesini aştığında o noktada akma oluşur. Akma Şartı: s eş s 0 s eş s vm 1 2 2 2 s s ) s s ) s s ) 1 2 1 3 2 3 2 34

2. Gevrek Malzemelerde Kırılma Kriterleri a-) Rankine Kriteri Bu kritere göre bir malzemenin herhangi bir noktasında kırılma olması için o noktadaki asal gerilmenin malzemenin kırılma mukavemetini geçmesi gerekir. Kırılma şartları: s s o veya s s 1 3 oc Başka bir ifadeyle, bu kritere göre, bir noktada kırılma olmaması için o noktadaki Mohr çemberinin şekildeki kırmızı çizgiler içinde kalması gerekir. Gevrek Malzemeler için kısmen iyi sonuçlar veren bir kriterdir. 35

s 1 s 0 b-) Columb Kriteri: Gevrek malzemeler için çok iyi sonuç veren bu kritere göre bir malzemenin herhangi bir noktasında kırılma olmamasının şartı: s s 1 3 0 s s 0C 1 = Maksimum asal gerilme = Mimimum asal gerilme s 3 s oc = Çekme Mukavemeti = Basma Mukavemeti Bu kritere göre: basit çekme ve basit basma hallerinin en büyük Mohr çemberlerinin teğetleri dışında kalınan yüklemelerde kırılma olur. Örnek : s 0 100MPa s oc =400MPa olan bir malzemede herhangi a ve b gibi iki noktada asal gerilmeler, s 1 s 3 s 1 /s o - s 3 /s oc ) a 50-100 50/100-(-100/400) =0.75 b 90-100 90/100-(-100/400) =1.15 a ve b noktalarının her iksinde de Rankine kriterine göre kırılma olmayacağı söylenebilir. Columb kriterine göre ise a noktasında kırılma olmaz ancak b noktasında olur. 36

c-) Mohr Kriteri Bu kritere göre: basit çekme, basit basma ve tam kayma hallerinin en büyük Mohr çemberlerinin zarf eğrilerinin dışında kalınan yüklemelerde kırılma olur. Gevrek malzemeler için çok iyi sonuçlar veren bir kriterdir. s 1 s o *Görüldüğü gibi gevrek malzemelerde, her üç kriterde de asal gerilmelerin incelenmesi gerekliliği ortaya çıkmaktadır. *Asal gerilmeler sonuçlarda görülmesine rağmen, Columb ve Mohr kriterleri için ayrı bir değerlendirme yapılması gerekebilir 37

8.2 Değerlendirmeler için uygun grafikler Çimentoda Maksimum Asal Gerilme dağılımını gösteren grafik örnekleri. 38

Çimentodaki maksimum gerilmelerin anteversiyon açılarına göre dağılımı 39

Çimento mukavemeti açısından, 1-Tüm anteversiyon açılarında 3. Tip Protez en kritik durumu arz eder 2-1. Tip Protez düşük ve yüksek anteversiyon açılarında diğerlerine göre daha emniyetlidir. 3-Normal anteversiyon açılarında (10 o -15 o ) ise 1.Tipin yanısıra 2. Tip daha emniyetli durum arz eder. 4- Tüm anteversiyon açıları içinde çimento emniyeti açısından en emniyetli durum normal anteversiyon açıları içinde çıkmaktadır. 40

9- ÇÖZÜM GELĠġTĠRME Problemin tüm detaylarıyla ortaya koyulmasından sonra, özellikle en önemli sebeplerini gidermeye yönelik çözümler üretebilmek son derece önemlidir. -Bununla birlikte, BDM çalışmaları, sadece problemi ortaya koymak ve sebeplerini belirlemek için değil, aynı zamanda çözüm geliştirmeye yönelik planlanırsa çok daha verimli olur ve bu 9. aşama analizler sonunda belli seviyede aşılmış olabilir. Örneğin-Kemik yapısına ve özellikle anteversiyon açısına göre protez tiplerinin avantaj ve dezavantajlarının ortaya koyulması, aslında bu problem için bir çözüm geliştirme olarak değerlendirilmelidir. -Bunun yanısıra bilgisayarda farklı tasarımlar yapılarak protez geometrisi açısından araştırmalar genişletilebilir. 41

10-YARGILAR, BĠLĠM ve UYGULAMAYA KATKILAR Bu aşamada çalışmadan elde edilen ve bu tip çalışmalara yönelik genel anlamdaki yargılar ifade edilir. 1- Protez geometrisinin seçilmesinde, hastanın kemik yapısı önemli bir kriterdir. 2- Sırt bölgesi olmayan (3.tip) protezler kırılmalar açısından daha risklidir. İmplantların geometrisinde sırt bölgesinin belli seviyede de olsa bulunması gerekir. 3-Çimentoda kırılma riski çok daha fazla olduğundan, özellikle protezin çimentoya girdiği en üst yüzey kısmında keskin köşelerin bırakılmamasına özen gösterilmelidir. 42