Bölüm 1. Elektriksel Büyüklükler ve Elektrik Devre Elemanları

Benzer belgeler
Bölüm 1. Elektriksel Büyüklükler ve Elektrik Devre Elemanları

10. e volt ve akımıi(

ELEKTRİK DEVRE TEMELLERİ ÖDEV-2

DC DEVRE ÇÖZÜM YÖNTEMLERİ

DENEY-6 THEVENİN TEOREMİNİN İNCELENMESİ MAKSİMUM GÜÇ TRANSFERİ

ARASINAV SORULARI. EEM 201 Elektrik Devreleri I

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 4- Direnç Devreleri II

Elektrik Müh. Temelleri

Doğru Akım Devreleri

Elektrik Devre Temelleri

Ölçü Aletlerinin Tanıtılması

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRİK DEVRELERİ I LABORATUVARI DENEY RAPORU. Deney No: 5 Güç Korunumu

Süperpozisyon/Thevenin-Norton Deney 5-6

Elektrik Müh. Temelleri

EEM211 ELEKTRİK DEVRELERİ-I

Elektrik Müh. Temelleri

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

DENEY 2: TEMEL ELEKTRİK YASALARI (OHM, KİRCHOFF AKIM VE GERİLİM)

R 1 R 2 R L R 3 R 4. Şekil 1

2. DA DEVRELERİNİN ANALİZİ

KANUNLAR : Bir iletkenin iki ucu arasındaki potansiyel farkının,iletkenden geçen akım şiddetine oranı sabittir.

THEVENIN VE NORTON TEOREMLERİ. Bu teoremler en güçlü analiz tekniklerindendir EBE-215, Ö.F.BAY 1

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI

V R1 V R2 V R3 V R4. Hesaplanan Ölçülen

EET-102 DENEY KİTAPÇIĞI

Bölüm 2 DC Devreler. DENEY 2-1 Seri-Paralel Ağ ve Kirchhoff Yasası

DENEY 2: TEMEL ELEKTRİK YASALARI-GERİLİM VE AKIM ÖLÇÜMLERİ

DENEY 7 DC DEVRELERDE GÜÇ ÖLÇÜMÜ VE MAKSİMUM GÜÇ AKTARIMI UYGULAMALARI

Nedim Tutkun, PhD, MIEEE Düzce Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Konuralp Düzce

AVRASYA UNIVERSITY. Dersin Verildiği Düzey Ön Lisans (X ) Lisans ( ) Yüksek Lisans( ) Doktora( )

DENEY-4 WHEATSTONE KÖPRÜSÜ VE DÜĞÜM GERİLİMLERİ YÖNTEMİ

EEM211 ELEKTRİK DEVRELERİ-I

DİĞER ANALİZ TEKNİKLERİ

Problemler: Devre Analizi-II

Elektrik Devre Temelleri

EEM211 ELEKTRİK DEVRELERİ-I

TEMEL KAVRAMLAR BİRİM SİSTEMİ TEMEL NİCELİKLER DEVRE ELEMANLARI ÖZET

DEVRE DEĞİŞKENLERİ Bir elektrik devresinde enerji ölçülebilen bir değer değildir fakat ölçülebilen akım ve gerilim değerlerinden hesaplanır.

Elektrik Devre Temelleri 3

Adı Soyadı: Öğrenci No: DENEY 3 ÖN HAZIRLIK SORULARI. 1) Aşağıdaki verilen devrenin A-B uçlarındaki Thevenin eşdeğerini elde ediniz.

ELE 201L DEVRE ANALİZİ LABORATUVARI

BAHAR YARIYILI FİZİK 2 DERSİ. Yrd. Doç. Dr. Hakan YAKUT. Fizik Bölümü

Deneyin amacı, Thevenin ve Norton Teoremlerinin öğrenilmesi ve laboratuar ortamında test edilerek sonuçlarının analiz edilmesidir.

DENEY FÖYÜ 5: THEVENİN VE NORTON TEOREMLERİNİN İNCELENMESİ

DİĞER ANALİZ TEKNİKLERİ

EEM211 ELEKTRİK DEVRELERİ-I

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz?

TEMEL DEVRE KAVRAMLARI VE KANUNLARI

KAYNAK DÖNÜŞÜMÜ NORTON-THEVENIN ve SÜPERPOZİSYON TEOREMLERİ & İŞ-GÜÇ-ENERJİ

DENEY-3 AKIM VE GERİLİM BÖLME KIRCHOFF AKIM VE GERİLİM KANUNLARININ İNCELENMESİ

Chapter 7. Elektrik Devreleri. Principles of Electric Circuits, Conventional Flow, 9 th ed. Floyd

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI

DENEY 2. Şekil KL modülünü, KL ana ünitesi üzerine koyun ve a bloğunun konumunu belirleyin.

Devre Teorisi Ders Notu Dr. Nurettin ACIR ve Dr. Engin Cemal MENGÜÇ

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 1

Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method)

SERİ, PARALEL DİRENÇ DEVRELERİ VE KIRCHHOFF KANUNLARI

Ders 3- Direnç Devreleri I

DENEY DC GERİLİM ÖLÇÜMÜ DENEYİN AMACI

THEVENİN VE NORTON TEOREMLERİ

Problem Çözmede Mühendislik Yaklaşımı İzlenecek Yollar Birimler ve ölçekleme Yük, akım, gerilim ve güç Gerilim ve akım kaynakları Ohm yasası

Elektrik Müh. Temelleri

DENEY 5 RC DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMASI

6. DİRENÇ ÖLÇME YÖNTEMLERİ VE WHEATSTONE KÖPRÜSÜ

ELEKTRİK AKIMI Elektrik Akım Şiddeti Bir İletkenin Direnci

SÜPER POZİSYON TEOREMİ

ELEKTRİK DEVRELERİ UYGULAMALARI

BLM1612 DEVRE TEORİSİ

KTÜ, Mühendislik Fakültesi Elektrik Elektronik Müh. Böl. Temel Elektrik Laboratuarı I. I kd = r. Şekil 1.

KIRCHHOFF YASALARI VE WHEATSTONE(KELVİN) KÖPRÜSÜ

Düzenlenirse: 9I1 5I2 = 1 108I1 60I2 = 12 7I1 + 12I2 = 4 35I1 60I2 = I1 = 8 I 1

3.4. ÇEVRE AKIMLAR YÖNTEMİ

6. Sunum: Manye-k Bağlaşımlı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

dq I = (1) dt OHM YASASI ve OHM YASASI İLE DİRENÇ ÖLÇÜMÜ

TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ EEM201 DEVRE ANALİZİ I LABORATUARI. Deney 2. Süperpozisyon, Thevenin,

ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ÖLÇME VE DEVRE LABORATUVARI DENEY 2

Chapter 5. Elektrik Devreleri. Principles of Electric Circuits, Conventional Flow, 9 th ed. Floyd

Ders 2- Temel Elektriksel Büyüklükler

DENEY 0: TEMEL BİLGİLER

<<<< Geri ELEKTRİK AKIMI

DOĞRU AKIM DEVRE ANALİZİ Ö. ŞENYURT - R. AKDAĞ ÜÇÜNCÜ BÖLÜM: OHM KANUNU, İŞ, ENERJİ VE GÜÇ

Selçuk Üniversitesi Teknoloji Fakültesi Elektrik Elektronik Mühendisliği

ÖLÇME VE DEVRE LABORATUVARI DENEY: 4

Elektrik Devre Temelleri 5

Elektrik Devre Temelleri

ELEKTRİK DEVRE ANALİZİ

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır.

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 5

Doğru Akım Devreleri

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır.

Chapter 9. Elektrik Devreleri. Principles of Electric Circuits, Conventional Flow, 9 th ed. Floyd

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ

DENEY 1 Basit Elektrik Devreleri

ELE 201 DEVRE ANALİZİ I ARA SINAV 1 11 Ekim 2011, Salı,

Bölüm 4 Doğru Akım Devreleri. Prof. Dr. Bahadır BOYACIOĞLU

DENEY 5 SÜPERPOZİSYON VE MAKSİMUM GÜÇ AKTARIMI

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu

AET 113 DOĞRU AKIMI DEVRE ANALİZİ 1. HAFTA

Transkript:

Bölüm Elektriksel Büyüklükler ve Elektrik Devre Elemanları. Temel Elektriksel Büyüklükler: Akım, Gerilim, Güç, Enerji. Güç Polaritesi.3 Akım ve Gerilim Kaynakları F.Ü. Teknoloji Fak. EEM M.G.

.. Temel Elektriksel Büyüklükler Elektriksel olaylar, elektrik yükleri ile açıklanır. - - - - - - - + + + + + + + Elektrik yükünün ayrıştırılması (kümelenmesi) elektrik kuvvetini (elektrik potansiyelini) yani gerilimi üretirken, Elektrik yükünün hareketi ise elektrik akımını üretir. F.Ü. Teknoloji Fak. EEM M.G.

3 Elektrik Akımı Elektrik akımı, bir iletkenden birim zamanda geçen yük miktarıdır. Akımın yönü, negatif elektron yüklerinin tersi yönünde kabul edilir. + - Buna göre, eğer bir t süresi boyunca bir iletkenden akan yük Q ise iletkenden geçen sabit akım, Q I t Ancak, yük zaman bağlı ise F.Ü. Teknoloji Fak. EEM M.G. i i dq dt

4 Örnek. Bir iletkenden geçen yük miktarı a-) saniye boyunca Q=0 C (amper-saniye) ise q(t ) 0e t b-) C ise iletkenden geçen akımı bularak zamana göre değişimlerini çiziniz. Çözüm F.Ü. Teknoloji Fak. EEM M.G.

5 Gerilim-Potansiyel Fark Pozitif ve negatif elektrik yükleri ayrıştırılırsa bir enerji ortaya çıkar ve bu enerji bir elektrik kuvvetine yol açar. Buna göre gerilim, birim yükün oluşturduğu enerji ya da birim yükün A noktasından B noktasına hareket ettirilmesi için gereken enerji miktarı olarak tanımlanabilir. C W V Q. Örneğin, +5 C yük, A dan B ye hareket ederken 0 Joul iş yapıyorsa bu noktalar arasındaki potansiyel farkı V=0/5= volt demektir. dt yük değişimine karşın dw enerji değişimi oluyorsa gerilim, F.Ü. Teknoloji Fak. EEM M.G. A + V AB v. B dw dq

6 Üreteçler (Kaynaklar) Bir elektrik devresine uygulanan giriş, bir elektrik enerjisi kaynağından gelmek durumundadır. Kaynaklar, akım ve gerilim kaynağı olabilir. Vs + - Devre elemanı Is Devre elemanı İçinden geçen akımdan bağımsız olarak belli bir gerilimi veren kaynaklar ideal gerilim kaynağı, uçlarındaki gerilimden bağımsız olarak belirli bir akımı veren kaynaklar ise ideal akım kaynağı olarak söylenir. Devreden geçen akımın ve eleman uçlarındaki F.Ü. Teknoloji Fak. EEM M.G. gerilimin polariteleri?

Elektrik Akımı ve Yük İlişkisi Bir elemandan geçen akım, olduğuna göre, i( t) dt t q( t) i( t) dt q( t ) 0 t 0 i dq dt Elemanın akımı biliniyor ve yük bulunacak ise, t q( t) 0 to anında bir to başlangıç yükü de mevcut ise, F.Ü. Teknoloji Fak. EEM M.G. 7

Örnek. Şekildeki devreden geçen yük değişimi q(t) nedir? i 0e 5000t i Devre elemanı Cevap: q(t ) t 0 i(t )dt F.Ü. Teknoloji Fak. EEM M.G. 8

Örnek.3 Şekildeki devreden geçen yük değişimi q(t), 0-3 saniye aralığında nedir? i Devre elemanı Cevap: t q( t) i( t) dt q( t ) 0 t 0 F.Ü. Teknoloji Fak. EEM M.G. 9

0 Güç Enerjinin zamana göre değişim oranı ya da birim zamanda yapılan iş ise güçtür. p dw dt Bulunan akım gerilim bağıntıları kullanılarak dw dq p v. i dq dt F.Ü. Teknoloji Fak. EEM M.G.

Enerji Güç tanımından yararlanarak enerji, aşağıdaki integral ile bulunur. dw t p w( t) p( t) dt dt 0 to anında bir to başlangıç enerjisi varsa, t w( t) p( t) dt w( t ) 0 t 0 F.Ü. Teknoloji Fak. EEM M.G.

Sonuç olarak Bir devre elemanına, polaritesi belli bir v gerilimi uygulanırsa, bu elemandan belirli yönde bir i akımı geçer (Yani elektrik yükü akar) ve, devre elemanında bir güç harcanmış, dolayısıyla elemanda bir iş yapılmış yani F.Ü. Teknoloji Fak. EEM M.G. enerji kullanılmış olur.

3. Güç Polaritesi Bir devrede, devre elemanının harcadığı güç p=v.i dir. bu güç, aynı zamanda kaynak tarafından devre elemanına verilen güçtür. Dolayısıyla kaynak tarafından verilen gücün değeri de p=v.i dir. Bu nedenle, devre elemanına verilen ve elemandan tarafından harcanan güçleri ayırmak amacıyla güç hesaplamalarında gücün polaritesini de belirlemek gerekir. F.Ü. Teknoloji Fak. EEM M.G.

Güç Polaritesi Akımla gerilimin polaritesi uygunsa gücün polaritesi (+) aksi halde gücün polaritesi (-) olarak yazılır. Verilen Güç: Pa=-v.i Alınan ya da harcanan Güç: Pa=+v.i Örneğin, şekildeki devreye uygulanan gerilim V=0 volt ve devreden geçene akım I=5 A ise verilen ve alınan güçleri hesaplayınız. F.Ü. Teknoloji Fak. EEM M.G. 4

i i i 3 v v v v v 3 4 5 Örnek.4. Şekildeki devrede elemanların akım ve gerilimleri verildiğine göre elemanlarının güçlerini bulunuz. 5 3 6 A 8 A V 5 0 5 30 A V V V V Çözüm Pa v Pd v 4.i.i 3 Pb v Pe v.i 5 3.i Pc v F.Ü. Teknoloji Fak. EEM M.G. 5 3.i

6 Örnek.5 Şekildeki devrede, gerilim ve akımın ifadeleri verildiğine göre elemanın gücü ve elemanında harcanan enerjiyi bulunuz. v 0e 5000 t i 0e 5000 t F.Ü. Teknoloji Fak. EEM M.G.

Çözüm v 0e 5000 t i 0e 5000 t 7 p v.i w t pdt Ya da w t v. idt 0 0 F.Ü. Teknoloji Fak. EEM M.G.

8 Örnek.6 Bir devreye uygulanan gerilimin ve devreden geçen akımın dalga şekilleri aşağıda verilmiştir. F.Ü. Teknoloji Fak. EEM M.G. a-) t=,,3,4. sn.lerdeki devre elemanının harcadığı güç ifadesini bularak güç eğrisini çiziniz. b-) t=,,3,4. sn.lerdeki elemana verilen enerjiyi bularak enerji eğrisini çiziniz.

Çözüm: 9 t=,,3,4. sn.lerdeki güçler ve enerjiler, bu aralıklardaki akım ve gerilim denklemleri yazılarak hesaplanabilir. p vi. t w( t) p( t) dt w( t F.Ü. Teknoloji Fak. EEM M.G. 0 t 0 )

0 Örnek.7 Bir devre elemanının gerilimi ve akımı verilmiştir. v 0e 5 t i e 5t a-) Elemanın harcadığı gücü bularak güç eğrisini çiziniz. b-) Maksimum gücün değeri nedir ve kaçıncı saniyede güç maksimum olur. c-) Elemana verilen enerji eğrisini çizerek F.Ü. Teknoloji Fak. EEM M.G. toplam enerjiyi bulunuz.

Çözüm a-) Elemanın harcadığı güç, p v. i F.Ü. Teknoloji Fak. EEM M.G.

b-) Gücün maksimum olduğu zaman, gücün zamana göre türevinin (güç eğrisinin eğiminin) sıfır olduğu noktadır. Yani, dp dt 0 Buradan, t max 0.386 sn p max p(0.386) 0 F.Ü. Teknoloji Fak. EEM M.G.

c-) Enerji 3 w(t ) t v.idt t ( 40e 5t 40e 0t )dt 0 0 F.Ü. Teknoloji Fak. EEM M.G.

4.3 Akım ve Gerilim Kaynakları İdeal ve Gerçek Bağımsız Kaynaklar İdeal kaynaklar, uçlarına bağlanan elemanın değeri ne olursa olsun sabit bir akım ya da gerilim verirken gerçek kaynakların bir iç dirence sahip olması nedeniyle uçlarına bağlanan bir eleman verdikleri akım ya da gerilim daha düşüktür.!!! F.Ü. Teknoloji Fak. EEM M.G.

5 Bağımlı Kaynaklar: Ürettikleri gerilim ya da akım, devrenin başka bir yerindeki akım ya da gerilime bağımlıdır.. v. s v x v. i s x i. v s x i. i s x Örnek Bir transistörlü yükseltecin DC eşdeğeri F.Ü. Teknoloji Fak. EEM M.G.

6 Diğer bölüme başlamadan önce bu bölüm ile ilgili verilen soruları çözmeniz tavsiye edilir. F.Ü. Teknoloji Fak. EEM M.G.

BÖLÜM TEMEL DEVE YASALAI ve DİENÇLİ DEVELE. Ohm ve Kirchhoff Kanunları: Akım, Gerilim, Güç ve Enerji Hesabı. Temel dirençli Devreler: Seri, Paralel, Wheatstone ve Yıldız-Üçgen.3 Kirchhoff Kanunları: Bağımlı Kaynaklı Devreler F.Ü. Teknoloji Fak. EEM M.G. 7

. Ohm ve Kirchhoff Kanunları Bir elektrik devresindeki direncin akımı ve gerilimi arasındaki ilişkisi ohm kanunu ile tanımlanır. v i Direnç değeri, iletkenin boyutlarına ve cinsine bağlı olarak aşağıdaki ifadeden elde edilir. s İletkenlik G F.Ü. Teknoloji Fak. EEM M.G. 8

Örnek.: Şekildeki devrede, direncin gerilimini, harcanan gücü, kaynağın verdiği gücü ve dirençte oluşan enerjiyi bularak zamana göre değişimlerini çiziniz. Çözüm: v. i P V vi P a v. i t w pdt 0 F.Ü. Teknoloji Fak. EEM M.G. 9

Kirchhoff Kanunları 0 3 s s V V V V V 0 3 s s I I I I I Gerilimlerin kanununa (KGK) göre Akımlar kanununa (KAK) göre F.Ü. Teknoloji Fak. EEM M.G. 30

Kirchhoff Kanunlarına göre Geçerli ve Geçersiz Kaynak Bağlantıları F.Ü. Teknoloji Fak. EEM M.G. 3

Örnek.. Şekildeki devrede vo=00 volt olduğuna göre bağlantı geçerli midir? Niçin? Geçerli ise devredeki elemanların güçlerini bulunuz. F.Ü. Teknoloji Fak. EEM M.G. 3

Örnek.3 Aşağıdaki devreyi Ohm ve Kirchoff kanunlarından yararlanarak çözünüz. (Elemanların akımlarını, gerilimlerini ve güçlerini bulunuz.) Çözüm: i0 3A V 50i 50 i 3A P P P 0 50 6 A F.Ü. Teknoloji Fak. EEM M.G. 0 V 33 P

Örnek.4 Aşağıdaki devreyi Ohm ve Kirchoff kanunlarından yararlanarak çözünüz. (Elemanların akımlarını, gerilimlerini ve güçlerini bulunuz.) Çözüm: F.Ü. Teknoloji Fak. EEM M.G. 34

.. Temel Dirençli Devreler Seri Dirençler Şekildeki seri devreye ohm ve KGK uygulanırsa kaynak uçlarına göre devrenin eşdeğer direnci, V S i... S ( 3 n V i S S... eş 3 n F.Ü. Teknoloji Fak. EEM M.G. 35

Paralel Dirençler: Şekildeki paralel devreye ohm ve KAK uygulanırsa kaynak uçlarına göre devrenin eşdeğer direnci, n eş S S S S S S V i V V V i... 3 3 F.Ü. Teknoloji Fak. EEM M.G. 36

Gerilim Bölücü Devre: Şekildeki gibi gerilim kaynağına seri bağlı dirençler, gerilim bölücü olarak görev yaparlar. V V s F.Ü. Teknoloji Fak. EEM M.G. 37

Akım Bölücü Devre: Şekildeki gibi akım kaynağına paralel bağlı dirençler, akım bölücü olarak görev yaparlar. S S S i ve i i i i V i i V F.Ü. Teknoloji Fak. EEM M.G. 38

Wheatstone Köprüsü: Genellikle direnç ölçme amaçlı olarak kullanılan wheatstone köprüsü şekilde verilmiştir. Bu eşitlikler oranlanırsa bilinmeyen x direnci x 3 Galvonometre (G) sıfırı gösterecek şekilde bir x direnci bağlanır (yada x direnci ayarlanırsa) V=V, V3=Vx ve I=I3, I=Ix Bu durumda, I 3 I F.Ü. Teknoloji Fak. EEM M.G. 39 x I I

Üçgen/Yıldız ( / Y ) ya da PI/TEE Dönüşümü: Üçgen ve yıldız bağlı dirençler (PI ve TEE bağlantı) birbirlerine dönüştürülebilir. F.Ü. Teknoloji Fak. EEM M.G. 40

Yıldız ve üçgen bağlı dirençlerin eşdeğer olabilmesi için bağlantıların aynı uçlarından bakıldığında görülen dirençlerin aynı olması gerekir. 3 3 ) ( ) ( ) ( c b a b a c bc c b a c a b ac c b a c b a ab c b a c a c b a b c c b a b a 3,, 3 3 3 3 3 3 3,, c b a F.Ü. Teknoloji Fak. EEM M.G. 4

Örnek.5. Şekildeki devrede V gerilimini bulunuz. Şekil (a) daki 5, 0 ve 05 ohm luk üçgen bağlantı yıldıza dönüştürülürse şekil (b) elde edilir ve devrenin kaynak uçlarına göre eşdeğer direnci eş 7.5 ohm ve kaynak uçlarındaki gerilim ise, V. eş 35 F.Ü. Teknoloji Fak. EEM M.G. 4

.3 Kirchhoff Kanunları: Bağımlı Kaynaklı Devrelere Uygulanması Örnek.6 Aşağıdaki devrede Kirchhoff Kanunları yardımıyla ix ve i akımları ile v0 gerilimini bulunuz. Çözüm: i 4 i x 4 V 0 480v F.Ü. Teknoloji Fak. EEM M.G. 43

Örnek.7 Aşağıdaki devrede Kirchhoff Kanunları yardımıyla elemanların akımlarını, gerilimlerini ve güçlerini bulunuz. Çözüm: i 0 i x. 67 V 0 3v P0V P3İX, P P6 P 3, P P V a F.Ü. Teknoloji Fak. EEM M.G. 44

Örnek.8 Aşağıdaki devrede Kirchhoff Kanunları yardımıyla elemanların akımlarını, gerilimlerini ve güçlerini bulunuz. F.Ü. Teknoloji Fak. EEM M.G. 45

Diğer bölüme başlamadan önce bu bölüm ile ilgili verilen soruları çözmeniz tavsiye edilir. F.Ü. Teknoloji Fak. EEM M.G. 46

Bölüm 3 Devre Analiz Yöntemleri ve Teoremleri 3. Düğüm Gerilimleri Yöntemi 3. Çevre Akımları Yöntemi 3.3 Süperpozisyon Teoremi 3.4 Thevenin ve Norton Teoremi F.Ü. Teknoloji Fak. EEM M.G. 47

3.. Düğüm Gerilimleri Yöntemi: Düğüm gerilimleri yönteminin esası, bir düğüm ortak seçilmek üzere, bu ortak düğüme göre işaretlenen diğer düğüm gerilimlerini kullanarak düğümlere KAK uygulamaktır. Kısaca düğüm gerilimlerini bulmaktır. Bu durumda, hesaplanan düğüm gerilimlerinden yararlanarak elemanların akım, gerilim ve istendiği takdirde güç ve enerjileri hesaplanabilir. Burada, bağımsız kaynaklı devrelere düğüm gerilimleri yönteminin uygulanışı bilindiğine göre bir hatırlatma yapılarak bağımlı kaynaklı devrelerin düğüm gerilimleri yöntemi ile çözümü incelenecektir. F.Ü. Teknoloji Fak. EEM M.G. 48

Örnek 3..a Şekildeki devreyi düğüm gerilimleri yöntemi ile çözünüz. Çözüm V 9.09v V 0. 9v hesaplanan düğüm gerilimlerinden i 0.9A yararlanarak örneğin, F.Ü. Teknoloji Fak. EEM M.G. 49

Örnek 3..b Şekildeki devreyi düğüm gerilimleri yöntemi ile çözünüz. Süper düğüm sorunu Çözüm F.Ü. Teknoloji Fak. EEM M.G. 50

Düğüm Gerilimleri Yöntemi: Bağımlı Kaynaklı Devreler Örnek 3.. Şekildeki devreyi düğüm gerilimleri yöntemi ile çözünüz. Çözüm V 6 V 0 F.Ü. Teknoloji Fak. EEM M.G. 5

Örnek 3.3. Şekildeki devreyi düğüm gerilimleri yöntemi ile çözünüz. Süper Düğüm Sorunu Çözüm V V 80 60 F.Ü. Teknoloji Fak. EEM M.G. 5 i x

Örnek 3.4. Şekildeki devreyi düğüm gerilimleri yöntemi ile çözmek için gerekli düğüm denklemlerini yazınız. Çözüm F.Ü. Teknoloji Fak. EEM M.G. 53

3.. Çevre Akımları Yöntemi: Çevre akımları yönteminin esası, kapalı çevreler için işaretlenen çevre akımlarını kullanarak kapalı çevrelere KGK nun uygulanmasıdır. Kısaca çevre akımlarını bulmaktır. Bu durumda, hesaplanan çevre akımlarından yararlanarak elemanların akım, gerilim ve istendiği takdirde güç ve enerjileri hesaplanabilir. Burada, bağımsız kaynaklı devrelere çevre akımları yönteminin uygulanışı bilindiğine göre bir hatırlatma yapılarak bağımlı kaynaklı devrelerin çevre akımları yöntemi ile çözümü incelenecektir. F.Ü. Teknoloji Fak. EEM M.G. 54

Örnek 3.5. Şekildeki devreyi çevre akımları yöntemi ile çözünüz. Çözüm i 5.6 i i3 0. 8 F.Ü. Teknoloji Fak. EEM M.G. 55

Örnek 3.6. Şekildeki devreyi çevre akımları yöntemi ile çözmek için gerekli çevre denklemlerini yazınız. Süper Çevre Sorunu F.Ü. Teknoloji Fak. EEM M.G. 56

Çevre Akımları Yöntemi: Bağımlı Kaynaklı Devrelere Uygulanması Örnek 3.7. Şekildeki devreyi çevre akımları yöntemi ile çözmek için gerekli çevre denklemlerini yazınız. Çözüm i i 6 i 3 8 F.Ü. Teknoloji Fak. EEM M.G. 57

Örnek 3.8. Şekildeki devreyi çevre akımları yöntemi ile çözmek için gerekli çevre denklemlerini yazınız. Süper Çevre Çözüm F.Ü. Teknoloji Fak. EEM M.G. 58

Örnek: Şekildeki devreyi, a-) Çevre akımları yöntemi ile çözünüz yani, çevre akımlarını bulunuz. b-) Düğüm gerilimleri yöntemi ile çözünüz yani, düğüm gerilimlerini bulunuz F.Ü. Teknoloji Fak. EEM M.G. 59

3.3 Süperpozisyon ( Toplamsallık) Teoremi Toplamsallık teoremi, doğrusal devrelere-sistemlere uygulanabilir. Toplamsallık teoremi, bir doğrusal devre, birden fazla kaynak tarafından besleniyorsa toplam cevap yani herhangi bir elemanın toplam akımı yada gerilimi, kaynakların bireysel cevaplarının toplamıdır. Kaynakların devre dışı ya da pasif yapılması: Gerilim kaynağının devre dışı yapılması (sıfır gerilim üretmesi), kaynak uçlarının kısa devre edilmesi demektir. Aynı şekilde akım kaynaklarının devre dışı yapılması (sıfır akım üretmesi) kaynak uçlarının açık devre yapılması demektir. F.Ü. Teknoloji Fak. EEM M.G. 60

Örnek 3.9. Şekildeki devrede, toplamsallık teoremi ile Vo gerilimini bulunuz. Çözüm F.Ü. Teknoloji Fak. EEM M.G. 6

Süperpozisyon ( Toplamsallık) Teoremi Bağımlı kaynaklı devrelere uygulanması Örnek 3.9. Şekildeki devrede, toplamsallık teoremi ile Vo gerilimini bulunuz. F.Ü. Teknoloji Fak. EEM M.G. 6 Bağımsız kaynaklar tek bırakılarak devre ayrı ayrı çözülmelidir.

Akım kaynağı devreden çıkarılırsa Çözüm: V o? Gerilim kaynağı devreden çıkarılırsa Çözüm: V o? SONUÇ Vo Vo Vo 4 V F.Ü. Teknoloji Fak. EEM M.G. 63

Toplamsallık teoremi ile bir devre elemanının akımı ya da gerilimi bulunabilir. Ancak elemanın gücü, akım ve gerilime göre doğrusal olmayan bir bağıntıya sahip olduğundan toplamsallık teoremi güç için uygulanamaz. Örneğin önceki örnekte, 8 6 I0 0.4 A, I0 0.8 A ve I0 0..4 0.8. 0 0 0 ohm direncin harcadığı güç P V I 4*, 8. 8 W Ancak, Güç için toplamsallık teoremi uygulanırsa, 0 0. 0 A P V I 3. W, P V. I. 8 0 0. 0 0 0 0 W P P P 0 0 0 F.Ü. Teknoloji Fak. EEM M.G. 64

Kaynakların Dönüşümü Şekildeki kaynaklarda (ab) uçlarında bir L direncinin bağlı olduğunu düşünürsek bu direncin akımı ve gerilimi her iki devrede de aynı ise kaynaklar birbirine eşdeğer demektir. i L r vs Bu ifadeler birbirine eşitlenirse kaynak dönüşümü için, L i s i v r s L r r L i s v F.Ü. Teknoloji Fak. EEM M.G. 65 s ri s

3.4. Thevenin ve Norton Teoremi Thevenin ve norton teoremi, doğrusal bir devrenin herhangi iki ucuna (örneğin a b uçlarına) göre devrenin incelenmesini amaçlar bu iki uca göre devrenin bir gerilim kaynağına eşdeğer yapılması Thevenin teoremi, akım kaynağına eşdeğer yapılması Norton Teoremi olarak söylenir. Kaynak dönüşümleri dikkate alınırsa, N TH ve VTH - Devrenin ab uçlarına göre (ab uçlarından ölçülen) açık devre gerilimidir. I N V TH TH I N - Devrenin ab uçlarından ölçülen kısa devre akımıdır. TH - Devrenin ab uçlarına göre eşdeğer direncidir. F.Ü. Teknoloji Fak. EEM M.G. 66

Örnek: Şekildeki devrenin ab uçlarına göre Thevenin ve Norton eşdeğerini bulunuz. Çözüm: F.Ü. Teknoloji Fak. EEM M.G. 67

Thevenin ve Norton Teoremi Bağımlı kaynaklı devrelere uygulanması Bağımlı kaynaklı devrelerde Thevenin (ya da Norton) direncini bulmak önemlidir ve iki farklı yoldan bulunabilir. -) Devrenin thevenin gerilimi ve Norton akımı bulunursa thevenin direnci, TH -) Devrenin ab uçlarına bir test kaynağı bağlanırsa, bağımsız kaynaklar pasif yapılmak kaydıyla ve olabiliyorsa (yani bağımsız değişkeni sıfır oluyorsa) bağımlı kaynaklar da devre dışı yapılmak üzere bu devrenin ab uçlarına göre eşdeğer direnci, test kaynağı geriliminin akımına oranıdır. TH V I TH N V I Test F.Ü. Teknoloji Fak. EEM M.G. 68 Test

Örnek 3. 0 Şekildeki devrenin ab uçlarına göre Thevenin eşdeğerinin bulunuz. Çözüm: Vab VTH 5V F.Ü. Teknoloji Fak. EEM M.G. 69

Çözüm: Thevenin direncini bulmak için,.yol: Norton akımını bulmak. VTH 5 I N 50mA TH 00 I 0.05 N F.Ü. Teknoloji Fak. EEM M.G. 70

Çözüm:.Yol: ab uçlarına test kaynağı bağlamak, TH V I Test Test 5 3 00 00 F.Ü. Teknoloji Fak. EEM M.G. 7

Örnek 3. Şekildeki devrenin ab uçlarına göre Thevenin eşdeğerinin bulunuz. Çözüm: V 8V TH F.Ü. Teknoloji Fak. EEM M.G. 7

Çözüm: Thevenin direncini bulmak için iki yol izlenebilir..yol: Norton akımını bulmak. 4 8 I N 4 8 A TH 8 F.Ü. Teknoloji Fak. EEM M.G. 73

Çözüm:.Yol: ab uçlarına test kaynağı bağlamak TH V I Test Test 8 3 8 F.Ü. Teknoloji Fak. EEM M.G. 74

Diğer bölüme başlamadan önce bu bölüm ile ilgili verilen soruları çözmeniz tavsiye edilir. F.Ü. Teknoloji Fak. EEM M.G. 75