İMALAT YÖNTEMLERİ I Prof.Dr. İrfan AY KAYNAK ELEKTROTLARI. Erimeyen Elektrotlar



Benzer belgeler
ELEKTROD NEDİR? Kaynak işlemi sırasında ; Üzerinden kaynak akımının geçmesini sağlayan, İş parçasına bakan ucu ile iş parçası arasında kaynak arkını

ELEKTROD NEDİR? Kaynak işlemi sırasında ; Üzerinden kaynak akımının geçmesini sağlayan, İş parçasına bakan ucu ile iş parçası arasında kaynak arkını

YTÜMAKiNE * A305teyim.com

İMALAT ve KONTRÜKSİYON LABORATUVARI ÇALIŞMA FÖYÜ

Kaynak Hataları Çizelgesi


Kaynak nedir? Aynı veya benzer alaşımlı maddelerin ısı tesiri altında birleştirilmelerine Kaynak adı verilir.

Kaynak Metali ve Ana Malzeme Süreksizlikleri. Prof. Dr. Vural CEYHUN Kaynak Teknolojisi Eğitim, Muayene, Uygulama ve Araştırma Merkez

EN ISO KAYNAKÇILARIN YETERLİLİK SINAVI ERGİTME KAYNAĞI - BÖLÜM 1: ÇELİKLER. Özlem Karaman Metalurji ve Malzeme Mühendisi Kaynak Mühendisi

Uygulanan akım şiddeti, ark gerilimi koruyucu gaz türü ve elektrod metaline bağlı olarak bu işlem saniyede 20 ilâ 200 kere tekrarlanır.

TIG KAYNAK YÖNTEMİNDE KARŞILAŞILAN KAYNAK HATALARI PROF. DR. HÜSEYİN UZUN HOŞGELDİNİZ

İçindekiler BÖLÜM 1.0 KAPAK 1 BÖLÜM 2.0 TELİF HAKKI 2 BÖLÜM 3.0 GİRİŞ 4

ÇELİK YAPILARDA BİRLEŞİM ARAÇLARI

HOŞGELDİNİZ MIG-MAG GAZALTI KAYNAK PARAMETRELERİ. K ayna K. Sakarya Üniversitesi Teknik Eğitim Fakültesi. Teknolojisi. Teknolojisi

MAK-205 Üretim Yöntemleri I. (6.Hafta) Kubilay Aslantaş

Elektrik ark kaynağı.

İMAL USULLERİ

ÖĞRENME FAALİYETİ 1 ÖĞRENME FAALİYETİ TOZALTI KAYNAĞI

Kaynak yöntemleri ile birleştirilen bir malzemenin kaynak bölgesinin mikroyapısı incelendiğinde iki ana bölgenin var olduğu görülecektir:

1. Güç Kaynağı (Kaynak Makinesi)

TAHRİBATSIZ MUAYENE (NON DESTRUCTIVE TEST) HAZIRLAYAN: FATMA ÇALIK

MIG-MAG GAZALTI KAYNAK ELEKTROTLARI. K ayna K. Teknolojisi. Teknolojisi HOŞGELDİNİZ. Doç. Dr. Hüseyin UZUN Kaynak Eğitimi Ana Bilim Dalı Başkanı 1 /27

2.2 KAYNAKLI BİRLEŞİMLER

B. KAYNAK DEVRESİ. 1. Güç Kaynağı (Kaynak Makinesi) 2. Elektrot Pensesi ve Kablosu. 3. Örtülü elektrot. 4. Şase Pensesi ve Kablosu

KAYNAK HATALARI VE GİDERiLMESi

MIG-MAG GAZALTI KAYNAĞINDA KAYNAK PAMETRELERİ VE SEÇİMİ

6. ÖZEL UYGULAMALAR 6.1. ÖZLÜ ELEKTRODLARLA KAYNAK

İMALAT YÖNTEMLERİ I Doç.Dr.İrfan AY-Arş.Gör.T.Kerem DEMİRCİOĞLU KAYNAK

Yarışma Sınavı. 4 Soyunma dolaplarının standart ölçüleri, A ) 540 mm B ) 525 mm C ) 520 mm D ) 550 mm E ) 610 mm

Elektron ışını ile şekil verme. Prof. Dr. Akgün ALSARAN

HOŞGELDİNİZ MIG-MAG GAZALTI KAYNAKNAĞINDA ARK TÜRLERİ. K ayna K. Sakarya Üniversitesi Teknik Eğitim Fakültesi. Teknolojisi.

KURS VE SERTİFİKALANDIRMA FAALİYETLERİ

GAZALTI TIG KAYNAĞI A. GİRİŞ

1. GAZ ERGİTME KAYNAĞI

GAZ ALTI KAYNAK YÖNTEMİ MIG/MAG

IML 212 İMAL USULLERİ

MIG/MAG Kaynağında Kaynak Ekipmanları

MIG-MAG KAYNAK METODUNDA KULLANILAN KAYNAK ELEKTROTLARI VE ELEKTROT SEÇİMİ

3. 3 Kaynaklı Birleşimler

SATIŞLARIMIZ KAYNAK MAKİNELERİ

Paslanmaz Çeliklerin. kaynak edilmesi. Özlem Karaman Metalurji ve Malzeme Mühendisi Kaynak Mühendisi

Yüksek Mukavemetli Düşük Alaşımlı Çeliklerin Kaynağı. Özlem Karaman Metalurji ve Malzeme Mühendisi Kaynak Mühendisi

PERSONEL BELGELENDİRME HİZMET LİSTESİ

7. KAYNAKTA ORTAYA ÇIKAN PROBLEMLER ve KAYNAK HATALARI

Prof. Dr. HÜSEYİN UZUN KAYNAK KABİLİYETİ

METALURJİ VE MALZEME MÜH. LAB VE UYG. DERSİ FÖYÜ

Birleşim Araçları Prof. Dr. Ayşe Daloğlu Karadeniz Teknik Üniversitesi İnşaat Mühendisliği Bölümü

KAZAN ÇELİKLERİNİN KAYNAK KABİLİYETİ 1. Kazan Çeliklerinin Özellikleri

BÖLÜM 3 DİFÜZYON (YAYINIM)

TIG GAZALTI KAYNAK YÖNTEMİNDE KULLANILAN GAZLAR VE ÖZELLİKLERİ PROF. DR. HÜSEYİN UZUN HOŞGELDİNİZ

İŞ MAKİNALARI HİDROLİK TESİSATI BORULARININ BİRLEŞTİRİLMESİNDE SERT LEHİM İLE TIG KAYNAĞININ KARŞILAŞTIRILMASI

HOŞGELDİNİZ MIG-MAG GAZALTINDA KAYNAĞINADA KULLANILAN KAYNAK AĞIZLARI VE HAZIRLANMASI. K ayna K. Teknolojisi. Teknolojisi

GAZALTI KAYNAK YÖNTEMLERİ GİRİŞ ve DONANIMLARI

KAYNAK TÜKETİM MALZEMELERİ 08 / WELD

KAYNAK BÖLGESİ HESAPLAMALARI HOŞGELDİNİZ

MIG-MAG GAZALTI KAYNAK HATALARI SEBEPLERİ VE ÖNLEMLERİ. K aynak. Teknolojisi. Teknolojisi HOŞGELDİNİZ. Prof. Dr. Hüseyin UZUN 1 /27

HOŞGELDİNİZ MIG-MAG GAZALTI KAYNAK HATALARI SEBEPLERİ VE ÖNLEMLERİ. K ayna K. Teknolojisi. Teknolojisi

ZIRH ÇELİKLERİN KAYNAĞINDA KAYNAK AĞZI GEOMETRİSİ VE İLAVE TEL OPTİMİZASYONU Kaynaklı İmalatta İyileştirme Çalışmasına Örnek

Bölüm 7 Tahribatsız Malzeme Muayenesi

METAL KAYNAĞI METALİK MALZEMELERİ,

Yarışma Sınavı. A ) Hareket zaman çubuğu B ) Simülasyon C ) Animasyon D ) Hareket etüdü E ) Ekranda seçilen nesnelerin konumlarını verir

ELEKTRİK ARK KAYNAĞI TEMEL EĞİTİM REHBERİ (UYGULAMA 8-14)

BİR ÇİMENTO DEĞİRMENİ AYNASINDAKİ ÇATLAK TAMİRİNİN HİKAYESİ

YAPI ÇELİKLERİNİN KAYNAKLANABİLİRLİĞİ

GAZALTI KAYNAK TEKNİĞİ MIG-MAG / TIG

HOŞGELDİNİZ TIG KAYNAK TEKNİĞİNDE ALTERNATİF AKIM KULLANIMI. K ayna K. Teknolojisi. Teknolojisi

İçindekiler BÖLÜM 1.0 KAPAK 1 BÖLÜM 2.0 TELİF HAKKI 2 BÖLÜM 3.0 GİRİŞ 4

KONU: KAYNAK İŞLERİNDE GÜVENLİK

KAYNAK TÜKETİM MALZEMELERİ Oerlikon Kaynak Elektrodları ve Sanayi A.Ş.

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ HASAR ANALİZİ YÜKSEK LİSANS - DOKTORA DERS NOTLARI. Doç.Dr.İrfan AY BALIKESİR

TOZALTI KAYNAĞI Tozaltı kaynağı kaynak için gerekli ısının tükenen elektrod iş parçası ark kaynak Ark bölgesi kaynak tozu tabakası kaynak metali

ELEKTRİK ARK KAYNAĞI TEMEL EĞİTİM REHBERİ (UYGULAMA 15-22)

MALZEME BİLGİSİ. Katı Eriyikler

Bir cismin içinde mevcut olan veya sonradan oluşan bir çatlağın, cisme uygulanan gerilmelerin etkisi altında, ilerleyerek cismi iki veya daha çok

Birleştirme İşlemleri KAYNAK. Sökülebilir Birleştirmeler. Sökülemez Birleştirmeler

MIG-MAG KAYNAK YÖNTEMİNDE KULLANILAN KORUYUCU GAZLAR

ÖRTÜLÜ ELEKTROT ARK KAYNAĞI VE MIG KAYNAĞINDA AKIM ŞİDDETİNİN KAYNAK NÜFUZİYETİNE ETKİSİNİN İNCELENMESİ

BÖLÜM 3 KAYNAKÇI YETERLİLİK SINAVLARI

Pik (Ham) Demir Üretimi

ÇELİK YAPILAR. Hazırlayan: Doç. Dr. Selim PUL. KTÜ İnşaat Müh. Bölümü

Erimeyen bir elektrod kullanıldığı için kıvrık alın kaynak ağzı hazırlanmış ince parçalar, ek kaynak metaline gereksinme göstermeden

1070-Al99,7. Kimyasal Kompozisyon (%) Kesme Dayanımı( kaynak yük yönünde) Uluslararası Standartlar. Ek bilgiler. Mekanik Dayanım. Kaynak Pozisyonları

İNŞAAT MALZEME BİLGİSİ

ÇELİK YAPILAR 3. Hafta. Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

ÇELİKLERİN KAYNAK KABİLİYETİ

Eczacıbaşı - Lincoln Electric ASKAYNAK. Düşük Alaşımlı Yüksek Dayanımlı Çelikler İçin MIG/TIG Kaynak Telleri

3.KABARTILI DİRENÇ KAYNAĞI Dr.Salim ASLANLAR 1


Düzce Üniversitesi Bilim ve Teknoloji Dergisi

TOZ ALTI KAYNAK YÖNTEMİ

ATOM HAREKETLERİ ve ATOMSAL YAYINIM

PETROL BORULARININ KAYNAKLARINDA RADYOGRAFİK MUAYENE YÖNTEMİNİN HATA TESPİT KABİLİYETİ

Sakarya Üniversitesi Teknoloji Fakültesi, Metalurji ve Malzeme Mühendisliği

DENEYĐN ADI. Organik bileşiklerde nitel olarak Karbon ve hidrojen elementlerinin aranması

ANKARA ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ KOORDİNATÖRLÜĞÜ'NE

TOKLUK VE KIRILMA. Doç.Dr.Salim ŞAHĠN

Sürünme ; Yüksek sıcaklıklara dayanıklı malzemelerde görülen hasar dır. Yük veya gerilme altında zamanla meydana gelen plastik deformasyona sürünme

MMT209 Çeliklerde Malzeme Bilimi ve Son Gelişmeler 10 Yüksek mukavemetli yapı çelikleri. Yrd. Doç. Dr. Ersoy Erişir Güz Yarıyılı

PERÇİN BAĞLANTILARI. Bu sunu farklı kaynaklardan derlemedir.

KALIP KUMLARI. Kalıp yapımında kullanılan malzeme kumdur. Kalıp kumu; silis + kil + rutubet oluşur.

Transkript:

KAYNAK ELEKTROTLARI Erimeyen Elektrotlar Tungsten Elektrotlar Karbon Elektrotlar

ELEKTROTLAR Tanım : Kaynaklı birleştirmenin en önemli elemanlarından birisidir. İki parçanın birleştirilmesinde dolgu metali olarak görev yapar. Erimeyen elektrotların çoğu karbon, tungsten ve wolfram elementlerinden yapılmıştır. Ark teşekkülü için kullanılır. Eriyen elektrotlar ise birleştirilecek parçaların yapısında veya onlara çok yakın bileşikte olmalıdır. Eriyen elektrotlar ince, orta, kalın kesitlerde olabilirler ayrıca çıplak veya örtülü şekilde kullanılırlar. Çıplak elektrotların ark teşekkülünde güçlük çıkarmaları, yalnız doğru akımla çalışmaları, oksijen ve azot gazlarını absorbe etmeleri ve oksitlenmeleri nedeniyle kullanırken birçok mahsurlar doğururlar. Bu nedenle elektrot üzerindeki örtünün şu faydaları vardır. 1. Ark kolay tutuşur 2. Koruyucu gaz oluşturur hava ile teması keser. 3. Kaynak üzerinde örtü meydana getirir. 4. Kaynağın yavaş soğumasını sağlar. 5. İlave alaşımlama yapar. 6. Erimiş metalin oksitini alır. Örtülü elektrotların bileşimi çok değişiktir. En önemlileri Rutil Tip Elektrotlar : Bu elektrotların örtüsünün büyük bir kısmı titanyum-oksit (TiO) ten meydana gelmiştir. Bu iyi bir curuf oluşturma özelliğine sahiptir. Kararlı bir ark oluşturur. Sıçrama kayıpları azdır. Kaynak dikişinin mekanik özelliği yapı çeliği için uygundur. Ama yüksek çekme dayanımları vermez. Çünkü kaynak metalinde 25-30ml/100 gr gibi yayılmış hidrojen içerir. Bu elektrotlar hem doğru akımda hem de alternatif akımda kullanılırlar. Acemi kaynakçı bile bu elektrotla kaynak yapabilir. Bazik Tip Elektrotlar : Bu elektrotun örtüsünde kalsiyum ve diğer toprak alkali metaller bulunur. Bu elektrotlar doğru akımda artı kutba bağlı olarak kaynak edilirler. Bazı tipleri alternatif akımda da kullanılır. İyi bir aralık doldurma kabiliyetleri vardır. Örtüsünün bileşiminde hidrojen bulunmadığından kaynak dikişinde hidrojen miktarı çok çok azdır. Mekanik özellikleri bu yüzden daha yüksektir. Sıfır derecenin altındaki şartlarda bile sünek kaynak dikişi sağlarlar. Bazik elektrotların örtüleri nem kapıcı olduğundan kuru yerlerde depolanmalıdırlar

Selülozik Tip Elektrotlar : Bu elektrotların örtüsünde yandığı zaman gaz oluşturan organik elementler bulunur. Ağaç ve çamlardaki sıvı madde anlaşılmalıdır. Selülozik elektrotlarla yapılan kaynakta nüfuziyet diğerlerine göre %70 daha fazladır. Fakat yandığı zaman hidrojen gazı çıkarmaları nedeniyle yüksek mukavemetli çeliklerin kaynağında önerilmezler. Boru hatları (pipe line) ve gemi inşaatı kaynaklarında çok kullanılırlar. Cürufları kolay kalkarlar. Oksidik Tip Elektrotlar : Bu elektrodun örtüsünün büyük bir kısmını (%60 Fe 2 O 3 Fe 3 O 4 ) demiroksit teşkil eder. Kalın örtülüdür. Düz görünüşlü dikişler verir. Yalnızca düşük karbonlu ve alaşımsız çeliklerin kaynağına kullanılır. Hem doğru akımda hem alternatif akımda çalışır. Nüfuziyeti azdır. Aralık doldurma kabiliyeti çok fenadır. Bu yüzden parçalar birbirine uyumlu olmalıdır. Ancak bu elektrotlarla güzel ve düz görünüşlü dikişler elde edilir. Asidik Tip Elektrotlar : Bu tip elektrotların örtüsünde fazla miktarda demir-oksit ve mangan vardır. Katılaşan cürufunda arı peteğini andıran bir görüntü meydana çıkar. Çabuk akan ve düz dikiş veren bir elektrot tipidir. Tem doğru akım hem de alternatif akımda kaynak yapılır. Aralık doldurma kabiliyeti iyi değildir. Bu yüzden parçaların birbirine uyması gerekir. Derin nüfuziyet temin eden bir elektrot tipidir.

Özel Elektrotlar : Bu elektrotların başlıcaları şunlardır. a. Derin nüfuziyet sağlayan elektrotlar : Bu tip elektrotlarla iki taraftan birer paso çekerek kaynak ağzı açmadan kaynak yapmak mümkündür. Örneğin 4 mm çapındaki bir elektrotla 2x4+2=10 mm kalınlığındaki iki sac alın alına kaynak ağzı açmadan kaynak yapılır. Bu elektrotların örtüsünün karakteri önceki saydıklarımızdan herhangi birisi olabilir. Kaynağın nüfuziyeti akım şiddetine, iki parça arasındaki aralığa ve ark gerilimine bağlıdır. b. Demir tozlu elektrotlar : Bu tip elektrotların örtüsünün büyük bir kısmı demir tozuyla kaplıdır. Kaynak sonrası eriyen metal tartılsa elektrotun ağırlığından daha fazla ağırlık olduğu görülür. Çünkü örtüdeki demir tozları da kaynak dikişine karışmıştır. Bundan dolayı bu elektrotların erime randımanı %120 nin üzerindedir. Yüksek randımanlı elektrotlar adı da verilir. c. Su altı kaynak elektrotları : Su altında kaynak ıslak ve kuru ortamda olmak üzere iki şekilde yapılır. Islak alanda özel elektrot kullanılır. Güç kaynağı yeryüzündedir. Fakat su altına kablolar ve hortumlarla yüzücünün üzerinde taşınır. Doğru akım kullanılır. Emniyet açısından alternatif akım kullanılmaz zira ark oluşturmak zor olur. Bu kaynakta iş parçası artı (+), elektrot (-) kutba bağlanır. d. Akım 300-400 ampere ayarlanır. Tüm kontrol yüzücünün inisiyatifindedir. Elektrotlar su geçirmez şekilde yalıtılmıştır. Yalıtımda biraz zayıflık olursa ark oluşmaz. Aynı zamanda kabloda da hızlı bir kötüleşme olur.

e. Kuru tip su altı kaynağı kapalı bir oda içerisinde yapılır. Denizin derinlerinde kaynak işleri için uygulanır. Konteynırın içinde oksijen gazı ile birlikte helyum vardır. Deniz altındaki basınç ile oda içindeki basınç kaynakçıya zarar vermeyecek şekilde ayarlanmaktadır. Tungsten ark kaynağı metodu bu kaynaklar için tercih edilir. Deniz altındaki boruların kuru yöntemle kaynağı aşağıda görülmektedir. f. ELEKTROT STANDARTLARI En çok kullanılan standartlar aşağıdaki gibidir. 1. Milletlerarası (ISO) 2. Alman Normu (DIN) 3. Amerikan Normu (AWS) 4. Avrupa Normu (EN) 5. İngiliz Standardı (BS) 6. Türk Standardı (TS)

Kaynak Hataları Yetersiz Erime (Lack Of Fusion) Bu kusur kaynak metali ve esas metalin yüzeyleri arasında erime olmaması demektir. Yandaki şekilde böyle bir kusur görmektesiniz. Bu kusur zayıf kaynak tekniğinden doğar. Erimiş kaynak damlasının çok büyük olmasından (ki bu durumda kaynak hızı çok yavaştır.) ve kaynak arkının önünde bu damlanın yuvarlanmasına izin verilmesinden oluşur. Başka bir neden de çok geniş boyutlu bir kaynak yapmaktır. Eğer kaynak arkı direk merkeze yönlendirilirse erimiş kaynak damlaları yalnızca akacak esas metalin yan kenarlarına doğru dökülecektir. Bu kusur çok yavaş kaynak hızından ve tek pasoda çok geniş kaynak yapmadan ortaya çıkar. Örneğin alüminyum kaynağında Al 2 O 3 sebebiyle kaynak metalinin erimesine engel bir durum ortaya çıkar. Bu da yetersiz birleşmeye sebep olur.

Nüfuziyet Azlığı (Incomplete Penetration) Kaynak bağlantısının kökünde esas metalle elektrotun eriyerek birleşmemesi sonucu köprü şeklinde bir boşluk kalma kusurudur. Üç şekilde görülür. Birincisi pasolar esas metalin kök kısmında kalınlık içine nüfuz etmezse, ikincisi zıt iki paso karşılıklı atıldığı zaman birbirlerine nüfuz etmezlerse, üçüncüsü T tipi bir kaynakta esas metale nüfuziyet olmaması köprü şeklinde görülmesi olayıdır. Nüfuziyet Azlığı (Lack Of Penetration)

Yanma Olukları (Undercutting) Kaynak metal ile esas metal arasındaki bir kenarda veya pasolar arasında oyuk şeklinde görüntü kusurdur. Bu kusur ; Akım şiddeti yüksektir. Kaynak hızı fazladır. Elektrot fazla zig-zag yapmıştır. Elektrot yanlış bir açıyla tutulmuştur. Esas metal paslı veya elektrot rutubetlidir. Gözenek Kusuru (Porozite) Kaynak katılaşırken dışarı çıkamayan gazların içeride bulunması kusurudur. Rasgele dağılmışlardır. Yüzeye yakın yerde veya merkezde bulunurlar. Başlıca sebepleri; Elektrot örtüsünün rutubetli olması, kaynak ağzının kirli olması, çok uzun veya çok kısa ark boyları ile çalışılması, düşük akım şiddeti kullanma vs gibi.

Kaynak Dikişinin Taşması (Overlap) Bu kusur arada birleşme olmadan kaynak damlalarının esas metal üzerinde birikmesi olayıdır. Sebebi yanlış el hareketleri, elektrotun tutuş açısının yanlış olması, lüzumundan fazla kalın elektrot kullanmadır. Curuf Kalıntıları (Inclusions) Bu kusur kaynak metali içerisinde istenmeyen oksit, sülfit gibi eriyik içerisinde kalmış maddelerdir. Nüfuziyet azlığına sebep olurlar. Çok pasolu kaynaklarda pasolara arasında çok iyi temizlik yapılmalıdır. Bu kalıntılar bazen kılcal çatlaklarında meydana gelmesine sebep olurlar.

Kaynak Çatlakları (Weld Cracks) Kaynak dikişlerinde meydana gelen hataların en tehlikelisi çatlaklardır. Çatlaklar ya kaynak metalinde ya ısı etkisi altındaki bölgede (IEA) veya esas metalde bulunurlar. Başlıcaları da a) Uzunlamasına çatlaklar (Longitudinal cracks) b) Enlemesine çatlaklar (Transverse cracks) c) Krater çatlakları (Crater Cracks) d) Kılcal çatlaklar Sebepleri : Dikiş içerisindeki iç gerilmeler, kaynak esnasında çekme ve çarpılmalara karşı koyan kuvvetler genel çatlama sebepleridir.

Kaynakta Çarpılma (Distortion) Her metal parça gibi kaynakta da ısı verildiği zaman soğumayı müteakip parça kendini çeker, ince ise çarpılır. Sonuçta iç gerilmeler meydana gelir. Kaynak dikişlerinde enine boyuna açısal çarpılmalar vardır. Aşağıda bu durumlar resmedilmiştir.

Kaynak Tasarımında Dikkat Edilecek Durumlar

Kaynakta tane yönlenmesi Taneler ısının kaçtığı yöne doğru yönelirler