GENEL FİZİK II DERS NOTLARI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "GENEL FİZİK II DERS NOTLARI"

Transkript

1 GENEL FİZİK II DERS NOTLARI Hazırlayanlar: Prof. Dr. Mustafa POLAT Prof. Dr. Leyla TATAR YILDIRIM 1

2 BÖLÜM-1 Elektrik Yükü Bu bölümde, maddenin özelliklerinden birisi olan elektrik yükü ile tanışacağız. Atomu meydana getiren elektron, lkt proton ve nötron nun yüklerini i öğreneceğiz ve devamında da şu konulara değineceğiz: Elektrik yükünün çeşitleri İki yük arasındaki kuvvet (Coulomb yasası) Yükün kuantalığı Yükün korunumu (1-1)

3 Bir kumaş parçası ile ovuşturulan kehribarın tüy gibi hafif nesneleri çektiği antik çağlardan beri bilinen bir şeydir. Bu olgu, maddenin yeni bir özelliği olan elektrik yükü ile ilgilidir. Birçok deney, iki tür elektrik yükünün varlığını göstermiştir: pozitif (renk kodu: kırmızı) ve negatif (renk kodu: siyah). pozitif ve negatif isimleri Benjamin Franklin tarafından verilmiş isimlerdir. Cam bir çubuğu ipekbirkumaşla ovuşturduğumuzda, ikisi de elektrik yükü kazanır. Cam çubuğun kazandığı yükün işareti pozitif olarak tanımlanır. Benzer şekilde, plastik bir çubuğu bir kürk ile ovuşturduğumuzda, ikisi de elektrik yükü kazanır. Plastik çubuğun ğ kazandığığ yükün işaretiş negatif olarak tanımlanır. (1-)

4 Yüklü cisimlerle yapılan bir çok deneysel çalışmalardan elde edilen sonuçlar şu şekilde özetlenebilir: 1. Aynı işaretli yükler (her ikisi de pozitif veya negatif) birbirlerini iterler (Şekil-a).. İşaretleri farklı olan yükler (biri pozitif, diğeri negatif) birbirlerini çekerler (Şekil-b). Yükünün işareti bilinen bir cisimle, yükünün işareti bilinmeyen cisim arasındaki etkileşme kuvvetinin yönünden yararlanarak, bilinmeyen cismin yükünün işaretini belirleyebiliriz. Aynı işaretli yükler birbirini iter. Zıt işaretli yükler birbirini çeker. (1-3)

5 Yöntem: İpek bir kumaşla ovuşturulan cam çubuğun pozitif yüklü olduğunu biliyoruz. Bu çubuğu, yükü kaybolmayacak ve etrafında serbestçe dönebilecek şekilde ortasından asalım. Sonra da, yükünü ü bilmediğimiz bir cismi cam çubuğa doğru yaklaştıralım. Mümkün olan iki durum söz konusudur: Şekil- a: İki cisim birbirini iter. Bu durumda bilinmeyen yük pozitif işaretlidir. Şekil-b: İki cisim birbirini çeker. Bu durumda bilinmeyen yük negatif işaretlidir. ş (1-4)

6 Atomun çapı 51-1 m. Çekirdeğin çapı m. Benjamin Franklin zamanında (18. yy) elektrik yükünün bir çeşit ağırlıksız, sürekli akışkan olduğu kabul ediliyordu.. yy başlarında Ernest Rutherford un atomun yapısı yp üzerinde yürüttüğü ğ araştırmalar, maddenin ne şekilde meydana geldiğini ortaya koydu ve bileşenlerinin sahip oldukları yüklerin belirlenmesini sağladı. Atomlar elektronlardan ve çekirdekten oluşur. Çekirdeğin kendisi de, proton ve nötronlardan oluşur. Elektronlar negatif yüklü, protonlar pozitif yüklü, nötronlar ise yüksüzdür. Bu durumda elektrik yükü, atomu oluşturan parçacıkların (elektron, proton, nötron) temel bir özelliğidir. (1-5)

7 Atomik Bileşenlerin Kütleleri ve Yükleri: Nötron (n) : Kütle m = kg; Yük q = Proton (p) : Kütle m = kg; Yük q = C Elektron (e) : Kütle m = kg; Yük q = C Not-1: Elektron ve protonun yükleri ii için, sırasıyla, -e ve +e sembolleri kullanılır. Bunlar temel yük olarak bilinirler. Not-: Bir atomdaki elektron ve proton sayıları eşitse, atom elektriksel olarak nötr olarak adlandırılır. Bu sayı atom numarası (Z) dır. Not-3: Bir atomdaki proton ve nötron sayılarının toplamı ise kütle numarası (A) dır. Gösterim: U Z = 9 = elektron/proton sayısı 9 A = 35 =proton + nötron sayısı 35 (1-6)

8 Yükün Quantalanması : Bir nesnenin toplam yükü, o nesnedeki temel parçacıkların sayısına (elektron, proton, nötron) bağlıdır. Elektron sayısı N ve nötron sayısı N olan bir nesnenin net yükü, p net n Q en en N e N N ne e p n p e N e, proton sayısı olur. Burada, n N N ve tamsayıdır. Bu, net yükün elektron p e yükünün tamsayı katları kadar olacağını gösterir. Yani yük N e N n N p quantalıdır. (1-7)

9 Yükün Korunumu: Her ikisi de yüksüz olan cam bir çubuk ile ipek bir kumaşımız olsun. Cam çubuğu ipek kumaşla ovuşturduğumuzda, cam çubuk pozitif yüklenir. Aynı anda, toplam yük sıfır olacak şekilde, ipek kumaş da eşit miktarda negatif olarak yüklenir. Buradan, ovuşturma işleminin herhangi bir yük oluşturmadığı ancak, birinden diğerine yük akışı sağladığı anlaşılır. Yükün korunumu şöyle özetlenebilir: Herhangi bir işlemin i öncesindeki toplam yük, işlemden sonraki toplam yüke eşittir. Önceki Net Yük = Sonraki Net Yük Q i Q f (1-8)

10 İletkenler ve Yalıtkanlar : İletkenler, yüklerin içlerinde serbestçe dolaşabilmelerine izin veren malzemelerdir. Bakır, aliminyum, civa bunlardan bazılarıdır. Yalıtkanla, yüklerin içlerinde serbestçe dol aşmalarına izin vermeyen malzemelerdir. Plastik, lastik, cam, seramik bunlardan bazılarıdır. İletkenlerde, atomun son yörüngesindeki bir veya daha fazla elektron kolayca atomdan ayrılıp serbest hale gelebilir ve iletken içinde hareket eder. Bunlara iletim elektronları diyoruz. İletim elektronları geride iyon dediğimiz ğ pozitif yüklü atomlar bırakırlar. İletkenin içinde sadece iletim elektronları serbestçe hareket edebilir, pozitif yüklü iyonların konumları değişmez. Yalıtkanlar ise iletim elektronu içermezler. (1-9)

11 Bir İletkeni İndüksiyon y Yoluyla Yüklemek : Şekil- a' da bir iletken yaltkan bir iple asılmıştır ve başlangıçta yüksüzdür. Negatif yüklü ü plastik çubuğu yavaşça yaklaştıralım. aşt a Plastik yalıtkandır ve üzerindeki negatif yükler hareketsizdir. Ancak, iletken içindeki negatif yükleri sağ uca doğru itecektir. İletkenin sol ucunda elektron boşluğu meydana geldinden pozitif yüklenmiş olacaktır. Şekil- b 'de toprağa bağlı bir iletim yolu oluşturulmuş, böylece elektronların toprağa akması sağlanmıştır. Toprak bağlantısını iptal eder ve plastik çubuğu uzaklaştırırsak, iletken çubuk pozitif yüklenmiş olacaktır. Not -1: İletkenhe üzerinde indüklenen yük, plastik çubuğun yükü ile ters işaretlidir. Not - : Plastik çubuk aynı amaçlı çok defa kullanılabilir. (1-1)

12 F k q q 1 mm F G r Coulomb Yasası : Aralarındaki mesafe r olan, q ve q yükleri olsun. Bu yükler 1 birbirlerine, aşağıda özellikleri verilen kuvvetler uygularlar. 1. Kuvvetler, yükleri birleştiren doğru boyuncadır.. Yükler aynı işaretliyse, kuvvet iticidir. 3. Yükler zıt işaretliyse, kuvvet çekicidir. Kuvvetin büyüklüğü, Coulomb Yasası olarak bilinen 1 q1 q k olmak üzere, F k eşitliği ile verilir. 4 r r Burada, boşluğun ğ veya havanın elektriksel lktik lgeçirgenliği -1 olarak bilinir ve değeri N m /C dir. 1 Coulomb kuvveti ve Newton'un gravitasyonel kuvveti aynı formdadır. Tek fark, gravitasyonel kuvveti he rz am an çekici bir kuvvettir. Buna karşın Coulomb kuvveti, yüklerin işaretine bağlı olarak çekici veya itici olabilir. (1-11)

13 Örnek : Hidrojen atomunda çekirdekteki proton ile yörüngedeki elektron arasındaki 11 uzaklık ortalama 5.31 m' dir. Bunlar arasındaki elektriksel ve gravitasyonel kuvvetlerin büyüklüklerini bulunuz. Coulomb yasasından, bu iki yük arasındaki kuvvetin büyüklüğü: 19 e FE k N. r İki kütle arasındaki çekim kuvvetinin büyüklüğü, Newton' un gravitasyon yasasından: mm e p Fg G r N. Atomik boyutta, parçacıklar arasındaki kütle çekim kuvveti önemsenmeyecek düzeyde küçüktür. (1-1)

14 Coulomb Yasası ve Üstüste Binme İlkesi: Bir yük grubunun belirli bir yüke uyguladığı ğ net tkuvvet, tüm yüklerin uyguladığı kuvvetlerin vektörel toplamına eşittir. Örneğin, q ve q3 yükleri tarafından q1 yüküne uygulanan net kuvvet ( F1), F 1 F 1 F 31 ile verilir. Burada, F ve F sırasıyla q ve q yüklerinin q yüküne uyguladığı kuvvetlerdir. q y ükün e etkiyen n tane nokta yük olması durumunda ise net kuvvet, n F F F F... F n Fi i ile ifade edilir. 1 F F F (1-13)

15 Örnek :Şekildeki gibi üç nokta yük, dik kenarlarının uzunluğu a= 1 cm olan ikizkenar üçgenin köşelerine yerleştirilmiştir. q=q= 5 C ve q= C olduğuna göre q yüküne etkiyen net kuvveti bulunuz. Coulomb yasasından, q ve q yüklerinin q yüküne uyguladıkları kuvvetlerin büyüklükleri: F q q k N a q q3 9 F k N 3 a.1 F ˆ ˆ 1i ˆ ˆ net F13 F3 (11cos 45 9)i 11sin 45 j 1.1i 7.9j N Fnet N ; tan = o (1-14)

16 Örnek : Şekildeki gibi üç nokta yük, x-ekseni üzerine yerleştirilmiştir. q = 15 Cluk C'luk yük x = m noktasında, q =6 1 C'luk yük ise orijinde bulunmaktadır. q nokta 3 yükü x-eksini üzerinde hangi noktada olmalıdırki ırki, üzerine etkiyen net kuvvet sıfır olsun? q ve q yükleri aynı işaretli olduğu için, işareti ne olursa olsun q yükü 1 3 bunların arasına konulmalıdır. Bu durumda: q q q q F k ; F k x x q q F F 3x 8x x x x.775 m bulunur. (1-15)

17 Örnek : Aynı noktadan asılmış, kütleleri 31 kg olan yüklü iki özdeş küre şekildeki gibi dengededirler. İplerin boyu 15 cm ve = o 5 olduğuna göre, kürelerin yükü nedir? Denge durumunda yükler arasındaki uzaklık: a L sin olacaktır. Küreler dengede olduğuna göre: q Tsin k ; T cos mg a k q a mg tan a tan q mg k 8 q C 16 bulunur. (1-16)

18 Örnek : Kütleleri m, yükleri de q =Q ve q = Q olan 1 iki parçacık L uzunluğundaki iplerle aynı noktadan düşey olarak asılı halde dengededirler. Yükleri asılı oldukları noktaya bağlayan iplerin düşeyle yaptık ları 1 ve açıları çok küçüktür. Bu iki açı arasındaki ilişkiyi ve yükler arasındaki mesafeyi bulunuz. q q yükü için T sin F FE tan T mg mg 1 Tsin FE FE tan T mg cos mg 1 1 E 1 1 cos 1 1 g yükü için r1 Lsin1 r r Lsin1 Ltan 1 tan1 r L sin L Q r 4kQ L FE mg ta n 1 k mg r r L mg bulunur. 1/3 (1-17)

19 Örnek : Yükleri +q olan iki özdeş parçacık, aralarındaki mesafe d olacak şekilde y-ekseni üzerinde sabitlenmişlerdir. Yükü Q ve kütlesi m olan üçüncü bir parçacık ise, iki yükün ortasından dik olarak geçen eksen üzerinde, merkezden x kadar uzaktaki bir noktaya konuyor. Q yükü bu eksen üzerinde rahatça hareket edebilmektedir. x d durmunda, Q yükünün basit harmonik hareket yapacağını gösteriniz. Hareketin periyodunu bulunuz. Basit harmonik hareket yapan bir cisim için, F Cx olmalıdır( C ). qq kqqx Q yüküne etkiyen geri çağırıcı kuvvet: F k sin x ( d /) x ( d /) kqqx 16kqQ x d F x 3/ 3 3 ( d /) 1 ( x/ d) d 3 d / T T 16kqQ (1-18) 3/

20 Örnek : Yükleri +q olan dört özdeş parçacık, xy-düzleminde bulunan, kenar uzunluğu ğ L olan bir karenin köşelerine şekildeki gibi sabitlenmişlerdir. Q yüküne sahip başka bir parçacık ise, karenin merkezinden dik olarak geçen z-ekseni üzerinde, kare merkezinden z kadar uzaktaki bir noktaya konuluyor. Q yükü üzerine etkiyen net kuvveti bulunuz. qq + q yüklerinden birisinin Q yüküne uyguladığı çekici kuvvet: F k z a a L/ L/ L / z cos z a 4kQ kqqz F 4 cos kˆ net F Fnet z a bulunur. 3/ (1-19)

21 BÖLÜM- Elektrik Alanlar Bu bölümde durgun yüklerin oluşturduğu elektrikalan( )kavramıyla tanışacağız. Yüklerin durgun olması halinde, yükler arasındaki etkileşmeleri belirlemek için Coulomb yasası yeterlidir. Yükler durgun olmasaydı, bu etkileşmeleri l i blil belirlemekii için başka alternatif yollar bl bulmak gerekirdi. Bu konu kapsamında şu konulara değinilecektir: Nokta yükün oluşturduğu elektrik alanın bulunması Nokta yük gruplarının vesürekliyük dağılımlarınınğ oluşturduğuş ğ elektrik alanların bulunması Elektrik alan içindeki yüke etkiyen kuvvetin bulunması elektrik dipol kavramını öğrenmek. Düzgün elektrik alan içindeki dipole etkiyen kuvveti, bu kuvvetin oluşturduğu torku ve dipolün potansiyel enerjisini i i blil belirlemek. E (-1)

22 Aralarında r mesafesi olan q 1 ve q nokta yükleri arasındaki etkileşme 1 kuvveti Coulomb yasasına göre, F 1 q q q q k 4 r r 1 1 bağıntısına a sahiptir. Nokta yükler arasında aas herhangi bir temas olmadığı ğ halde, yüklerin birbirlerine kuvvet uygulamalarını nasıl açıklayabiliriz? q 1 yükü, yakınlarında q yükünün bulunduğunu nerden biliyor? Bu nokta ancak, yeni bir kavram olan elektrik alan vektörü ile aydınlatılabilir. q 1 nokta yükü q üzerine doğrudan kuvvet uygulamaz. Bunun yerine, q nin bulunduğunoktada ğ d bir elektrik alan oluşturur ve kuvveti bualan uygular. q 1 yükü Ele ktrik Alan ( E ) Eq, üzerine Fkuvveti uygul ar (-)

23 E F E q Elektrik Alan Vektörünün Tanımı : Yandaki pozitif yüklü çubuğu ele alalım. Çubuğu çevreleyen uzaydaki tüm P noktalarında elektrik alan vektörü ( E) şöyle bulunur: 1. P noktasına pozitif bir q test t yükü ko nur.. Yüklü çubuğun q test yüküne uyguladığı F kuvveti ölçülür. 3. P noktasındaki elektrik alan vektörü: F E (N/C) q Görüldüğü ğ gibi E ile F aynı yöndedir. Not : q test yükü, çubuktaki yük dağılımını değiştirmeyecek kadar küçüktür. (-3)

24 Nokta Yükün Elektrik Alan : Şekildeki q pozitif yükünü ele alalım. Yükten r kadar uzaktaki ki q test t yüküne etkiyen kuvvet ve q noktadaki elektrik alan: F k F q q r q q E k k q qr r ' ın bulunduğuğ q ile verilir. E, q yükünden dışarı doğrudur. d r q nokta yükü negatif olsaydı E, q yüke doğru olurdu. (-4)

25 Nokta Yük Grubunun Oluşturduğu Elektrik Alan: Bir nokta yük grubunun oluşturduğu ğ net elektrik alan E, herbir yükün oluşturduğu elektrik alanların vektörel toplamına eşittir. Yukarıda verilen nokta yük grubunun orijinde oluşturduğu elektrik alan, E E1 E E3 olur. Burada E, E ve E sırasıyla, q, q ve q yüklerinin orijinde oluşturdukları elektrik alan vektörleridir. (-5)

26 Örnek : Şekilde gösterildiği gibi, q= 7. C' luk bir yük orijinde ve q = 5. C' luk diğer bir yük ise x=.3 m noktasındadır. Koordinatları (;.4) olan P noktasındaki elektrik alanını bulunuz. q ve q yüklerinin P noktasında oluşturdukları 1 elektrik alanların büyüklükleri, sırasıyla, q q E k N / C ; E k N / C r1p rp değerlerine sahiptir. Buradan da P noktasındaki net elektrik alan, 5 ˆ 5 5 E E ˆ 1 E 1.81 cos i sin j 5ˆ 5 E 1.81 i ˆj N / C sin.8 5 cos o tan ( ) bulunur. 1 (-6)

27 Örnek : Dört adet nokta yük, şekilde gösterildiği gibi, kenar uzunluğu a olan bir karenin köşelerine konmuştur. Sağ üst köşedeki q yükünün bulunduğu noktada, diğer yükler tarafından oluşturulan elektrik alanını ve q yüküne etki eden kuvveti bulunuz. q, 3 q ve 3 q yüklerinin, q yükünün bulunduğu noktada oluşturdukları elektrik alanların büyüklükleri, sırasıyla, 3 4 E q k q ; E 3q k q ; E q 4q k a a a ifadelerine sahiptir. İlgi duyulan noktadaki net elektrik alan : kq 3 ˆ kq 3 E E ˆ q E3q E4q cos 45 i 4 cos 45 j a a 5 kq ˆ ˆ o E 3.6i + 5.6j ; tan ( ) a 3.61 bulunur. (-7)

28 Örnek : Yükü q ve kütlesi m olan bir parçacık, şekilde gösterildiği gibi, +x-ekseni yönünde yönelmiş düzgün bir E elektrik alanı içinde ilk hızsız serbest bırakılıyor. Cismin hareketini tanımlayınız. (Yer-çekimi kuvvetini ihmal ediniz). qe max qe ax m x ve v olduğundan, i i 1 qe qe xs at x t ; vs at x t m m W = F x K K qex bulunur. s (-8)

29 Örnek : Bir proton, elektrik alanının E=61 5ˆ i olduğu bir bölgeye +x - ekseni yönünde fırlatılıyor. Proton duruncaya kadar elektrik alan içinde 7 cm yol alıyor. Protonun ivmesini, ilk hızını ve ne kadar sürede durduğunu bulunuz. (Yer-çekimi kuvvetini ihmal ediniz). ma qe 16 qe ˆ 16ˆ a = ( 61 i) = i m / s 7 m v v ax v v 91 m / s s i i i 7 vi 91 vs vi axtt 16 a bulunur. x =1.57 ns (-9)

30 Örnek : Bir noktadan ağırlıksız iple asılmış q yüküne ve m kütlesine sahip küçük bir küre, şekilde gösterildiğigibi gibi E=A ˆi +Bˆj (N/C) ile verilen düzgün bir elektrik alan içinde dengededir. A ve B pozitif sabitlerdir. Kürenin yükünü ve ipte oluşan gerilmeyi bulunuz. F T sin qex qa qa mg tan tan q T cos qb mg mg qb A B tan T sin qa T qa A mg tan mga sin sin A Btan cos A Btan bulunur. (-1)

31 Elektrik Dipol : Aralarında d uzaklığı olan, eşit ve zıt işaretli iki yükten q oluşan sisteme " elektrik dipol "denir nir. H er el ektrik dipol, " elektrik dipol moment ( p) " vektörü ile tanımlanır. Büyüklüğü p=qd de ve yönü - q yükünden q yüküne doğruğ dur. Su molekülü (HO) gibi birçok molekül kendiliğinden bir dipol momente sahiptir. Oksijen atomu ile iki hidr oj en atomu arasındaki bağ, 1 değerlik ğ elektron paylaşımı py ş ile sağlanır ğ (8 tane O' dan, 1' er tane de H' den). Bu 1 değerlik elektronu O atomuna yakın olma eğilimindedir. i di Bu nedenle su molekülünde, O' nun bulunduğu ğ taraf H atomlarının bulunduğu tarafa göre daha negatiftir. (-11)

32 Dipolün Oluşturduğu Elektrik Alan : Dipolü oluşturan yüklerin P noktasında oluşturdukları elektrik alanların büyüklükleri: 1 q 1 q E ve E E E E E net E net d z E net ( ) ( ) net ( ) ( ) 4 r 4 r 1 q q 1 q q 4 r r 4 z d / z d / q d d z z z x 1 yaklaşımı yapılırsa 1 1x: q d d qd 1 p 1 1 = z z z z z (-1)

33 Sürekli Yük Dağılımlarının Oluşturduğu Elektrik Alan: Q, A dq da Q, V dq dv Q dq Q dq Q dq 3 (C/m) (C/m ) (C/m ) L dl A da V dv - Q yükü L uzunluğunda bir çubuğa düzgün dağılmış ise, çizgisel yük dağılımı söz konusudur. - Q yükü A yüzey alanına sahip bir plakaya düzgün dağılmış ise, yüzeysel yük dağılımı söz konusudur. - Q yükü V hacmine sahip katı bir cisme düzgün dağılmış ise, hacimsel yük dağılımı söz konusudur. (-13)

34 1. Yanda verilen hacimsel yük dağılımını gözönüne alalım. Bu yük dağılımının P noktasında oluşturduğu elekrik alanı hesaplamak için izlenmesi gereken yol şöyle öl özetlenebilir: Yük dağılımını, ğ hacmi dv olan sonsuz küçük ük elemanlara l ayıralım. Her eleman dq dv yüküne sahiptir ve P noktası dq yükünden r kadar uzaktadır.. dq yükünü nokta yük kkabul ederek Pnokta sında oluşturduğu de elektrik alanını yaz ve yük dağılımı ğ üzerinden integralini al (topla). dq 1 dv de E rˆ 4r 4 r (-14)

35 Örnek : Homojen yüklü sonsuz uzunluktaki bir çubuk şekildeki gibi x-ekseni üzerinde bulunmaktadır. Çubuk çizgisel yük yoğunluğuna sahip ise, çubuktan y kadar uzaktaki bir noktada elektrik alan ifadesini bulunuz. dq dx de k k r x y dx k dx E decos ky x y y 1 x / y 3/ 3/ tan / k 1 tan E 1 tan / 1 tan x y d k d dx y y y 3/ k k x k E sin E y y x y y y bulunur. cos d (-15)

36 Örnek : Uzunluğu L olan homojen yüklü bir çubuk şekildeki gibi x-ekseni üzerinde bulunmaktadır. Çubuk çizgisel yük yoğunluğuna sahip ise, çubuğun orta noktasından y kadar uzaktaki bir noktada elektrik alan ifadesini bulunuz. dq dx de k k r x y L / L / dx k dx E decos ky y L/ x y L/ 1 x / y 3/ 3/ tan / k 1 tan E 1 tan / 1 tan E x y d k d dx y y y 3/ L / k k sin x k L E y y x y y L / y bulunur. L / cos d (-16)

37 Örnek : Uzunluğu L olan homojen yüklü bir çubuk şekildeki gibi x-ekseni üzerinde bulunmaktadır. Çubuk çizgisel yük yoğunluğuna sahip ise, orijinden x kadar uzaktaki ( x>l) bir P noktasında elektrik alan ifadesini bulunuz. dx ' dq de k k x x x ' L dx ' u x x' k du E de k ; E k ' x x' du dx y u E k k k u x x' x L x k L E x( x L) bulunur. L (-17)

38 Örnek : x-ekseni üzerinde bulunan, uzunluğu L olan bir çubuk Ax çizgisel i yük yoğunluğuna ğ ğ sahiptir. i ( A pozitif ifbir, x ise çubuğun ortasından olan uzaklıktır. Çubuğun ortasından y kadar uzaktaki bir noktada elektrik alan ifadesi nedir? dq dx xdx de k k ka r x y x y L / L / xdx xdx E decos kay kay L x y x y 3/ 3/ L / x y x y du u u x y du xdx E kay kay 3/ 1/ u 1/ L / 1 y E kay ka1 bulunur. x y L / y (-18)

39 Örnek : Homojen yüklü ince bir çubuk, R yarıçaplı çemberin bir parçası olacak şekilde bükülüyor. Şekilde verildiği ğ gibi,,yayı y gören açı ' dir. Yayın çizgisel yük yoğunluğu ise, çemberin merkezindeki (O noktası) elektrik lktikalan nedir? di? dq dl Rd k de k k k d r R R R / k k E decos cosd sin R R / / / / k k E sin E sin ˆ i bulunur. R R k E îi ve E R (-19)

40 Örnek : Yüklü ince bir çubuk bükülerek, şekildeki gibi yarıçapı R olan yarım çember haline getiriliyor. ili Çubuk üzerindeki bir noktadaki yük yoğunluğu, o noktanın konum vektörü ile düşey arasındaki açıya =Ac os ifadesi ile bağlıdır. Yarım çemberin merkezindeki (O noktası) elektrik alan nedir? dq dl cosrd ka de k k ka cosd r R R R / / ka ka 1 cos E de cos cos d d R R E / ka sin ˆ E ka j A ˆ j bulunur. R R 8 R (-)

41 Örnek : Q yükü R yarıçaplı bir çember üzerine düzgün olarak dağılmıştır. ğ Çemberin merkezinden dik olarak geçen z-ekseni üzerinde ve merkezden z kadar uzaktaki P noktasında elektrik alanı ( E ) bulunuz. Hangi z değerinde elektrik alan maksimum olur? dq dq de k k ; de sin ve cos yatay de dez de r z R de k zdq E de k z dq k zq z R z R z R z 3/ z z 3/ 3/ zq ˆ Q E k k ; z E ve z R E ˆ 3/ k k z R z de z R 3z kq R Q z E 5/ max dz z R 6 3R Q (-1)

42 Örnek : Yarıçapı R olan ince bir disk düzgün yüzey yük yoğunluğuna sahiptir. Diskin merkezinden dik olarak geçen gç eksen üzerinde ve merkezden z kadar uzaktaki bir P noktasında elektrik alanı ( E ) bulunuz. zq zdq z rdr E k de k k 3/ 3/ 3/ z R z r z r R u z r E de kz ; E z r du rdr rdr z du 4 3/ 3/ R 1/ z u z z 1 E E 1 kˆ 4 ( 1/ ) z r z R z R E ˆk u (-)

43 Örnek : bir kabuk, Yarıçapı R ve yüksekliği h olan ince silindirik xy-düzlemine tabanı orijinde olacak şekilde yerleştirilmiştir. Silindir düzgün yük yoğunluğuna sahip olduğuna göre, ekseni üzerindeki herhangi bir noktadaki ( P) elektrik alanı bulunuz. ' zq z z' dq z z' Rdz' E k de k k 3/ 3/ z R z z R z z R 3/ E E ' ' ' ' ; 3/ ' h R z z dz u z z R de z z R du z z ' dz ' 1/ R du R u R 1 E 3/ 4 u 4 ( 1/ ) z z' R h R 1 1 h E k ˆk ; z= E z h R z R (-3)

44 Örnek : Yarıçapı R ve Q yükünün üzerine düzgün dağıldığı çembersel bir hlk halkanın merkezine q yüküne sahip noktasal lbir parçacık yerleştirilmiştir. iil i i q yükünü, çemberin merkezinden geçen dik eksen boyunca z R şekilde çekip serbest bırakalım. q yükünün basit harmonik hareket yapacağını yp ğ gösteriniz ve hareketinin periyodunu bulunuz. zq z E k F qe F kqq z R z R 3/ 3/ Basit harmonik haraket yapan bir cisim için: F Cz olmalıdır. kqq z R F z 3 R cisim basit harmonik haraket yapıyor. ypy 3 kqq kqq mr a z T 3 3 mr T mr kqq olacak (-4)

45 Elektrik Alan Çizgileri : İlk kez 19. yy' da Michael Faraday tarafından elektrik alan vektörünü resmetmek için ortaya konmuştur. Elektrik alan çizgileri ile elektrik alan vektörü arasında şu ilişkiler vardır: 1. Herhangi bir P noktasında, elektrik alan vektörü E elektrik alan çizgisine teğettir.. Elektrikalanşiddeti şiddeti, elektrikalançizgilerininyoğunluğuileorantılıdır ile orantılıdır. (-5)

46 Örnek : Sonsuz geniş yüklü plakanın oluşturduğu elektrik alan çizgileri. il i 1. Plakanın her iki tarafında elektrik alan şiddeti sabittir.. Elektrik alan vektörü plakaya diktir. 3. Elektrik alan vektörünün yönü, plakadan dışarı doğrudur. Not : Plaka negatif yüklü olsaydı, elektrik alan vektörünün yönü plakaya doğru ğ olurdu. (-6)

47 3. Elektrik alan çizgileri pozitif yüklerden çıkarak negatif yüklerde sonlanırlar. Örnek : q E k r qyükünün oluşturduğu ğ elektrik alan çizgil eri : -Elektrik alan çizgileri yüke doğrudur. -Elektrik alan çizgilerinin il i i yönü, E' nin yönünü verir. -Birim yüzeyden geçen elektrik alan çizgilerinin younluğu, yükeyaklaştıkça yaklaştıkça artmaktadır. (-7)

48 Bir elektrikdipolününoluşturduğu oluşturduğu Özdeş iki pozitif yükün oluşturduğu elektrik alan çizgileri : elektrik alan çizgileri: (-8)

49 Düzgün Elektrik Alan İçinde Elektrik Dipol: Yanda x - ekseni yönünde düzgün bir elektrik alan içinde bulunan elektrik dipolünü ele alalım. Pozitif ve negatif yüklere, sırasıyla, F =qeve F = qe kuvvetleri etkir. Dipole etkiyen net kuvvet, F = qe qe = net + olacaktır. Dipolün kütle merkezine göre F ve kuvvetlerinin oluşturduğu net ttork kise, d d τ = τ + + τ =F+ sin θ +F sin θ =qed sin θ =pe sin θ olur ou ve τ = p Eformunda dayazılabilir. ab Bu da, düzgün elektrike alan içindeki dipolün etrafında döneceğini igösterir. F ötelenemeyeceğini ancak, kütle merkezi + (-9)

50 Düzgün Elektrik Alandaki Elektrik Dipolünün Potansiyel Enerjisi : U d pesin ' d ( d azalma yönündedir) 9 9 U pe sin d pe cos 9 U = p E p p ile E aynı yönde ( ) U pe p E min. E Sistem kararlı denge durumundadır. p ile E ters yönde ( 18 ) U pe. max Sistem kararsız denge durumundadır. (-3)

51 Düzgün Elektrik Alan İçindeki Elektrik Dipolü Üzerinde Dış Kuvvetin Yaptığı İş : Düzgün ü bir E elektrik alanı içinde, i alanla l i açısı yapan bir p elektrik dipolü olsun (Şekil- a). Bir dış kuvvetin yardımıyla dipolü Şekil- b' deki gibi E ile s açısı yapacak şekilde çevirelim. Dış kuvvetin yaptığı iş, dipolün son durumdaki potansiyel enerjisi ile ilk durumdaki potansiyel enerjisi arasındaki fark kadardır: W U s Ui pe coss pe cosi W pe cos cos i s (-31)

52 Örnek : mesafe Yükleri q=. C ve q=. C, aralarındaki 1 d= 5 mm olan bir elektrik dipolü, merkezi orijinde olacak şekilde z-ekseni üzerinde konmuştur. z-eksenine dik ve dipolün merkezinden 1.5 m uzaktaki bir noktada elektrik alan nedir? 8 q q p qd ˆk11 Cm ; E k ; E k d / x d / x Ex Ecos Ecos E E E ; Ey Esin Esin Esin ˆ qd ˆ k E Eykk k p 3/ d / x d / x 3/ E 6.7k ˆ N / m (-3)

53 Örnek : d = 19 Yükleri q= 1.61 C ve aralarındaki mesafe 5.15 nm olan bir elektrik dipolü, büyüklüğü 5 1 N/C olan düzgün bir elektrik alan içine şekilde görüldüğü gibi yerleştirilmiştir. Dipol ve elektrik k alan sayfa düzlemindedir. Elektrik dipol momentini, dipole etkiyen torku ve dipolün potansiyel enerjisini bl bulunuz. Dipol, elektrik lkikalan tarafından kendisiyle i aynı yönde öd oluncaya kadar kd döndürülür. Elektrik alanın yaptığı iş ne olur? p qd p E pe sin sin =. 1 C m ( yükten + yüke doğru) 9 5 U pe U pecos145.1 U N m (sayfa düzleminden dışarı doğru) J cos W = U W pe(cos145 cos ).1 51 ( 1.8) W J (-33)

54 BÖLÜM-3 Gauss Yasası Bu bölüm kapsamında şu konulara değinilecektir: il Elektrik akısı (Φ) Simetri Gauss yasası Gauss yasasını uygulayarak; Düzgün yüklü sonsuz geniş yalıtkan plakanın, Düzgün yüklü sonsuz uzun yalıtkan çubuğun, Düzgün yüklü küresel kabuğun ve kürenin oluşturduğu elektrik alanları hesaplayacağız. Gauss yasasını kullanarak, iletkenlerin içinde ve dışındaki ş elektrik alanlar da hesaplanacaktır. (3-1)

55 Bir Vektörün Akısı : Hızı v olan bir hava akımı, A yüzey alanına sahip bir yüzeye doğru ugeliyor osu olsun ve hız vektörü v ile yüzeyin normali ( nˆ ) arasındaki as açı da olsun. İlgili yüzeyden geçen akı, vacos bağıntısı ile verilir ve bu örnekte "hacimsel akış hızı (debi)" anlamı taşır. Not -1 : Hava akımının hızı, geldiği yüzeyin normali ile aynı yöndeyse ( v, yüzeye dik) akı maksimumdur ki ( va ). )Hız yüzeyin normaline dik ise ( v, yüzeye paralel) akı sıfırdır. Not - : vacos v A biçiminde yazılabilir. Burada A vektörü, yüzeyin y normali ile aynı yönde, büyüklüğü ğ A olan bir vektördür. İsmine " yüzey alan vektörü" diyebiliriz. (3-)

56 Elektrik Alan Akısı : Şekildeki gibi E elektrik alanı içinde kapalı bir yüzey düşünelim. Bu yüzeyden geçen elektrik akısı şöyle tanımlanır: 1. Yüzeyi, A alanına sahip sonsuz küçük elemanlara ayıralım.. Her elemandan geçen akı EA EAcos olacaktır. 3. Toplam akı; E A olarak bulunur. 4. A durumundaki limit, yüzeyden y geçen akıya eşittir. ş EdA (Nm / C) S Not -1: İntegral sembo lü üzerindeki çember, integralin kapalı yüzey üzerinden alınacağını gösterir. Note : Elektrik akısı ( ), yüzeyden geçen elektrik alan çizgilerinin sayısıyla y orantılıdır. (3-3)

57 Örnek : Yükü 1. C olan noktasal bir parçacığın, merkezinde bulunduğu 1. m yarıçaplı küresel bir yüzeyden y geçirdiği ğ elektriksel akıyı hesaplayınız. Pozitif bir q noktasal yükünün kendisinden r kadar uzakta oluşturduğu elektrik alan, kendisinden dışarı doğrudur ve büyüklüğü, q E k r ile verilir. Bu durumda, q dedaedacos k da r q q q 11 5 Nm k dak 4 r r r 885 S C bulunur. q r E da 6 (3-4)

58 Örnek : Kenar uzunluğu a olan bir küp, şekildeki gibi, pozitif x-ekseni yönünde düzgün ü bir E elektrik alanı içinde bulunmaktadır. Küpün yüzeylerinden geçen toplam elektrik akısı nedir? Yüzey alan vektörleri y-ekseni (3 ve 4 nolu yüzeyler) ve z-ekseni doğrultusunda olan yüzeyler (ön ve arka yüzeyler), elektrik alan vektörüne diktir. Bu yüzeyler y akıya katkı getirmezler. Toplam akı, 1 ve nolu yüzeylerden katkılanır: E da E da Ea cos18 Ea cos S 1 1 S Ea bulunur. 1 1 (3-5)

59 Örnek : Büyüklüğü 3.5 kn/c olan ve pozitif x-ekseni yönünde yönelmiş düzgün bir elektrik alan içine, uzunluğu.7 m ve genişliği.35 m olan dikdörtgen şeklinde bir plaka konuluyor. Aşağıdaki durumlar için plakadan geçen akıyı hesaplayınız. a )plaka yz ve xy düzlemlerinde bulunuyorsa b x y o ) plaka normali -ekseni ile 4 açı yapıyor ve -ekseni plaka A yüzeyinde bulunuyorsa m 3 ˆ 3 3 N m a ) E Ai EA yz C E Akˆ EA ˆi kˆ xy b ) E Acos 4i ˆ Asin 4kˆ EAcos N m C (3-6)

60 Örnek : Kare prizma şeklindeki kapalı bir yüzey, şekildeki gibi, pozitif x-ekseni yönünde ve şiddeti E= + x (3 ) ifadesi ile değişen bir elektrik alanı iid içinde bulunmaktadır. bl ktd a=b = 4.4 m ve c=.6 6m olduğuna göre, kare prizmanın yüzeyinden geçen toplam elektrik akısı nedir? Yüzey alan vektörleri y-ekseni ve z-ekseni doğrultusunda ğ olan yüzeyler y (bir kenarı c olan dikdörtgensel yüzeyler) elektrik alan vektörüne diktir. Bu yüzden akıya katkı getirmezler. Toplam akı, karesel yüzeylerden katkılanır: E da E da E ab cos18 E ab cos 1 S S 1 x a xac N m ab (3 a ) 3 a c ab a c a.7 C bulunur. (3-7)

61 Örnek : Pozitif q yüklü bir parçacık, şekildeki gibi, R yarıçaplı bir küre kabuğunun ğ merkezindedir. di Şekilde gösterildiği gibi, yükün gördüğü ' lık bir katı açının gördüğü yüzeyden geçen akıyı bulunuz. Küre yüzeyi üzerinde r yarıçaplı dr kalınlığında bir halkadan geçen akı, q dedaedacos ' k rdr R q q d Rsin ' Rd ' sin ' d ' R q q sin ' ' cos ' q d (1 cos ) q q / ; q R (3-8)

62 Gauss Yasası : Gauss yasası şu şekilde formüle edilir ir : Herhangi bir yüzeyden geçen akı ε = yüzeyin içindeki net yük Φ ε =q ε EdAq nˆ iç nˆn ˆn S iç Not -1: Gauss yasası her kapalı yüzey için geçerlidir. Not - : Kapalı yüzey yiçindeki net yükü belirlerken, yüklerin işaretlerini dikkate almak gerekir. Not -3: Gauss yasasını uygularken, akıya katkıları olmadığı için yüzeyin dışındaki yükler işleme ktl katılmaz. Yandaki şekil için; S yüzeyi : q, S yüzeyi : q S 1 1 yüzeyi y :, S yü zeyi: 4 q q (3-9)

63 Gauss Yasası ve Coulomb Yasası : Gauss yasası ve Coulomb yasası, durgun elektrikte elektrik yükü ile elektrik alan arasındaki ilişkiyi farklı biçimlerde açıklayan bağıntılardır. Her ikisi de birbirinden türetilebilir. Örneğin, ğ Coulomb yasasını Gauss yasasından türetelim: q nokta yükünden r kadar uzaktaki bir P noktasındaki elektrik alan Gauss yasasından bulunabilir. q yükünü merkez kabul eden r yarıçaplı küresel bir Gaussiyen yüzey seçelim. Gaussiyen yüzeyi, yüzey alanı küçük elemanlara bölelim. Herbir elemandan geçen akı, dedacos EdA bulunur. Buradan da, EdA E da E 4 r S S q q q E 4r q E k iç 4 r r sonucuna ulaşılır. q da olan sonsuz (3-1)

64 Simetri: Bir cisme uygulanan fiziksel bir işlem (döndürme, öteleme gibi) sonucunda, cisim i aynı kl kalıyorsa simetriktir i tikti denir. Merkezinden geçen düşey eksen etrafında serbestçe dönebilen bir küre düşünelim. Gözlemci gözlerini kapattıktan sonra küreyi ekseni etrafında çevirelim. Gözlemci gözlerini açtığında, kürenin döndürülüp döndürüldüğünüğ anlayabilir mi? Ekseni etrafında serbestçe dönebilen bir silindir düşünelim. Gözlemci gözlerini kapattıktan sonra silindiri ekseni etrafında çevirelim. Gözlemci gözlerini açtığında, silindirin döndürülüp döndürülmediğiniğ anlayabilir mi? Cevap her iki örnek için de hayır olacaktır. Bu durumda, hem küre hem de silindir dönme eksenlerine göre simetriktir deriz. (3-11)

65 Ötelenme Simetrisi: Sonsuz geniş bir düzlem düşünelim. Uçan halı üzerindeki bir gözlemci bu düzlemin üzerinde sabit bir yükseklikte olsun. Gözlemci gözlerini kapattıktan sonra bir miktar ötelensin. Gözlerini açtığında, hareket edip etmediğini anlayabilir mi? Cevap hayır olacaktır. Bu durumda, düzlem ötelenme simetrisine sahiptir deriz. Gauss Yasası Uygulanırken İzlenecek Yol: Yük dağılımını geometrik olarak çiziniz. Yük dağılımının simetrisini ve elektrik alanına etkisini belirleyiniz. Gauss yasası her kapalı yüzey y için geçerlidir. gç akısının en kolay hesaplanabileceği en uygun yüzeyi belirleyiniz. Elektrik alanı hesaplamak için Gauss yasasını uygulayınız. (3-1)

66 Sonsuz Uzunlukta Düzgün Yüklü Çubuğun Oluşturduğu Elektrik Alan: Şekilde düzgün çizgisel yük yoğunluğuna sahip bir çubuk verilmiştir. Çubuğun simetrisi dikkate alınırsa, oluşturduğu elektrik alanın kendinden dışarı doğru ve r uzaklığındaki tüm noktalarda şiddetinin de aynı olduğu ortaya çıkar. Bu yüzden, çubuğu eksen alan r yarıçaplı, h yüksekliğinde silindirik bir yüzey ygaussiyen yüzey yolarak seçilebilir. Gaussiyen yüzeyi üç farklı yüzeyin birleşimi gibi düşünebiliriz: Üst yüzey S, yanal yüzey S ve taban yüzey S. Yüzeyden geçen net akı, olacaktır. S ve S yüzeylerinde, yüzey normali ile elektrik alan vektörleri birbirlerine dik olduğu ii için ve akıları kl sıfırdır. Bu durumda d net akı, 1 3 EdA E rh cosrhe Gauss yasasından: S q h r iç E k r (3-13) 1

67 Örnek : Yarıçapı R ve düzgün hacimsel yük yoğunluğu olan bir kürenin içinde ve dışındaki bölgelerde elektrik alanını bulunuz. q iç r R E da E dacos r S q iç S r r qiç r E 4r E qiç qiç r R EdA E dacos S S 4 4R R q 4 iç R E r E r R 3 R r R E de da R de da r (3-14)

68 Örnek : çp y y y g Yarıçapı R ve Q yükünün yüzeyine düzgün dağıldığı ince küresel bir kabuğun içinde ve dışındaki bölgelerde l elektrik alanını bulunuz. qiç r R EdA S q da olduğundan E iç qiç r R E da EdAcos S q S Q Q Q 4 qiç Q E r E k 4 r r iç (3-15)

69 Örnek : İç yarıçapı a, dış yarıçapı b ve düzgün hacimsel yük yoğunluğu ğ olan küresel bir kabukk için, r a; ar b ve r b bölgelerindeki elektrik alanını bulunuz. S EdA q iç r a q da olduğundan E iç 4 a r b E 4 r 3 E 3 3 r a 3 r a 3 3 r b 3 a b a r b E r E 4 3 r Q Q Q (b 3 -a 3 ) 3 r E r b r b r b a a a a de da de b da de da r (3-16)

70 Örnek : Yarıçapı R ve hacimsel yük yoğunluğu r olan bir kürenin içinde ve dışındaki bölgelerde elektrik alanını bulunuz. S EdA q iç r r 4 4 ' ' ' ' ' 4 E r R q r dr r r dr r iç r E 4 r E r 4 4 R R 4 iç 4 ' ' ' 4 ' ' r R q r dr r r dr R R E 4 r E R 4 4 4r R 4 R r R r de da R de da r (3-17)

71 Örnek : Yarıçapı R olan sonsuz uzunluktaki bir silindirin i düzgün ü hacimsel yük yoğunluğu ğ ğ 'd dur. silindirin içinde ve dışındaki noktalarda elektrik alanını bulunuz. Yük dağılımının simetrisi nedeniyle, Gaussiyen yüzey olarak silindir seçilir. S 1 ve S 3 yüzeylerinden akıya hiçbir katkı gelmez ( da E). Bu durumda: qiç E da S r h r R E rh E r R E rh Rh r E R r (3-18)

72 ÖDEV : Yarıçapı R olan sonsuz uzunluktaki bir silindirin hacimsel yük yoğunluğu r ile veriliyor. bir sabit ve r ' de silindir ekseninden olan uzaklıktır. Silindirin içinde ve dışındaki bölgede elektrik alanını bulunuz ve silindir ekseninden olan uzaklığa karşı değişimini çiziniz. ÖDEV : İç yarıçapı a, dış yarıçapı b olan düzgün yük yoğunluğuna sahip sonsuz uzunlukta bir silindirin ekseni üzerinde, düzgün çizgisel yükü yaşıyan sonsuz uzun bir çubuk yerleştirilmiştir. r a ; ar b ; r>bbölgelerinde elektrik alanlarını bulunuz. (3-19)

73 Sonsuz Geniş, Yalıtkan, Yüklü Plakanın Oluşturduğu ğ Elektrik Alan : Plakanın pozitif ve düzgün yüzey yük yoğunluğuna sahip olduğunu varsayalım. Simetri nedeniyle elektrik alan plakaya dik, dışarı doğru ve büyüklüğü heryerde aynıdır. Şekildeki gibi, plakanın ortadan kestiği, kesit alanı A olan silindirik bir Gaussiyen yüzey seçebiliriz. Silindiri üç farklı yüzeyden oluşmuş gibi düşünebiliriz: Sağ ğ kesit S, yanal yüzey S ve sol lkesit S. Yüzeyden 1 3 geçen net akı, 1 olacaktır. 3 EAcos EA ve ( = 9 ) 1 3 EA q iç Gauss yasasından: E. A (3-)

74 Yüzeysel yük yoğunlukları ve - olan sonsuz geniş paralel iki iletken plaka olsun. 1 1 Plakalar birbirine yaklaştırılırsa, ş,yükler plakaların birbirine bakan yüzeylerinde y toplanır. Plakalar arasındaki bölgede elektrik alanını bulmak için, kesit alanı A olan silindirik bir Gaussiyen yüzey (S) seçerek Gauss yasasını uygulayabiliriz: qiç 1A 1 EA E Plakaların dışındaki bölgelerdeki elektrik alanı için de, kesit alanı A' olan S' silindirik Gaussiyen yüzeyini seçer ve Gauss yasasını uygularsak: qiç 11 EA E (3-1)

75 Örnek : Şekilde gösterildiği gibi, yarıçapı a ve düzgün hacimsel yük yoğunluğu ğ ğ olan bir küreden a yarıçaplı çp bir bölge çıkarılmıştır. ş Çıkarılan kısmın tam ortasındaki elektrik alan nedir? Verilen yük dağılımını, ğ ve düzgün yük yoğunluklarına sahip a ve a yarıçaplı iki kürenin toplamı gibi düşünebiliriz. ü i Dolayısı ile, ilgili noktadaki toplam elektrik alan: E r r' a = 3 3 ra 3 olarak bulunur. r ' a y a a a x + a (3-)

76 Bir İletken İçindeki Elektrik Alan : Soldaki iletkeni gözönüne alalım. İletkenler, içinde serbestçe dolaşabilen çok sayıda elektron barındıran malzemeler olarak tanımlanır. İletkenin içinde E olduğunu ğ düşünelim: Bu durumda, iletkenin içindeki elektronlar sıfırdan farklı F ee bir kuvvetin etkisi altında kalırlar. Bu nedenle elektronlar ivmeli bir hareket yapacak ve dolayısıyla bir elektrik akımı oluşturmaları gerekecektir. Böyle olması durumunda da; (a) İletkenin ısınması gerekir. (b) İletken çevresinde bir manyetik alan oluşmalıdır. Şu ana kadar böyle etkiler hiç gözlenmemiştir. Buradan da, "Bir iletkenin içindeki durgun elektrik alan E sıfırdır." sonucunu çıkarabiliriz. (3-3)

77 İzole Edillmiş Yüklü İletken : Yanda toplam yükü q olan bir iletken verilmiştir. i Yük, iletkende nasıl dağılmıştır? Bu soruyu yanıtlamak için, iletkenin i hemen içinde i bir Gaussiyen yüzey seçelim ve Gauss yasasını uygulayalım. İletkenin içinde E olduğundan, iç Φ = Δ = (Eş -1) ve Gauss yasasından : Φ = (Eş -). S E A Bu iki eşitlik birleştirilirse iletkenin içindeki yük sıfırdır ( q q ε iç = ). İletkenin sıfırdan farklı q yüküne sahip olduğunu bildiğimizden, bu yükün sadece iletkenin yüzeyinde bulunabileceği sonucuna ulaşırız. "Elektrostatik yükler, iletkenin içinde bulunamazlar. Ancak yüzeyinde bulunabilirler." (3-4)

78 İçinde Boşluk Bulunan Yalıtılmış Yüklü İletken: Yanda toplam yükü q olan bir iletken verilmiştir. Boşluğun duvarında yük bulunurmu? Bu soruyu yine, Gauss yasası yardımıyla cevaplayabiliriz. Bunun için, şekildeki gibi boşluğun hemen dışında bir Gaussiyen yüzey seçebiliriz. İletkenin içinde E olduğundan, ğ qiç E A (Eş-1) ve Gauss yasasından: (Eş-). S Bu iki eşitlik birleştirilirse seçilen Gaussiyen yüzeyin içindeki yük sıfırdır ( q = ). Dolayısıyla, boşluk duvarında herhangi bir yuk yoktur. Özetleyecek olursak; "İletken içindeki boşluğun duvarlarında yük bulunamaz. Tüm yük iletkenin dış yüzeyinde bulunabilir ir". iç (3-5)

79 Yüklü İletkenin Hemen Dışındaki Elektrik Alan: Bir iletkenin içindeki elektrik alan sıfırdır. Ancak, dışındaki elektrik alan sıfır değildir. Yüzeyin her noktasında yüzeye diktir. Böyle olmasaydı, elektrik alanın yüzeye paralel bir bileşeni olurdu ve yüzeyde bulunan yüklerin ivmelenmesine sebep olurdu. Bu ise " durgu n elektrik" kabullenmemize aykırı olurdu. Gauss yasasını uygulamak için, şekideki gibi silindirik bir Gaussiyen yüzey kullanacağız. Bu silindirik yüzey S, S ve S gibi üç farklı yüzeyden oluşur. 1 3 Net akı, bu yüzeylerden geçen akıların toplamı olacaktır:. 1 EAcos EA qiç qiç 1 EA cos 9 EA E A 3 qiç, yüzeysel yük yoğunluğutanımından, E A 1 3 bulunur. (3-6)

80 Örnek : Yarıçapı a olan Q düzgün yüküne sahip bir küre, şekildeki gibi iç yarıçapı b ve dış yarıçapı c olan Q yüküne sahip iletken bir küre kabuğunun merkezinde bulunmaktadır. 1,, 3 ve 4 nolu bölgelerdeki elektrik alanını bulunuz. q iç E da S 1 nolu bölge: 4 nolu bölge: 4 3 Qr E r E k 3 3 a a Q Q E r E k r 3 nolu bölge: E (İletkenin içinde yük bulunamaz. İletkenin Qr iç çeperinde Q dış çeperinde Q yükü birikir.) 4 nolu bölge: E Q Q 4 r E k r (3-7)

81 BÖLÜM-4 Elektrik Potansiyel Bu bölümde, elektrik alanla ilgili elektrik potansiyel (V) kavramını öğreneceğiz. Bu bağlamda aşağıdaki konulara değineceğiz: Elektrik alandan potansiyelin bulunması. Potansiyelden elektrik alanın bulunması. Nokta yük ve yük grubunun oluşturduğu potansiyel. Sürekli yük dağılımlarının oluşturduğu potansiyel. Yük sistemlerinin potansiyel enerjisi. Eş-potansiyel yüzeyler ve elektrik alan çizgileri. İzole bir iltekenin oluşturduğu potansiyel. (4-1)

82 x s Elektrik Potansiyel Enerji : U F ( x ) dx Korunumlu bir kuvvetin yaptığı iş, cismin potansiyel x i enerjisindeki değişimin negatif işaretlisidir. Korunumlu bir kuvvetin etkisiyle cisim x noktasından x noktasına hareket etmişse, i s s U q E ds i U U f Ui W F ( x ) dx yazılır. q nokta yükü, bilinen bir elektrik alanı ( E) içinde, F q E elektrik kuvvetinin etkisiyle x f x i A noktasından B noktasına gitsin. Yükün potansiyel enerjisindeki değişim, s s U Fdl q Edl i olacaktır. Bu değişim q yüküne bağlıdır. i (4-)

83 Elekrik Potansiyel ( V): A ve B noktaları arasındaki dkielektrik lktikpotansiyel lfark ( V ), bu noktalar arasında taşınan birim yük başına potansiyel enerji değişimi olarak tarif edilir: U W V V Vs Vi q q i s Edl Noktalardan birisinin potansiyeli biliniyorsa, diğer ğ noktanın elektrik potansiyeli bulunabilir. Genellikle, yükten çok uzaktaki bir noktanın potansiyeli sıfır alınır ( V i V ). Bu durumda, herhangi bir P noktasının potansiyeli, P Edl VP ifadesiyle verilir. SI sistemindeki birimi J/s (volt)' dir. (4-3)

84 Örnek : 4 Bir proton, şekilde gösterildiği gibi büyüklüğü 81 V/m olan pozitif x-ekseni yönündeki düzgün bir elektrik alan içinde durgun halden serbest bırakılıyor. Proton elektrik alan yönünde.5 m gittiğinde, a) A ve B noktaları arasındaki elektriksel potansiyel fark ne kadardır. b) Bu iki nokta arasında, protonun potansiyel enerjisinde ne kadarlık bir değişim olmuştur? c)p Proton B noktasına ulaştığındaki ğ dkihızı ne olur? a V V Edl Edl Ed B B V V E dl Edl Ed 4 ) cos 8 1 B A (.5) A A 4 VB VA 4 1 V b U qv U ) J 1 c K U m v v 15 6 ) p m / s (4-4)

85 Örnek : Şekildeki gibi, y yönünde büyüklüğü 35 V/m olan düzgün bir elektrik alan vardır. Koordinatı (.,.3) m olan A noktası ile koordinatı (.4,.5) m olan B noktası arasındaki potansiyel farkını bulunuz. B B V V E dl Edl cos(9 ) = E AB sin B A A A AB m 8.8 VB V A V sin = =.8 1 C B C B V V E dl E dl Edl cos18 Edl cos9 B A A C A C 35(.8) 6 V V V E AC B A (4-5)

86 Nokta Yükün Potansiyeli : Orijinde bir q nokta yükü bulunsun. Yükten R kadar uzaktaki P noktasının potansiyelini bulmak için, q test yükünü ü P noktasından sonsuza götürmemiz gerekir. Böylece, V V Edl Edrcos Edr E V P P R R R q q dr q 1 V P 4 r 4 r 4 r 1 4 R q R bulunur. q nokta yükünün kendisinden r kadar uzakta oluşturduğu elektrik potansiyel: V 1 4 q q k r r (4-6) R

87 Nokta Yük Grubunun Oluşturduğu Potansiyel : Şekilde üç nokta yükten oluşan bir sistem verilmiştir. Bu yüklerin herhangi bir P noktasında oluşturdukları elektrik potansiyel, her birinin ilgili noktada oluşturduğu potansiyellerin toplamıdır. 1. Her bir yükün P noktasında oluşturdukları elektrik potansiyeller bulunur: 1 q 1 q 1 q 1 3 V1 ; V ; V3 4 r1 4 r 4 r3. Tüm yüklerin oluşturdukları potansiyeller toplanır: 1 q1 1 q 1 q3 V V1V V3 4 r 4 r 4 r 1 3 n tane nokta yükten oluşan bir sistem için i bu ifade şöyle öl yazılır: n 1 q1 1 q 1 qn 1 qi V... 4 r 4 r 4 r 4 i 1 r 1 n i (4-7)

88 Örnek : Şekilde gösterildiği gibi, ikizkenar bir üçgenin köşelerine üç nokta yük yerleştirilmiştir. iil i i q yüklerinin i bulunduğu doğrunun tam orta noktasındaki elektrik potansiyelini hesaplayınız. ( q 7 C alımız). h= = cm q V Vq Vq k k h V V= q r q V (4-8)

89 Örnek : Şekilde gösterildiği gibi, q 1 C' luk yük orijinde ve q 6 C' luk yük ise y 3 m noktasında bulunmaktadır. Bu iki yükün, x 4 m noktasında ( P) oluşturdukları toplam elektrik potansiyel ne kadardır? q 3 3 C' luk üçüncü bir yükü P noktasına getirmek için yapılması gereken işi bulunuz. r q V V1 V k k r V q r V 4 5 P W =q3 V V J (4-9)

90 Örnek : Şekilde gösterildiği gibi, Q, Q ve Q nokta yükleri x-ekseni üzerine aralarındaki mesafe a olacak şekilde yerleştirilmişlerdir. x a olmak üzere, x-ekseni üzerindeki herhangi bir noktadaki elektrik potansiyelini bulunuz. x a durumundaki potansiyel ifadesini türetiniz. q 1 q q 3 V V1 V V3 k k k r r r x kqa V kq kq 3 xa x xa x a x x ax kqa kqa x a V 3 3 x 1 a / x x (4-1)

91 Elektrik Dipolünün Oluşturduğu Potansiyel : Solda bir elektrik dipolü verilmiştir. Dipolü oluşturan nokta yüklerin P noktasında oluşturdukları ş V potansiyelini bulalım. P noktası, dipolün merkezi olan O noktasından r kadar uzakta ve OP doğrusu dipol ekseni ile açısı yapsın. Bu durumda P noktasındaki potansiyel: 1 q q q r( ) r( ) V V ( ) V ( ). 4 r( ) r ( ) 4 r( ) r( ) olur. d dipolü oluşturan yükler arasındaki mesafe olmak üzere, r d yaklaşımı yapılırsa r( ) r( ) r, ABC dik üçgeninden de r r dcos yazılabilir. Bu durumda, ( ) ( ) q dcos 1 pcos V, 4 r 4 r sonucuna ulaşılır. Burada, p qd kısaltması yapılmıştır. (4-11)

92 Sürekli Yük Dağılımlarının Oluşturduğu Potansiyel : Şekildeki sürekli yük dağılımına sahip bir cisim verilmiştir. Yük dağılımının ğ herhangi h ibir noktada oluşturduğu ğ elektrik lktik potansiyel V üstüste binme ilkesiyle şu şekilde bulunur: 1. Cisim, sonsuz küçük dq yüküne sahip elemanlara bölünür. çizgisel yük dağılımı ğ dq d yüzeysel yük dağılımı dq da hacimsel yük dağılımı dq dv. dq yükünün P noktasında oluşturduğu dv potansiyeli yazılır: dv 1 dq 4 r 3. Tüm yüklerin katkısı, yük dağılımı üzerinden integral alınarak bulunur: V 1 4 dq r (4-1)

93 Örnek: Şekilde L uzunluğunda ve λ düzgün yük yoğunluğuna sahipince ince bir çubuk verilmiştir. Çubuğun sol ucundan, çubuğa dik doğrultuda d kadar yukardaki bir Pnoktasındaki elektrik potansiyelini bulunuz. Çubuğun sol ucundan x kadar ötede seçilen dx elemanının yükü dq dx P r d x ve noktasına uzaklığı da olduğundan, dq yükünün P noktasında oluşturduğu elektrik potansiyeli: dq dx dv k k r d x V k L bulunur. d dx x L L d L ln ln dx ln x d x d x k x d x k d (4-13)

94 Örnek : Şekilde L uzunluğunda ve λ = xyük yoğunluğuna sahip ince bir çubuk verilmiştir. Burada pozitif bir sabit ve x çubuğun sol ucundan olan uzaklıktır. Çubuğun sol ucundan yatay doğrultuda d kadar uzaklıkta bir P noktasındaki elektrik potansiyeli bulunuz. Çubuğun sol ucundan x kadar ötede seçilen dx elemanının yükü dq dx ve P noktasına uzaklığı ğ da r x d olduğundan, ğ dq yükünün P noktasında oluşturduğu elektrik potansiyeli: dq xdx xdx dv k k k r xd xd L xdx L L d V k k x dln x d k L dln x d d bulunur. xdx x dln x d x d (4-14)

95 ÖDEV : Şekilde L uzunluğunda ve λ = xyük yoğunluğuna sahip ince bir çubuk verilmiştir. Burada pozitif bir sabit ve x çubuğun sol ucundan olan uzaklıktır. Çubuğun ortasından dik doğrultuda ğ b kadar uzaklıkta bir P noktasındaki elektrik potansiyeli bulunuz. (4-15)

96 Örnek : Homojen yüklü ince bir çubuk, R yarıçaplı çemberin bir parçası olacak şekilde bükülüyor. Şekilde verildiği gibi, yayı gören açı ' dir. Yayın çizgisel yük yoğunluğu ise, çemberin merkezindeki (O noktası) elektrik potansiyeli nedir? Yay üzerinde seçilen dl elemanının yükü dq dl dir. O noktasındaki toplam elektrik potansiyeli: dq dl Rd dv k k k kd V k d k r R R olur. (yarımçember) V k (tam çember) V k 4 (4-16)

97 Örnek : Q yükü R yarıçaplı bir çember üzerine düzgün olarak dağılmıştır. Çemberin merkezinden dik olarak geçen z-ekseni üzerinde ve merkezden z kadar uzaktaki P noktasında elektrik potansiyelini bulunuz. Çember üzerinde seçilen dl elemanının yükü dq dl ( Q / R) dl ile verilir. P noktasındaki toplam elektrik potansiyeli: dq Q dl Q 1 Q dv k k V k dl k r R r R r r V k z Q R ; dl R Q Q Q/ R z V k R 4 R ; Q zv k (nokta yükün potansiyeli) z (4-17)

98 Örnek : Yarıçapı R olan ince bir disk düzgün yüzey yük yoğunluğuna sahiptir. Diskin merkezinden dik olarak geçen eksen üzerinde ve merkezden z kadar uzaktaki bir P noktasında elektrik potansiyelini bulunuz. Toplam yükü Q olan bir çemberin potansiyeli : Seçilen çemberin toplam yükü dq,potansiyeli dv dir. dq rdr dv k k z r z r R R rdr V dv z r V k z Q r xdx x a R V z r z R z x a x a (-18)

99 Örnek : İç yarıçapı a ve dış yarıçapı b olan ince bir disk düzgün yüzey yük yoğunluğuna ğ ğ sahiptir. i Diskin merkezinden dik olarak geçen eksen üzerinde z ve merkezden z kadar uzaktaki bir P noktasında elektrik potansiyelini bulunuz. Toplam yükü Q olan bir çemberin potansiyeli : Seçilen çemberin toplam yükü dq, potansiyeli dv dir. V k z Q r dq rdr dv k k z r z r b b rdr V dv a a z r b V z r z b z a a x xdx a x a (4-19)

100 ÖDEV : Yarıçapı R olan ince bir disk Cr ile değişen yüzey yük yoğunluğuna ğ ğ sahiptir. i C pozitif bir sabit ve r disk merkezinden olan uzaklıktır. Diskin merkezinden dik olarak geçen eksen üzerinde ve merkezden x kadar uzaktaki bir P noktasında elektrik potansiyelini bulunuz. (4-)

101 Örnek : Yarıçapı R ve yüksekliği h olan ince silindirik bir kabuk, xy-düzlemine tabanı orijinde olacak şekilde yerleştirilmiştir. Silindir düzgün yük yoğunluğuna sahip olduğuna göre, ekseni üzerindeki herhangi bir noktadaki ( P) elektrik potansiyelini bulunuz. Toplam yükü Q olan bir çemberin potansiyeli : Seçilen çemberin toplam yükü dq, potansiyeli dv dir. V k z Q r dq Rdz ' dv k k z z' R z z' R V h dv h R dz ' z z' R h z R z V ln ( z z') R z z' ln ( z h) R z h dx ( ax) b ln ( ) a x b a x (-1)

102 Örnek : Yarıçapı R olan bir küre düzgün hacimsel yük yoğunluğuna ğ ğ sahiptir. Sonsuzun potansiyelini sıfır kabul ederek, küre dışında ve küre içinde i elektrik potansiyelini i bulunuz. rp rp V V E dl Edlcos 18 ; dl dr P 18 r r r P P P dr VP V = E dr 1 = Edr kq r r 1 P VP = kq k r Q r P Q V() r k ; r R r rm rm rm Qr kq kq M R M R R R R R R V V Edr k dr rdr r R kq kq kq r VM 3 rm R V ( r) 3 ; r R R R R R (4-)

103 İndüklenmiş Dipol Moment : Su molekülü (HO) gibi birçok molekül kendiliğinden bir dipol momente sahiptir. Bu tür moleküllere " polar" moleküller denir. Aksine, O, N,... gibi moleküllerin dipol momentleri sıfırdır. Bunlara da " polar olmayan" moleküller denir. Şekil- a' da böyle bir molekül resmedilmiştir. ş Pozitif yük ile çevresindeki negatif yük bulutu aynı merkezli olduğu için dipol momenti sıfırdır. Şekil- b' de, elektrik alan içindeki polar olmayan molekülde ne gibi bir değişim olduğu resmedilmiştir. Merkezleri çakışık olan pozitif yük ve negatif yük bulutu, elektrik kuvvetinin etkisi altında ayrışmıştır. Böylece, polar olmayan molekül elektrik alan etkisiyle sıfırdan farklı bir dipol momente sahip hale gelmiştir. Buna " indüklenmiş dipol moment" ve molek üle de " kutupl anmış"tır denir. Elektrik alan kaldırıldığında, kutuplanma da ortadan kalkar ve dipol moment tekrar sıfır olur. (4-3)

104 Eş-Potansiyel Yüzeyler: I numaralı yol : V olduğundan, WI olur. II numaralı yol : V olduğundan, W olur. III numaralı yol : WIII qv qv V1. IV numaralı yol : W IV qv q V V 1. Not : Bir yükü, eş-potansiyel bir yüzeyde V Potansiyelleri aynı olan noktaların oluşturduğu yüzeye eş-potansiyel yüzey denir. Şekilde dört farklı eş-potansiyel yüzey verilmiştir. Aralarındaki potansiyel farkının V olduğu iki nokta arasında, q yükünü bir noktadan diğerine götürmek için elektrik alan tarafından yapılan iş: W qv. elektrik alan tarafından herhangi bir işş yapılmaz yp ( W ). II hareket ettirmek için (4-4)

GENEL FİZİK II DERS NOTLARI

GENEL FİZİK II DERS NOTLARI GENEL FİZİK II DERS NOTLARI Hazırlayanlar: Prof. Dr. Mustafa POLAT Prof. Dr. Leyla TATAR YILDIRIM 1 BÖLÜM-1 Elektrik Yükü Bu bölümde, maddenin özelliklerinden birisi olan elektrik yükü ile tanışacağız.

Detaylı

Fizik ve Ölçme. Fizik deneysel gözlemler ve nicel ölçümlere dayanır

Fizik ve Ölçme. Fizik deneysel gözlemler ve nicel ölçümlere dayanır Fizik ve Ölçme Fizik deneysel gözlemler ve nicel ölçümlere dayanır Fizik kanunları temel büyüklükler(nicelikler) cinsinden ifade edilir. Mekanikte üç temel büyüklük vardır; bunlar uzunluk(l), zaman(t)

Detaylı

ÖLÜM 3 DENGE, İR KUVVETİN MOMENTİ 3.1 ir Kuvvetin Momenti elirli bir doğrultu ve şiddete sahip bir kuvvetin, bir cisim üzerine etkisi, kuvvetin etki çizgisine bağlıdır. Şekil.3.1 de F 1 kuvveti cismi sağa

Detaylı

Atom. Atom 9.11.2015. 11 elektronlu Na. 29 elektronlu Cu

Atom. Atom 9.11.2015. 11 elektronlu Na. 29 elektronlu Cu Atom Maddelerin en küçük yapı taşlarına atom denir. Atomlar, elektron, nötron ve protonlardan oluşur. 1.Elektronlar: Çekirdek etrafında yörüngelerde bulunurlar ve ( ) yüklüdürler. Boyutları çok küçüktür.

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 10 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 8 Aralık 1999 Saat: 09.54 Problem 10.1 (a) Bir F kuvveti ile çekiyoruz (her iki ip ile). O

Detaylı

01 OCAK 2015 ELEKTRİK AKIMI VE LAMBA PARLAKLIĞI SALİH MERT İLİ DENİZLİ ANADOLU LİSESİ 10/A 436

01 OCAK 2015 ELEKTRİK AKIMI VE LAMBA PARLAKLIĞI SALİH MERT İLİ DENİZLİ ANADOLU LİSESİ 10/A 436 01 OCAK 2015 ELEKTRİK AKIMI VE LAMBA PARLAKLIĞI SALİH MERT İLİ DENİZLİ ANADOLU LİSESİ 10/A 436 ELEKTRİK AKIMI VE LAMBALAR ELEKTRİK AKIMI Potansiyelleri farklı olan iki iletken cisim birbirlerine dokundurulduğunda

Detaylı

Çalışma Soruları 2: Bölüm 2

Çalışma Soruları 2: Bölüm 2 Çalışma Soruları 2: Bölüm 2 2.1) Kripton(Kr) atomunun yarıçapı 1,9 Å dur. a) Bu uzaklık nanometre (nm) ve pikometre (pm) cinsinden nedir? b) Kaç tane kripton atomunu yanyana dizersek uzunlukları 1,0 mm

Detaylı

Basit Kafes Sistemler

Basit Kafes Sistemler YAPISAL ANALİZ 1 Basit Kafes Sistemler Kafes sistemler uç noktalarından birleştirilmiş narin elemanlardan oluşan yapılardır. Bu narin elemanlar, yapısal sistemlerde sıklıkla kullanılan ahşap gergi elemanları

Detaylı

Fizik I (Fizik ve Ölçme) - Ders sorumlusu: Yrd.Doç.Dr.Hilmi Ku çu

Fizik I (Fizik ve Ölçme) - Ders sorumlusu: Yrd.Doç.Dr.Hilmi Ku çu Fizik I (Fizik ve Ölçme) - Ders sorumlusu: Yrd.Doç.Dr.Hilmi Ku çu Bu bölümde; Fizik ve Fizi in Yöntemleri, Fiziksel Nicelikler, Standartlar ve Birimler, Uluslararas Birim Sistemi (SI), Uzunluk, Kütle ve

Detaylı

BĐSĐKLET FREN SĐSTEMĐNDE KABLO BAĞLANTI AÇISININ MEKANĐK VERĐME ETKĐSĐNĐN ĐNCELENMESĐ

BĐSĐKLET FREN SĐSTEMĐNDE KABLO BAĞLANTI AÇISININ MEKANĐK VERĐME ETKĐSĐNĐN ĐNCELENMESĐ tasarım BĐSĐKLET FREN SĐSTEMĐNDE KABLO BAĞLANTI AÇISININ MEKANĐK VERĐME ETKĐSĐNĐN ĐNCELENMESĐ Nihat GEMALMAYAN Y. Doç. Dr., Gazi Üniversitesi, Makina Mühendisliği Bölümü Hüseyin ĐNCEÇAM Gazi Üniversitesi,

Detaylı

GENEL FİZİK II DERS NOTLARI

GENEL FİZİK II DERS NOTLARI GENEL FİZİK II DERS NOTLARI Hazırlayanlar: Dr. Mustafa POLAT Dr. Leyla TATAR YILDIRIM 1 BÖLÜM-1 Elektrik Yükü Bu bölümde, maddenin özelliklerinden birisi olan elektrik yükü ile tanışacağız. Atomu meydana

Detaylı

FİZİKÇİ. 2. Kütlesi 1000 kg olan bir araba 20 m/sn hızla gidiyor ve 10 m bir uçurumdan aşağı düşüyor.

FİZİKÇİ. 2. Kütlesi 1000 kg olan bir araba 20 m/sn hızla gidiyor ve 10 m bir uçurumdan aşağı düşüyor. 1. Aşağıdakilerden hangisi Frekans ı tanımlamaktadır? a) Birim zamandaki titreşim sayısıdır ve boyutu sn -1 b) Birim zamandaki hızlanmadır c) Bir saniyedeki tekrarlanmadır d) Hızın zamana oranıdır 6. İki

Detaylı

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI YÜZEY DOLDURMA TEKNİKLERİ

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI YÜZEY DOLDURMA TEKNİKLERİ İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI YÜZEY DOLDURMA TEKNİKLERİ Deneyde dolu alan tarama dönüşümünün nasıl yapıldığı anlatılacaktır. Dolu alan tarama

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS OR ENGINEERS: STATICS erdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 285 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

Bu konuda cevap verilecek sorular?

Bu konuda cevap verilecek sorular? MANYETİK ALAN Bu konuda cevap verilecek sorular? 1. Manyetik alan nedir? 2. Maddeler manyetik özelliklerine göre nasıl sınıflandırılır? 3. Manyetik alanın varlığı nasıl anlaşılır? 4. Mıknatısın manyetik

Detaylı

Örnek...6 : Yandaki bölme işleminde A ve n birer doğal sayıdır. A nın alabileceği en küçük ve en bü yük değerleri bulunu z.

Örnek...6 : Yandaki bölme işleminde A ve n birer doğal sayıdır. A nın alabileceği en küçük ve en bü yük değerleri bulunu z. MODÜLER ARİTMETİK ( BÖLME BÖLÜNEBİLME KURALLARI ÖKLİT ALGORİTMASI DEĞERLENDİRME ) BÖLME İŞLEMİ VE ÖZELLİKLERİ A, B, C, K doğal sayılar ve B olmak üzere, BÖLÜNEN A B C BÖLEN BÖLÜM Örnek...5 : A, B, C birbirinden

Detaylı

KIRILMA MEKANİĞİ Prof.Dr. İrfan AY MALZEME KUSURLARI

KIRILMA MEKANİĞİ Prof.Dr. İrfan AY MALZEME KUSURLARI MALZEME KUSURLARI Deformasyonda Birinci Özelliğe Sahip Hatalar: A. Noktasal Hatalar: Kafes düzeninin çok küçük bölgelerindeki (1-2 atom boyutu) bozukluğa verilen addır. Bunlar ; 1. Boşluklar : Kafeslerde

Detaylı

Oksijen, flor ve neon elementlerinin kullanıldığı alanları araştırınız.

Oksijen, flor ve neon elementlerinin kullanıldığı alanları araştırınız. Oksijen, flor ve neon elementlerinin kullanıldığı alanları araştırınız. 3.2 KİMYASAL BAĞLAR Çevrenizdeki maddeleri inceleyiniz. Bu maddelerin neden bu kadar çeşitli olduğunu düşündünüz mü? Eğer bu çeşitlilik

Detaylı

Ek 1. Fen Maddelerini Anlama Testi (FEMAT) Sevgili öğrenciler,

Ek 1. Fen Maddelerini Anlama Testi (FEMAT) Sevgili öğrenciler, Ek 1. Fen Maddelerini Anlama Testi (FEMAT) Sevgili öğrenciler, Bu araştırmada Fen Bilgisi sorularını anlama düzeyinizi belirlemek amaçlanmıştır. Bunun için hazırlanmış bu testte SBS de sorulmuş bazı sorular

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 22 Nisan 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 22 Nisan 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal II / Nisan 007 Matematik Soruları ve Çözümleri 1. 3,15 sayısının aşağıdaki sayılardan hangisiyle çarpımının sonucu bir tam

Detaylı

Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon

Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon Levent ÖZBEK Fikri ÖZTÜRK Ankara Üniversitesi Fen Fakültesi İstatistik Bölümü Sistem Modelleme ve Simülasyon Laboratuvarı 61 Tandoğan/Ankara

Detaylı

YAPISAL ANALİZ YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

YAPISAL ANALİZ YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU YAPISAL ANALİZ YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU 1 Basit Kafes Sistemler Kafes sistemler uç noktalarından birleştirilmiş narin elemanlardan oluşan yapılardır. Bu narin elemanlar, yapısal sistemlerde sıklıkla

Detaylı

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Görünüşler - 1

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Görünüşler - 1 TEKNİK RESİM 2010 Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi 2/25 Görünüşler Birinci İzdüşüm Metodu Üçüncüİzdüşüm Metodu İzdüşüm Sembolü Görünüşlerin Çizilmesi Görünüş Çıkarma Kuralları Tek Görünüşle

Detaylı

2013-2014 EĞİTİM VE ÖĞRETİM YILI TED KDZ EREĞLİ KOLEJİ ORTAOKULU MATEMATİK 8.SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANDIR.

2013-2014 EĞİTİM VE ÖĞRETİM YILI TED KDZ EREĞLİ KOLEJİ ORTAOKULU MATEMATİK 8.SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANDIR. EYLÜL 2013-201 EĞİTİM VE ÖĞRETİM YILI TED KDZ EREĞLİ KOLEJİ ORTAOKULU MATEMATİK 8.SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANDIR. 9-13 Örüntü ve Süslemeler Dönüşüm Geometrisi 1. Doğru, çokgen ve çember modellerinden

Detaylı

MALZEMELERİN FİZİKSEL ÖZELLİKLERİ

MALZEMELERİN FİZİKSEL ÖZELLİKLERİ MALZEMELERİN FİZİKSEL ÖZELLİKLERİ (Ders Notu) Manyetik Özellikler Doç.Dr. Özkan ÖZDEMİR MANYETİK ÖZELLİK Giriş Bazı malzemelerde mevcut manyetik kutup çiftleri, elektriksel kutuplara benzer şekilde, çevredeki

Detaylı

DEVRELER VE ELEKTRONİK LABORATUVARI

DEVRELER VE ELEKTRONİK LABORATUVARI DENEY NO: 1 DENEY GRUBU: C DİRENÇ ELEMANLARI, 1-KAPILI DİRENÇ DEVRELERİ VE KIRCHHOFF UN GERİLİMLER YASASI Malzeme ve Cihaz Listesi: 1. 10 Ω direnç 1 adet 2. 100 Ω direnç 3 adet 3. 180 Ω direnç 1 adet 4.

Detaylı

2014 LYS MATEMATİK. P(x) x 2 x 3 polinomunda. 2b a ifade- x lü terimin. olduğuna göre, katsayısı kaçtır? değeri kaçtır? ifadesinin değeri kaçtır? 4.

2014 LYS MATEMATİK. P(x) x 2 x 3 polinomunda. 2b a ifade- x lü terimin. olduğuna göre, katsayısı kaçtır? değeri kaçtır? ifadesinin değeri kaçtır? 4. 04 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. P() polinomunda katsayısı kaçtır? 4 lü terimin. ifadesinin değeri kaçtır? 4. yy y 4y y olduğuna göre, + y toplamının değeri kaçtır?

Detaylı

A)1/2 B)2/3 C)1 D)3/2 E)2

A)1/2 B)2/3 C)1 D)3/2 E)2 SORU1: Eşit bölmeli bir çubuğa büyüklükleri 2F,F olan F1,F2 kuvvetleri şekildeki gibi dik olarak uygulanıyor. F1,F2 kuvvetlerinin O noktasına göre momentlerinin büyüklüğü sırasıyla M1,M2 olduğuna göre,m1/m2

Detaylı

KAPLAMA TEKNİKLERİ DERS NOTLARI

KAPLAMA TEKNİKLERİ DERS NOTLARI KAPLAMA TEKNİKLERİ DERS NOTLARI PVD Kaplama Kaplama yöntemleri kaplama malzemesinin bulunduğu fiziksel durum göz önüne alındığında; katı halden yapılan kaplamalar, çözeltiden yapılan kaplamalar, sıvı ya

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi FOTOGRAMETRİ I Fotogrametrik Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi Tanımlar Metrik Kameralar Mercek Kusurları

Detaylı

ANALOG LABORATUARI İÇİN BAZI GEREKLİ BİLGİLER

ANALOG LABORATUARI İÇİN BAZI GEREKLİ BİLGİLER ANALOG LABORATUARI İÇİN BAZI GEREKLİ BİLGİLER Şekil-1: BREADBOARD Yukarıda, deneylerde kullandığımız breadboard un şekli görünmektedir. Bu board üzerinde harflerle isimlendirilen satırlar ve numaralarla

Detaylı

İÇİNDEKİLER. 1 Projenin Amacı... 1. 2 Giriş... 1. 3 Yöntem... 1. 4 Sonuçlar ve Tartışma... 6. 5 Kaynakça... 7

İÇİNDEKİLER. 1 Projenin Amacı... 1. 2 Giriş... 1. 3 Yöntem... 1. 4 Sonuçlar ve Tartışma... 6. 5 Kaynakça... 7 İÇİNDEKİLER 1 Projenin Amacı... 1 2 Giriş... 1 3 Yöntem... 1 4 Sonuçlar ve Tartışma... 6 5 Kaynakça... 7 FARKLI ORTAMLARDA HANGİ RENK IŞIĞIN DAHA FAZLA SOĞURULDUĞUNUN ARAŞTIRILMASI Projenin Amacı : Atmosfer

Detaylı

Topoloji değişik ağ teknolojilerinin yapısını ve çalışma şekillerini anlamada başlangıç noktasıdır.

Topoloji değişik ağ teknolojilerinin yapısını ve çalışma şekillerini anlamada başlangıç noktasıdır. Yazıyı PDF Yapan : Seyhan Tekelioğlu seyhan@hotmail.com http://www.seyhan.biz Topolojiler Her bilgisayar ağı verinin sistemler arasında gelip gitmesini sağlayacak bir yola ihtiyaç duyar. Aradaki bu yol

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Çizgeler 7. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Çift ve Tek Dereceler Çizgeler Çift ve Tek Dereceler Soru 51 kişinin

Detaylı

MAK 4026 SES ve GÜRÜLTÜ KONTROLÜ. 6. Hafta Oda Akustiği

MAK 4026 SES ve GÜRÜLTÜ KONTROLÜ. 6. Hafta Oda Akustiği MAK 4026 SES ve GÜRÜLTÜ KONTROLÜ 6. Hafta Oda Akustiği Sesin Oda İçerisinde Yayınımı Akustik olarak sesin odada yayınımı için, sesin dalga boyunun hacmin boyutlarına göre oldukça küçük olması gerekmektedir.

Detaylı

FOTOGRAMETRİK DEĞERLENDİRME - ÇİFT FOT. DEĞ. Analog ve Analitik Stereodeğerlendirme. Yrd. Doç. Dr. Aycan M. MARANGOZ

FOTOGRAMETRİK DEĞERLENDİRME - ÇİFT FOT. DEĞ. Analog ve Analitik Stereodeğerlendirme. Yrd. Doç. Dr. Aycan M. MARANGOZ FOTOGRAMETRİ II FOTOGRAMETRİK DEĞERLENDİRME - ÇİFT FOT. DEĞ. Analog ve Analitik Stereodeğerlendirme BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

Foton Kutuplanma durumlarının Dirac yazılımı

Foton Kutuplanma durumlarının Dirac yazılımı Foton Kutuplanma durumlarının Dirac yazılımı Yatay Kutuplanmış bir foton h ve düşey kutuplanmış bir foton ise ν ile verilmiştir. Şekil I: Foton kutuplanma bazları h, ν ve +45, 45 in tanımı. ±45 boyunca

Detaylı

2. KUVVETLERİN VEKTÖREL TOPLANMASI. Hazırlayan Arş. Grv. A. E. IRMAK

2. KUVVETLERİN VEKTÖREL TOPLANMASI. Hazırlayan Arş. Grv. A. E. IRMAK 2. KUVVETLERİN VEKTÖREL TOPLANMASI AMAÇ Hazırlaan Arş. Grv. A. E. IRMAK Eş zamanlı kuvvetler etkisinde dengede bulunan bir cismin incelenmesi, analitik ve vektörel metotları kullanarak denge problemlerinin

Detaylı

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 4. Ağırlık Merkezi Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük

Detaylı

Taşıyıcı Sistem Elemanları

Taşıyıcı Sistem Elemanları BETONARME BİNALARDA OLUŞAN YAPI HASAR BİÇİMLERİ Bu çalışmanın amacı betonarme binaların taşıyıcı sistemlerinde meydana gelen hasarlar ve bu hasarların nedenleri tanıtılacaktır. Yapılarda hasarın belirtisi

Detaylı

4 ab sayısı 26 ile tam bölünebildiğine göre, kalanı 0 dır.

4 ab sayısı 26 ile tam bölünebildiğine göre, kalanı 0 dır. BÖLME, BÖLÜNEBİLME A. Bölme İşlemi A, B, C, K doğal sayılar ve B 0 olmak üzere, Bölünen A 75, bölen B 9, bölüm C 8 ve kalan K tür. Yukarıdaki bölme işlemine göre, 1. 9 yani, K B dir. işlemine bölme denir.

Detaylı

EK III POTANSİYELİN TANIMLANMASI

EK III POTANSİYELİN TANIMLANMASI EK III POTANSİYELİN TANIMLANMASI İki vektörün basamaklı (kademeli) çarpımı: Büyüklükte A ve B olan iki vektörünü ele alalım Bunların T= A.B cosθ çarpımı, tanımlama gereğince basamaklıdır. Bu vektörlerden

Detaylı

Hesapların yapılması;modül,mil çapı,rulman,feder ve yağ miktarı gibi değerlerin seçilmesi isteniyor.

Hesapların yapılması;modül,mil çapı,rulman,feder ve yağ miktarı gibi değerlerin seçilmesi isteniyor. PROJE KONUSU : İKİ KADEMELİ REDÜKTÖR. VERİLEN BİLGİLER VE İSTENENLER : Giriş gücü = P giriş =,5 kw Kademe sayısı = Giriş mil devri = n g = 750 devir/dakika.kademe dişli tipi = Düz dişli çark Çıkış mil

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-2 TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-2 TESTİ ALES İlkbahar 007 SAY DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL- TESTİ Sınavın bu testinden alacağınız standart puan, Sayısal Ağırlıklı

Detaylı

olup uygu kaması A formuna sahiptir. Müsaade edilen yüzey basıncı p em kasnak malzemesi GG ve mil malzemesi St 50 dir.

olup uygu kaması A formuna sahiptir. Müsaade edilen yüzey basıncı p em kasnak malzemesi GG ve mil malzemesi St 50 dir. ÖRNEK 1: Düz kayış kasnağı bir mil üzerine radyal yönde uygu kaması ile eksenel yönde İse bir pul ve cıvata ile sabitleştirilmiştir. İletilecek güç 1 kw ve devir sayısı n=500 D/d olup uygu kaması A formuna

Detaylı

MALZEME BİLGİSİ. Atomlar Arası Bağlar

MALZEME BİLGİSİ. Atomlar Arası Bağlar MALZEME BİLGİSİ Dr.- Ing. Rahmi ÜNAL Konu: Atomlar Arası Bağlar 1 Giriş Atomları bir arada tutarak iç yapıyı oluştururlar Malzemelerin mukavemeti, elektriksel ve ısıl özellikleri büyük ölçüde iç yapıya

Detaylı

MIT 8.02, Bahar 2002 Ödev # 2 Çözümler

MIT 8.02, Bahar 2002 Ödev # 2 Çözümler Adam S. Bolton bolton@mit.edu MIT 8.02, Bahar 2002 Ödev # 2 Çözümler 22 Şubat 2002 Problem 2.1 İçi boş bir metalik küre içerisindeki bir noktasal yükün elektrik alanı - Gauss Yasası İş Başında Bu problemi

Detaylı

İçinde x, y, z gibi değişkenler geçen önermelere açık önerme denir.

İçinde x, y, z gibi değişkenler geçen önermelere açık önerme denir. 2. Niceleme Mantığı (Yüklemler Mantığı) Önermeler mantığı önermeleri nitelik yönünden ele aldığı için önermelerin niceliğini göstermede yetersizdir. Örneğin, "Bazı hayvanlar dört ayaklıdır." ve "Bütün

Detaylı

ELEKTROSTATİK. COULOMB YASASI

ELEKTROSTATİK. COULOMB YASASI 1 III.1.ELEKTROSTATİK. COULOMB YASASI III. 1. 01. GİRİŞ Durgun haldeki elektrik yüklerini inceleyen fiziğin dalına elektrostatik denir. Manyetik olaylar M.Ö. 000 yıllarında Çinliler tarafından bilinmekteydi.

Detaylı

Atom Y Atom ap Y ısı

Atom Y Atom ap Y ısı Giriş Yarıiletken Malzemeler ve Özellikleri Doç.. Dr. Ersan KABALCI 1 Atom Yapısı Maddenin en küçük parçası olan atom, merkezinde bir çekirdek ve etrafında dönen elektronlardan oluşur. Çekirdeği oluşturan

Detaylı

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Helisel Dişli Çarklar-Flipped Classroom DİŞLİ ÇARKLAR

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Helisel Dişli Çarklar-Flipped Classroom DİŞLİ ÇARKLAR Makine Elemanları II Prof. Dr. Akgün ALSARAN Helisel Dişli Çarklar-Flipped Classroom DİŞLİ ÇARKLAR İçerik Giriş Helisel dişli geometrisi Kavrama oranı Helisel dişli boyutları Helisel dişlilerin mukavemet

Detaylı

AÖĞRENCİLERİN DİKKATİNE!

AÖĞRENCİLERİN DİKKATİNE! KİTPÇIK TÜRÜ T.C. MİLLÎ EĞİTİM BKNLIĞI ÖLÇME, DEĞERLENDİRME VE SINV HİZMETLERİ GENEL MÜDÜRLÜĞÜ 8. SINIF MTEMTİK 016 8. SINIF. DÖNEM MTEMTİK DERSİ MERKEZÎ ORTK SINVI 7 NİSN 016 Saat: 10.10 dı ve Soyadı

Detaylı

DENEY 2. Şekil 1. Çalışma bölümünün şematik olarak görünümü

DENEY 2. Şekil 1. Çalışma bölümünün şematik olarak görünümü Deney-2 /5 DENEY 2 SĐLĐNDĐR ÜZERĐNE ETKĐ EDEN SÜRÜKLEME KUVVETĐNĐN BELĐRLENMESĐ AMAÇ Bu deneyin amacı, silindir üzerindeki statik basınç dağılımını, akışkan tarafından silindir üzerine uygulanan kuvveti

Detaylı

ELEKTRİK ELEKTRONİK BİLGİSİ

ELEKTRİK ELEKTRONİK BİLGİSİ ELEKTRİK ELEKTRONİK BİLGİSİ YRD. DOÇ. DR. YAKUP EMÜL CUMHURIYET ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ Yrd. Doç. Dr. Yakup EMÜL, Elektrik Elektronik Bilgisi, Ders Notları (B02. Ohm

Detaylı

TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI.

TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI. TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNİK ARAŞTIRMA KURUMU BİLİM ADAMI YETİŞTİRME GRUBU ULUSA L İLKÖĞRETİM MA TEMATİK OLİMPİYADI DENEME SINAVI Birinci Bölüm Soru Kitapçığı Türü DENEME-7 Bu sınav iki bölümden

Detaylı

6 MADDE VE ÖZELL KLER

6 MADDE VE ÖZELL KLER 6 MADDE VE ÖZELL KLER TERMOD NAM K MODEL SORU 1 DEK SORULARIN ÇÖZÜMLER MODEL SORU 2 DEK SORULARIN ÇÖZÜMLER 1. Birbirine temasdaki iki cisimden s cakl büyük olan s verir, küçük olan s al r. ki cisim bir

Detaylı

Deprem Yönetmeliklerindeki Burulma Düzensizliği Koşulları

Deprem Yönetmeliklerindeki Burulma Düzensizliği Koşulları Deprem Yönetmeliklerindeki Burulma Düzensizliği Koşulları Prof. Dr. Günay Özmen İTÜ İnşaat Fakültesi (Emekli), İstanbul gunayozmen@hotmail.com 1. Giriş Çağdaş deprem yönetmeliklerinde, en çok göz önüne

Detaylı

YILDIZLAR NASIL OLUŞUR?

YILDIZLAR NASIL OLUŞUR? Zeki Aslan YILDIZLAR NASIL OLUŞUR? Yıldız nedir sorusunu insanlık yüz binlerce belki de milyonlarca yıldır soruyordu? Fakat yıldızların fiziksel doğası ve yaşam çevrimleri ancak 1900 lü yıllardan sonra

Detaylı

BAŞLARKEN Okul öncesi yıllar çocukların örgün eğitime başlamadan önce çok sayıda bilgi, beceri ve tutum kazandığı, hayata hazırlandığı kritik bir dönemdir. Bu yıllarda kazanılan bilgi, beceri ve tutumlar

Detaylı

ARAŞTIRMA RAPORU. Rapor No: 2012.03.08.XX.XX.XX. : Prof. Dr. Rıza Gürbüz Tel: 0.312.210 59 33 e-posta: gurbuz@metu.edu.tr

ARAŞTIRMA RAPORU. Rapor No: 2012.03.08.XX.XX.XX. : Prof. Dr. Rıza Gürbüz Tel: 0.312.210 59 33 e-posta: gurbuz@metu.edu.tr ARAŞTIRMA RAPORU (Kod No: 2012.03.08.XX.XX.XX) Raporu İsteyen : Raporu Hazırlayanlar: Prof. Dr. Bilgehan Ögel Tel: 0.312.210 41 24 e-posta: bogel@metu.edu.tr : Prof. Dr. Rıza Gürbüz Tel: 0.312.210 59 33

Detaylı

Makine Elemanları I Prof. Dr. İrfan KAYMAZ. Temel bilgiler-flipped Classroom Bağlama Elemanları

Makine Elemanları I Prof. Dr. İrfan KAYMAZ. Temel bilgiler-flipped Classroom Bağlama Elemanları Makine Elemanları I Prof. Dr. İrfan KAYMAZ Temel bilgiler-flipped Classroom Bağlama Elemanları 11/22/2014 İçerik Bağlama Elemanlarının Sınıflandırılması Şekil Bağlı bağlama elemanlarının hesabı Kuvvet

Detaylı

SAYILAR - 3. 2) Birbirinden farklı üç basamaklı üç doğal sayının toplamı 2685 tir. Bu üç sayıdan en küçüğü en az kaç olabilir?

SAYILAR - 3. 2) Birbirinden farklı üç basamaklı üç doğal sayının toplamı 2685 tir. Bu üç sayıdan en küçüğü en az kaç olabilir? SAYILAR - 3 1) (x + y) ile (y + z) aralarında asal sayılardır. 7x + 3y = 4z olduğuna göre x - z farkı kaçtır? A) -3 B) -2 C) -1 D) 0 E) 1 2) Birbirinden farklı üç basamaklı üç doğal sayının toplamı 2685

Detaylı

Uluslararası beraberliği sağlamak ve birim kargaşasını önlemek amacıyla, fizikte birçok birim sistemi kullanılmaktadır.

Uluslararası beraberliği sağlamak ve birim kargaşasını önlemek amacıyla, fizikte birçok birim sistemi kullanılmaktadır. Ölçme: Fizikte kütle, hacim, uzunluk, alan, sıcaklık, kuvt, hız, ivme, elektrik yükü, elektrik akımı gibi birçok büyüklük kullanılmaktadır. Bir büyüklüğü ölçmek için, o büyüklük cinsinden seçn değişmez

Detaylı

Prof. Dr. Ahmet TUTAR Organik Kimya Tel No: 2956040 Oda No: 813

Prof. Dr. Ahmet TUTAR Organik Kimya Tel No: 2956040 Oda No: 813 Prof. Dr. Ahmet TUTAR Organik Kimya Tel No: 2956040 Oda No: 813 Organik moleküllerin üç boyutlu yapılarını ve özelliklerini inceleyen kimya dalına Stereokimya adı verilir. Aynı molekül formülüne sahip

Detaylı

5. ÜNİTE KUMANDA DEVRE ŞEMALARI ÇİZİMİ

5. ÜNİTE KUMANDA DEVRE ŞEMALARI ÇİZİMİ 5. ÜNİTE KUMANDA DEVRE ŞEMALARI ÇİZİMİ KONULAR 1. Kumanda Devreleri 2. Doğru Akım Motorları Kumanda Devreleri 3. Alternatif Akım Motorları Kumanda Devreleri GİRİŞ Otomatik kumanda devrelerinde motorun

Detaylı

6. SINIF MATEMAT K DERS ÜN TELEND R LM fi YILLIK PLAN

6. SINIF MATEMAT K DERS ÜN TELEND R LM fi YILLIK PLAN GEOMETR Geometrik Cisimler Uzunluklar Ölçme 6. SINIF MATEMAT K DERS ÜN TELEND R LM fi YILLIK PLAN 1. Prizmalar n temel elemanlar n belirler. Tabanlar n n karfl l kl köflelerini birlefltiren ayr tlar tabanlara

Detaylı

BÖLÜM.7 İŞ VE ENERJİ

BÖLÜM.7 İŞ VE ENERJİ ÖLÜM.7 İŞ VE EERJİ 7. Giriş undan önceki bölümde, maddesel noktanın hareketi ile ilgili problemler F = a hareket denklemi kullanılarak çözülmüştü. ir F kueti etkisinde bulunan bir maddesel nokta erilmişken

Detaylı

OPERATÖRLER BÖLÜM 4. 4.1 Giriş. 4.2. Aritmetik Operatörler

OPERATÖRLER BÖLÜM 4. 4.1 Giriş. 4.2. Aritmetik Operatörler BÖLÜM 4. OPERATÖRLER 4.1 Giriş Turbo Pascal programlama dilinde de diğer programlama dillerinde olduğu gibi operatörler, yapılan işlem türüne göre aritmetik, mantıksal ve karşılaştırma operatörleri olmak

Detaylı

HEAVY DUTY CLIP-IN TAVAN MONTAJ TALİMATNAMESİ

HEAVY DUTY CLIP-IN TAVAN MONTAJ TALİMATNAMESİ HEAVY DUTY CLIP-IN TAVAN MONTAJ TALİMATNAMESİ I. Clip-In Sistem Profil ve Aksesuarları I. Montaj Öncesi ve Esnasında Dikkat Edilmesi Gereken Hususlar 1. Uygulama yapılacak mekanın boş ve temiz olması gereklidir.

Detaylı

Hızlandırıcı Fiziği-1. Veli YILDIZ (Veliko Dimov) 27.02.2014

Hızlandırıcı Fiziği-1. Veli YILDIZ (Veliko Dimov) 27.02.2014 Hızlandırıcı Fiziği-1 Veli YILDIZ (Veliko Dimov) 27.02.2014 1 İçerik Parçacıkları nasıl elde ediyoruz? Bazı dairesel hızlandırıcı çeşitleri Siklotron (cyclotron) Zayıf odaklama Sinkrotron (synchrotron)

Detaylı

En İyi Uygulamalar ve Kullanım Kılavuzu

En İyi Uygulamalar ve Kullanım Kılavuzu En İyi Uygulamalar ve Kullanım Kılavuzu Bu kılavuz, GBT En İyi Uygulamaları ve Kullanım Kılavuzu na bir tamamlayıcı kılavuz oluşturmak için tasarlanmıştır. Green Break Patlamasız Güvenlik Güç Kartuşlarının

Detaylı

ÖLÇÜ TRANSFORMATÖRLERİNİN KALİBRASYONU VE DİKKAT EDİLMESİ GEREKEN HUSUSLAR

ÖLÇÜ TRANSFORMATÖRLERİNİN KALİBRASYONU VE DİKKAT EDİLMESİ GEREKEN HUSUSLAR 447 ÖLÇÜ TRANSFORMATÖRLERİNİN KALİBRASYONU VE DİKKAT EDİLMESİ GEREKEN HUSUSLAR Hüseyin ÇAYCI Özlem YILMAZ ÖZET Yasal metroloji kapsamında bulunan ölçü aletlerinin, metrolojik ölçümleri dikkate alınmadan

Detaylı

Şaft: Şaft ve Mafsallar:

Şaft: Şaft ve Mafsallar: Şaft ve Mafsallar: Motor ve tahrik aksı farklı yerde olan araçlarda, vites kutusu ile diferansiyel arasında hareket iletimi için şaft ve açısal sapmalar için gerekli olan mafsallar karşımıza çıkmaktadır.

Detaylı

Demir, nikel, kobalt gibi maddeleri çekme özelliği gösteren cisimlere mıknatıs denir.

Demir, nikel, kobalt gibi maddeleri çekme özelliği gösteren cisimlere mıknatıs denir. MIKNATIS ve ÖZELLĐKLERĐ Magnetik adı verilen demir oksit (Fe 3 O 4 ) bileşiği tabii bir mıknatıs olarak bilinir. Demir, nikel, kobalt gibi maddeleri çekme özelliği gösteren cisimlere mıknatıs denir. Üç

Detaylı

AYDINLATMA DEVRELERİNDE KOMPANZASYON

AYDINLATMA DEVRELERİNDE KOMPANZASYON AYDINLATMA DEVRELERİNDE KOMPANZASYON Dünyamızın son yıllarda karşı karşıya kaldığı enerji krizi, araştırmacıları bir yandan yeni enerji kaynaklarına yöneltirken diğer yandan daha verimli sistemlerin tasarlanması

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI 1. BASINÇ, AKIŞ ve SEVİYE KONTROL DENEYLERİ

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI 1. BASINÇ, AKIŞ ve SEVİYE KONTROL DENEYLERİ T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI 1 BASINÇ, AKIŞ ve SEVİYE KONTROL DENEYLERİ DENEY SORUMLUSU Arş.Gör. Şaban ULUS Haziran 2012 KAYSERİ

Detaylı

BİR SAYININ ÖZÜ VE DÖRT İŞLEM

BİR SAYININ ÖZÜ VE DÖRT İŞLEM ÖZEL EGE LİSESİ BİR SAYININ ÖZÜ VE DÖRT İŞLEM HAZIRLAYAN ÖĞRENCİ: Sıla Avar DANIŞMAN ÖĞRETMEN: Gizem Günel İZMİR 2012 İÇİNDEKİLER 1. PROJENİN AMACI.. 3 2. GİRİŞ... 3 3. YÖNTEM. 3 4. ÖN BİLGİLER... 3 5.

Detaylı

2.4. ELASTĠK DEPREM YÜKLERĠNĠN TANIMLANMASI : SPEKTRAL ĠVME KATSAYISI

2.4. ELASTĠK DEPREM YÜKLERĠNĠN TANIMLANMASI : SPEKTRAL ĠVME KATSAYISI 2.4. ELASTĠK DEPREM YÜKLERĠNĠN TANIMLANMASI : SPEKTRAL ĠVME KATSAYISI Deprem yüklerinin belirlenmesi için esas alınacak olan Spektral İvme Katsayısı, A(T), Denk.(2.1) ile verilmiştir. %5 sönüm oranı için

Detaylı

SEYAHAT PERFORMANSI MENZİL

SEYAHAT PERFORMANSI MENZİL SEYAHAT PERFORMANSI MENZİL Uçakların ne kadar paralı yükü, hangi mesafeye taşıyabildikleri ve bu esnada ne kadar yakıt harcadıkları en önemli performans göstergelerinden biridir. Bir uçağın kalkış noktasından,

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207 Temel ElektronikI Doç. Dr. Hüseyin Sarı 1. Bölüm İçerik Enerji ve Enerji İletimi: İş, Enerji, Güç Elektrik Yükü Elektrik Akımı

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTROMANYETİK DALGA TEORİSİ VİZE SORULARI :.. OKUL NO ADI SOYADI

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTROMANYETİK DALGA TEORİSİ VİZE SORULARI :.. OKUL NO ADI SOYADI ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTROMANYETİK DALGA TEORİSİ VİZE SORULARI 18.04.2011 OKUL NO :.. ADI SOYADI :.. S-1 z-ekseni boyunca az yönünde 15A akı taşıya bir akı fila a ı mevcuttur. H yi Kartezyen

Detaylı

Öncelikle basın toplantımıza hoş geldiniz diyor, sizleri sevgiyle ve saygıyla selamlıyorum.

Öncelikle basın toplantımıza hoş geldiniz diyor, sizleri sevgiyle ve saygıyla selamlıyorum. Gümrük Ve Ticaret Bakanı Sn. Nurettin CANİKLİ nin Kredi Kefalet Kooperatifleri Ortaklarının Borçlarının Yapılandırılması Basın Toplantısı 24 Eylül 2014 Saat:11.00 - ANKARA Kredi Kefalet Kooperatiflerinin

Detaylı

EEM 202 DENEY 5 SERİ RL DEVRESİ

EEM 202 DENEY 5 SERİ RL DEVRESİ SERİ RL DEVRESİ 5.1 Amaçlar i, v, v R ve v L için RMS değerlerini hesaplama Seri RL devresinde voltaj ve empedans üçgenlerini tanımlama Seri RL devresinin empdansının kazanç ve faz karakteristiklerini

Detaylı

II. Bölüm HİDROLİK SİSTEMLERİN TANITIMI

II. Bölüm HİDROLİK SİSTEMLERİN TANITIMI II. Bölüm HİDROLİK SİSTEMLERİN TANITIMI 1 Güç Kaynağı AC Motor DC Motor Diesel Motor Otto Motor GÜÇ AKIŞI M i, ω i Güç transmisyon sistemi M 0, ω 0 F 0, v 0 Makina (doğrusal veya dairesel hareket) Mekanik

Detaylı

SÜREÇ YÖNETİMİ VE SÜREÇ İYİLEŞTİRME H.Ömer Gülseren > ogulseren@gmail.com

SÜREÇ YÖNETİMİ VE SÜREÇ İYİLEŞTİRME H.Ömer Gülseren > ogulseren@gmail.com SÜREÇ YÖNETİMİ VE SÜREÇ İYİLEŞTİRME H.Ömer Gülseren > ogulseren@gmail.com Giriş Yönetim alanında yaşanan değişim, süreç yönetimi anlayışını ön plana çıkarmıştır. Süreç yönetimi; insan ve madde kaynaklarını

Detaylı

TEMEL KAVRAMLAR MATEMAT K. 6. a ve b birer do al say r. a 2 b 2 = 19 oldu una göre, a + 2b toplam kaçt r? (YANIT: 28)

TEMEL KAVRAMLAR MATEMAT K. 6. a ve b birer do al say r. a 2 b 2 = 19 oldu una göre, a + 2b toplam kaçt r? (YANIT: 28) TEMEL KAVRAMLAR 6. a ve b birer do al say r. a b = 19 oldu una göre, a + b toplam (YANIT: 8) 1. ( 4) ( 1) 6 1 i leminin sonucu (YANIT: ). ( 6) ( 3) ( 4) ( 17) ( 5) :( 11) leminin sonucu (YANIT: 38) 7.

Detaylı

7. SINIF MATEMATİK TESTİ A. 1. Yandaki eşkenar dörtgensel bölge şeklindeki uçurtma I, II, III ve IV nolu

7. SINIF MATEMATİK TESTİ A. 1. Yandaki eşkenar dörtgensel bölge şeklindeki uçurtma I, II, III ve IV nolu . Yandaki eşkenar dörtgensel bölge şeklindeki uçurtma I, II, III ve IV nolu çıtaların şekildeki gibi birleştirilmesi ile oluşturulmuştur. Aşağıdakilerden hangisindeki çıtalar birbirinin orta dikmesidir?

Detaylı

KUVVET VE ÖZELLiKLERi BÖLÜM 2

KUVVET VE ÖZELLiKLERi BÖLÜM 2 UVVET VE ÖZEiEi BÖÜ 2 ODE SOU 1 DE SOUAI ÇÖZÜE 1. Vektörel büyüklükler cebirsel işlemlerle ifade edilemez. I. ifade yanlıştır. uvvet vektörel bir büyüklük olduğunda yönü değişirse özelliği değişmiş olur.

Detaylı

FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım

FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım devreleri Manyetik alanlar Akım nedeniyle oluşan manyetik

Detaylı

Para Arzı. Dr. Süleyman BOLAT

Para Arzı. Dr. Süleyman BOLAT Para Arzı 1 Para Arzı Bir ekonomide dolaşımda mevcut olan para miktarına para arzı (money supply) denir. Kağıt para sisteminin günümüzde tüm ülkelerde geçerli olan itibari para uygulamasında, paranın hangi

Detaylı

MAKİNE VE MOTOR DERS NOTLARI 1.HAFTA

MAKİNE VE MOTOR DERS NOTLARI 1.HAFTA MAKİNE VE MOTOR DERS NOTLARI 1.HAFTA Hazırlayan: Öğr. Gör. Tuğberk ÖNAL MALATYA 2016 DERS İLE İLGİ GENEL HUSUSLAR Ders 1 Vize ve 1 final sınavı yapılarak değerlendirilecektir. Vize sınavının %40 ı ve final

Detaylı

DENEY Kum Kalıba Döküm ve Besleyici Hesabı 4 Doç.Dr. Ahmet ÖZEL, Yrd.Doç.Dr. Mustafa AKÇİL, Yrd.Doç.Dr. Serdar ASLAN DENEYE HESAP MAKİNASI İLE GELİNİZ

DENEY Kum Kalıba Döküm ve Besleyici Hesabı 4 Doç.Dr. Ahmet ÖZEL, Yrd.Doç.Dr. Mustafa AKÇİL, Yrd.Doç.Dr. Serdar ASLAN DENEYE HESAP MAKİNASI İLE GELİNİZ DENEY NO Kum Kalıba Döküm ve Besleyici Hesabı 4 Doç.Dr. Ahme ÖZEL, Yrd.Doç.Dr. Musafa AKÇİL, Yrd.Doç.Dr. Serdar ASLAN DENEYE HESAP MAKİNASI İLE GELİNİZ Deney aşamaları Tahmini süre (dak) 1) Ön bilgi kısa

Detaylı

Sınav Süresi 85 Dakikadır

Sınav Süresi 85 Dakikadır Sınav Süresi 85 Dakikadır ŞEFKAT İMFO 7. SINIF SORU KİTAPÇIĞI ORTAOKUL 7. SINIF SORULARI ŞEFKAT KOLEJİ İMFO-2014 7.SINIF FEN SORULARI 1. K(Ebonit) L(Yün) Elektroskop 3. İletkenlerin direnci ile ilgili

Detaylı

Bu iletkenin uçları arasında gerilim oluşturmak için pil, akümülatör, jeneratör, dinamo gibi araçlar kullanılır.

Bu iletkenin uçları arasında gerilim oluşturmak için pil, akümülatör, jeneratör, dinamo gibi araçlar kullanılır. ELEKTRİK VE MANYETİZMA ELEKTRİK Odamızda bulunan elektrik düğmesine bastığımızda lambamız yanar. Elektrik ocağının fişini prize takıp açtığımızda ocağın ısındığını görürüz. O halde elektrik; etkisini gerek

Detaylı

BÖLÜM 3 FREKANS DAĞILIMLARI VE FREKANS TABLOLARININ HAZIRLANMASI

BÖLÜM 3 FREKANS DAĞILIMLARI VE FREKANS TABLOLARININ HAZIRLANMASI 1 BÖLÜM 3 FREKANS DAĞILIMLARI VE FREKANS TABLOLARININ HAZIRLANMASI Ölçme sonuçları üzerinde yani amaçlanan özelliğe yönelik gözlemlerden elde edilen veriler üzerinde yapılacak istatistiksel işlemler genel

Detaylı

0 dan matematik. Bora Arslantürk. çalışma kitabı

0 dan matematik. Bora Arslantürk. çalışma kitabı 0 dan matematik 0 dan matematik 1 çalışma kitabı Sıfırdan başlanarak matematik ile ilgili sıkıntı yaşayan herkese hitap etmesi, Akıllı renklendirme ile göz yoran değil ayrım yapmayı, istenileni bulmayı

Detaylı

DENEY 2: PROTOBOARD TANITIMI VE DEVRE KURMA

DENEY 2: PROTOBOARD TANITIMI VE DEVRE KURMA A. DENEYİN AMACI : Protoboard kullanımını öğrenmek ve protoboard üzerinde basit direnç devreleri kurmak. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. DC güç kaynağı, 2. Multimetre, 3. Protoboard, 4. Değişik

Detaylı

F Z K A IRLIK MERKEZ ÖRNEK 1 : ÇÖZÜM 1: Bir cisim serbestçe dönebilece i bir noktadan as l rsa, düfley do rultu daima a rl k merkezinden

F Z K A IRLIK MERKEZ ÖRNEK 1 : ÇÖZÜM 1: Bir cisim serbestçe dönebilece i bir noktadan as l rsa, düfley do rultu daima a rl k merkezinden F Z A IRI EREZ ÖRNE 1 : I m II 2m ütleleri m, 2m olan eflit bölmeli, düzgün ve türdefl I ve II levhalar flekildeki gibi birbirine tutturularak noktas ndan bir iple as l yor. Bu levhalar afla dakilerden

Detaylı

ÖĞRENME FAALİYETİ 1 ÖĞRENME FAALİYETİ 1 1. KARE VİDA AÇMA

ÖĞRENME FAALİYETİ 1 ÖĞRENME FAALİYETİ 1 1. KARE VİDA AÇMA ÖĞRENME FAALİYETİ 1 ÖĞRENME FAALİYETİ 1 AMAÇ Kare vida çekme işlemlerini yapabileceksiniz. ARAŞTIRMA Kare vidaların kullanım alanları hakkında bilgi toplayınız. 1. KARE VİDA AÇMA Diş dolusu ve diş boşluğu

Detaylı