Yapay Sinir Ağlarına Giriş. Dr. Hidayet Takçı

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Yapay Sinir Ağlarına Giriş. Dr. Hidayet Takçı"

Transkript

1 Yapay Sinir Ağlarına Giriş Dr. Hidayet Takçı

2 Giriş Neden Yapay Sinir Ağları (YSA) Bazı işler insanlar tarafından kolaylıkla yerine getirilirken mevcut bilgisayarlar ile yerine getirilmesi oldukça zordur. Örüntü tanıma (el yazısı ve imza tanıma) Đçerik adreslemeli geri çağırma Yakınsama, genel kanı muhakemesi (sürüş, piyano çalma) Bu görevler deneyim tabanlıdır ve tanımlanmaları zordur. 2 Yapay Sinir Ağları ve Uygulamaları - Hidayet Takçı

3 Giriş Von Neumann Makinesi 1. Bir veya birkaç yüksek hızlı işlemci 2. Đletim için bir veya birkaç tane paylaşımlı, yüksek hızlı veri iletim kanalı 3. Adreslerle idare edilen sıralı bellek 4. Problem çözme bilgisi hesaplama bileşeninden ayrılır 5. Yeni durumlara uyum sağlama zordur Đnsan Beyni Daha düşük hızlı ama çok sayıda işlemci (10 11 civarında) 2. Düşük hızlı çok sayıda iletim kanalı (10 15 civarında) 3. Đçerik adreslemeli geri çağırma 4. Problem çözme bilgisi nöronların bağlantısında yer alır 5. Bağlantıların değiştirilmesi ile adaptasyon sağlanabilir 3 Yapay Sinir Ağları ve Uygulamaları - Hidayet Takçı

4 Biyolojik sinir hücresi (nöron) Her bir nöron (neuron) bir gövde (body), bir akson (axon) ve çok sayıda sinir ucuna (dendrites) sahiptir. Đki durumdan birinde olabilir : ateşleme(firing) ve sönme(rest). Eğer gelen toplam uyarım eşik değerini aşarsa nöron ateşleme pozisyonuna geçer. Synapse: bir nöronun aksonu ile diğerinin sinir ucu arasındaki ince aralıktır. Sinyal değişimi yapılır 4 Yapay Sinir Ağları ve Uygulamaları - Hidayet Takçı

5 Giriş Bir YSA nedir? Beynin çalışma yöntemini modellemek için tasarlanan bir sistemdir. Düğümlerin bir kümesidir Her bir düğümün giriş ve çıkışı vardır. Her bir düğüm onun düğüm fonksiyonu tarafından basit bir hesaplama yerine getirir. Düğümler arasında ağırlıklandırılmış bağlantılar (Weighted connections) vardır. Düğümlerin bağlantışekli ağın mimarisini verir. 5 Yapay Sinir Ağları ve Uygulamaları - Hidayet Takçı

6 Giriş Yapay Sinir Ağı Düğümler giriş çıkış düğüm fonksiyonu Bağlantılar bağlantı gücü Biyolojik Sinir Ağı Hücre gövdesi diğer nöronlardan gelen sinyaller yanma(firing) işlemi yanma mekanizması Sinapsisler sinaptik güç Yüksek seviyede paralellik ile, nöron seviyesindeki basit yerel hesaplamalar ağ seviyesinde bir araya getirilerek toplu sonuçların elde edilmesi sağlanır. Hata toleransı vardır, hatayı en uygunşekilde azaltır. Öğrenim ve adaptasyon yeteneği yüksektir. 6 Yapay Sinir Ağları ve Uygulamaları - Hidayet Takçı

7 Tarihçe Pitts & McCulloch (1943) Biyolojik nöronların ilk matematiksel modeli Bütün ikili (boolean) işlemler nöron benzeri düğümler ile gerçeklenebilir (farklı eşik değerleri ile) Genel amaçlı hesaplama içinvon Neumann modeline rakip Hebb (1949) Öğrenim için Hebbian kuralı : her ne zaman i ve j aktive edilirse; i ve j nöronları arasındaki bağlantı gücü artar. Veya her ne zaman eşzamanlı olarak i ve j nöronlarının her ikisi birden ON veya OFF yapılırsa i ve j düğümleri arasındaki bağlantı gücü artar. 7 Yapay Sinir Ağları ve Uygulamaları - Hidayet Takçı

8 Tarihçe Đlk yükseliş (50 ler 60 başları) Rosenblatt (1958) Perceptron: basit doğrusal örüntü sınıflandırma problemlerinde x 1 x 2 kullanılmıştır. Perceptron öğrenim kuralı Perceptron convergence teoremi: Perceptron ile sunulabilen her şey öğrenebilir Widrow and Hoff (1960, 1962) gradient descent (eğim düşümü) tabanlı öğrenim kuralı x n 8 Yapay Sinir Ağları ve Uygulamaları - Hidayet Takçı

9 Tarihçe Gerileme (60 ortaları 70 sonları) Perceptron modeli ile ilgili ciddi problemler ortaya çıkmıştır (Minsky s book 1969) Single layer perceptrons; XOR gibi basit fonksiyonları sunamaz (öğrenemez) Ölçekleme problemi: bağlantı ağırlıkları sonsuz olarak büyüyebilir Đlk iki problemin 80 li yıllardaki çabalarla üstesinden gelinmiştir, fakat ölçekleme problemi hala devam etmektedir. 9 Yapay Sinir Ağları ve Uygulamaları - Hidayet Takçı

10 Tarihçe Yeniden büyük ilgi (80 li yıllar ve sonrası) Yeni teknikler Çok katmanlı feed forward ağlar için Back-propagation öğrenim Termodinamik modeller (Hopfield net, Boltzmann machine, v.s.) Denetimsiz öğrenim Etkileyici uygulamalar (karakter tanıma, ses tanıma, metinden sese dönüşüm, proses kontrol, ortak bellek, v.s.) Geleneksel yaklaşımlar zor işlerle yeniden mücadele etmeye başlamıştır 10 Yapay Sinir Ağları ve Uygulamaları - Hidayet Takçı

11 YSA Nöron Modelleri Her bir nöronun diğer düğümlerden gelen bir veya daha fazla girişi ve diğer düğümlere giden bir çıkışı vardır. Giriş/çıkış değerleri Binary veya unipolar {0, 1} Bipolar {-1, 1} Sürekli olabilir. Bir düğüme bütün girişler aynı anda gelir ve çıktı hesap edilene kadar aktive edilmiş olarak kalırlar. Linklerle ağırlıklar uyumludur f ( net) is the node function n net w i x is most popular = i =1 i 11 Yapay Sinir Ağları ve Uygulamaları - Hidayet Takçı Genel nöron modeli Ağırlıklı giriş toplamı

12 Node Function Identity Constant function : f ( net) = net. function : f ( net) = c. Step (threshold) function c eşik olarak adlandırılır Ramp function Step function Ramp function 12 Yapay Sinir Ağları ve Uygulamaları - Hidayet Takçı

13 Node Function Sigmoid function S-şekillidir Sürekli ve her bir değer diğerinden farklı Bazı noktalarda (net = c) dönüşlü olarak simetriktir Asimptotik olarak doygun noktalara yaklaşır Örnekler: f(net) = 1 / (1+e -net ) Sigmoid function y = 0 ve z = 0 olduğunda: a = 0, b = 1, c = 0. y = 0 ve z = -0.5 olduğunda a = -0.5, b = 0.5, c = 0. Daha büyük x daha dik eğriler verir 13 Yapay Sinir Ağları ve Uygulamaları - Hidayet Takçı

14 Node Function Gaussian function Çan şekillidir (radial basis) Sürekli net büyük olduğunda f(net) asimptotik olarak 0 veya bazı sabit değerlere yakınsar Tekil maksimum (net = µ) µ Normal dağılımda; µ=0 ve sigma=1 olarak alınır. Gaussian function 14 Yapay Sinir Ağları ve Uygulamaları - Hidayet Takçı

15 Network Architecture (Asimetrik) Tamamen Bağlı Ağlar Her bir düğüm diğer düğüm ile bağlıdır Bağlantı güçlendirici, zayıflatıcı, veya etkisiz ( 0) olabilir. Çok genel bir mimaridir Simetrik, tamamen bağlı ağlar: ağırlıklar simetriktir (w ij = w ji ) Input nodes: ortamdan girişi alır Output nodes: ortama sinyalleri gönderir Hidden nodes: ortam ile doğrudan etkileşim yoktur 15 Yapay Sinir Ağları ve Uygulamaları - Hidayet Takçı

16 Network Architecture Katmanlı Ağlar Düğümler katman adı verilen altkümelere bölünür j > k ise j katmanındaki düğümlerden k katmanındakilere - doğru- bağlantı yoktur. Ortam girişleri katman 0 daki düğümlere uygulanır (input layer). Giriş katmanındaki düğümler hiçbir hesaplama yapılmadan taşıyıcılarda tutulur (Örn, onları düğüm fonksiyonları identity fonksiyondur) 16 Yapay Sinir Ağları ve Uygulamaları - Hidayet Takçı

17 Network Architecture Đleri Beslemeli Ağlar i katmanındaki bir düğümden sadece i+1 katmanındaki düğümlere bağlantıya izin verilir. En geniş kullanıma sahip mimaridir. Conceptually, nodes at higher levels successively abstract features from preceding layers 17 Yapay Sinir Ağları ve Uygulamaları - Hidayet Takçı

18 Network Architecture Çevrimi Olmayan Ağlar Bağlantılar doğrudan çevrimsel formda değildir. Çok katmanlı ileri beslemeli ağlar çevrimsel olmayan ağlardır Recurrent Ağlar Doğrudan çevrimli ağlardır Çevrimsel olmayan ağlara oranla analiz edilmesi daha zordur Modüler Ağlar Eğer, bir ağın yapması gereken işlemler birbirleriyle de haberleşmeksizin iki yada daha fazla modüle (alt yapıya) ayrılabiliyorsa bu ağlar modül YSA ları olarak söylenir Modüller arasında seyrek bağlantılar vardır 18 Yapay Sinir Ağları ve Uygulamaları - Hidayet Takçı

19 Önemli Not Ders notlarının hazırlanmasında; başta Internet olmak üzere çeşitli kaynaklardan faydalanılmış ve bize ait bir son ürün ortaya konmuştur. Faydalandığımız kaynaklar için herkese teşekkürler. Bu kaynağı değiştirmeden kullanacakların ise referans göstererek çalışmamızı kullanmalarında bir sakınca yoktur. Dr. Hidayet Takçı GYTE Bilgisayar Müh. Böl. Öğretim Elemanı 19 Yapay Sinir Ağları ve Uygulamaları - Hidayet Takçı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Yapay Sinir Ağları (Artificial Neural Network) Doç.Dr. M. Ali Akcayol Yapay Sinir Ağları Biyolojik sinir sisteminden esinlenerek ortaya çıkmıştır. İnsan beyninin öğrenme, eski

Detaylı

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ YAPAY SİNİR AĞLARI Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ İÇERİK Sinir Hücreleri Yapay Sinir Ağları Yapısı Elemanları Çalışması Modelleri Yapılarına Göre Öğrenme Algoritmalarına Göre Avantaj ve

Detaylı

Çok Katmanlı Algılayıcılar. Dr. Hidayet Takçı

Çok Katmanlı Algılayıcılar. Dr. Hidayet Takçı Çok Katmanlı Algılayıcılar Dr. Hidayet Takçı htakci@gmail.com http://htakci.sucati.org Perceptron Sınıflandırması Perceptronlar sadece doğrusal sınıflandırma yapabilir. 2 Yapay Sinir Ağları ve Uygulamaları

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Şekil Tanıma Final Projesi. Selçuk BAŞAK 08501008

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Şekil Tanıma Final Projesi. Selçuk BAŞAK 08501008 Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Şekil Tanıma Final Projesi Selçuk BAŞAK 08501008 Not: Ödevi hazırlamak için geliştirdiğim uygulama ve kaynak kodları ektedir.

Detaylı

Dr.Eyyüp GÜLBANDILAR Dr.Eyyüp GÜLBANDILAR

Dr.Eyyüp GÜLBANDILAR Dr.Eyyüp GÜLBANDILAR YAPAY SĐNĐR AĞLARI BĐYOLOJĐK SĐNĐR SĐSTEMĐ Biyolojik sinir sistemi, merkezinde sürekli olarak bilgiyi alan, yorumlayan ve uygun bir karar üreten beynin (merkezi sinir ağı) bulunduğu 3 katmanlı bir sistem

Detaylı

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI Lineer Ayrılabilen Paternlerin Yapay Sinir Ağı ile Sınıflandırılması 1. Biyolojik Sinirin Yapısı Bilgi işleme

Detaylı

Yapay Sinir Ağları. (Artificial Neural Networks) DOÇ. DR. ERSAN KABALCI E S N E K H E S A P L A M A Y Ö N T E M L E R İ - II

Yapay Sinir Ağları. (Artificial Neural Networks) DOÇ. DR. ERSAN KABALCI E S N E K H E S A P L A M A Y Ö N T E M L E R İ - II Yapay Sinir Ağları (Artificial Neural Networks) J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - II DOÇ. DR. ERSAN KABALCI Yapay Sinir Ağları Tarihçe Biyolojik

Detaylı

GÖRSEL YAZILIM GELİŞTİRME ORTAMI İLE BERABER BİR YAPAY SİNİR AĞI KÜTÜPHANESİ TASARIMI VE GERÇEKLEŞTİRİMİ

GÖRSEL YAZILIM GELİŞTİRME ORTAMI İLE BERABER BİR YAPAY SİNİR AĞI KÜTÜPHANESİ TASARIMI VE GERÇEKLEŞTİRİMİ EGE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ (YÜKSEK LİSANS TEZİ) GÖRSEL YAZILIM GELİŞTİRME ORTAMI İLE BERABER BİR YAPAY SİNİR AĞI KÜTÜPHANESİ TASARIMI VE GERÇEKLEŞTİRİMİ Ahmet Cumhur KINACI Bilgisayar Mühendisliği

Detaylı

Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri Veri modelleri, veriler arasında ilişkisel ve sırasal düzeni gösteren kavramsal tanımlardır. Her program en azından bir veri modeline dayanır. Uygun

Detaylı

YAPAY SĠNĠR AĞLARININ EKONOMĠK TAHMĠNLERDE KULLANILMASI

YAPAY SĠNĠR AĞLARININ EKONOMĠK TAHMĠNLERDE KULLANILMASI P A M U K K A L E Ü N İ V E R S İ T E S İ M Ü H E N D İ S L İ K F A K Ü L T E S İ P A M U K K A L E U N I V E R S I T Y E N G I N E E R I N G C O L L E G E M Ü H E N D ĠS L ĠK B ĠL ĠM L E R ĠD E R G ĠS

Detaylı

NÖRAL SİSTEMLERE GİRİŞ. Ders Notu

NÖRAL SİSTEMLERE GİRİŞ. Ders Notu NÖRAL SİSTEMLERE GİRİŞ Ders Notu 1 1. GİRİŞ... 4 2. ZEKA... 5 3. YAPAY ZEKA... 5 4. YAPAY ZEKA NIN GELİŞİM SÜRECİ... 5 5. YAPAY ZEKANIN AMAÇLARI... 7 6. YSA TESTLERİ... 7 6.1 Turing Testi... 7 6.2 Çin

Detaylı

WEB SAYFALARINA İLİŞKİN YAPAY SİNİR AĞLARI İLE SINIFLANDIRMA YÖNTEMİ

WEB SAYFALARINA İLİŞKİN YAPAY SİNİR AĞLARI İLE SINIFLANDIRMA YÖNTEMİ WEB SAYFALARINA İLİŞKİN YAPAY SİNİR AĞLARI İLE SINIFLANDIRMA YÖNTEMİ Doç.Dr Erhan Akyazı Marmara Üniversitesi Bilişim Bölümü eakyazi@marmara.edu.tr Şafak Kayıkçı Marmara Üniversitesi Bilişim Bölümü safak@safakkayikci.com

Detaylı

T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ İŞLETME ANABİLİM DALI YAPAY SİNİR AĞLARI YÖNTEMİ İLE TAHMİN (İMKB DE BİR UYGULAMA)

T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ İŞLETME ANABİLİM DALI YAPAY SİNİR AĞLARI YÖNTEMİ İLE TAHMİN (İMKB DE BİR UYGULAMA) T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ İŞLETME ANABİLİM DALI YÜKSEK LİSANS TEZİ YAPAY SİNİR AĞLARI YÖNTEMİ İLE TAHMİN (İMKB DE BİR UYGULAMA) DANIŞMAN Doç. Dr. İbrahim GÜNGÖR HAZIRLAYAN

Detaylı

Arş.Gör.Muhammet Çağrı Gencer Bilgisayar Mühendisliği KTO Karatay Üniversitesi 2015

Arş.Gör.Muhammet Çağrı Gencer Bilgisayar Mühendisliği KTO Karatay Üniversitesi 2015 Arş.Gör.Muhammet Çağrı Gencer Bilgisayar Mühendisliği KTO Karatay Üniversitesi 2015 KONU BAŞLIKLARI 1. Yazılım Mimarisi nedir? 2. Yazılımda Karmaşıklık 3. Üç Katmanlı Mimari nedir? 4. Üç Katmanlı Mimari

Detaylı

BSM 532 KABLOSUZ AĞLARIN MODELLEMESİ VE ANALİZİ OPNET MODELER

BSM 532 KABLOSUZ AĞLARIN MODELLEMESİ VE ANALİZİ OPNET MODELER BSM 532 KABLOSUZ AĞLARIN MODELLEMESİ VE ANALİZİ OPNET MODELER Yazılımı ve Genel Özellikleri Doç.Dr. Cüneyt BAYILMIŞ Kablosuz Ağların Modellemesi ve Analizi 1 OPNET OPNET Modeler, iletişim sistemleri ve

Detaylı

BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BENZER SÜREÇLERDE ÜRETİLEN ÜRÜNLER İÇİN YAPAY ZEKA İLE ZAMAN TAHMİNİ SONER ŞÜKRÜ ALTIN

BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BENZER SÜREÇLERDE ÜRETİLEN ÜRÜNLER İÇİN YAPAY ZEKA İLE ZAMAN TAHMİNİ SONER ŞÜKRÜ ALTIN BAŞKENT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BENZER SÜREÇLERDE ÜRETİLEN ÜRÜNLER İÇİN YAPAY ZEKA İLE ZAMAN TAHMİNİ SONER ŞÜKRÜ ALTIN YÜKSEK LİSANS TEZİ 2011 BENZER SÜREÇLERDE ÜRETİLEN ÜRÜNLER İÇİN YAPAY

Detaylı

Dağıtık Ortak Hafızalı Çoklu Mikroişlemcilere Sahip Optik Tabanlı Mimari Üzerinde Dizin Protokollerinin Başarım Çözümlemesi

Dağıtık Ortak Hafızalı Çoklu Mikroişlemcilere Sahip Optik Tabanlı Mimari Üzerinde Dizin Protokollerinin Başarım Çözümlemesi Dağıtık Ortak Hafızalı Çoklu Mikroişlemcilere Sahip Optik Tabanlı Mimari Üzerinde Dizin Protokollerinin Başarım Çözümlemesi İpek ABASIKELEŞ, M.Fatih AKAY Bilgisayar Mühendisliği Bölümü Çukurova Üniversitesi

Detaylı

Data Communications. Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü. 8. Anahtarlama

Data Communications. Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü. 8. Anahtarlama Veri İletişimi Data Communications Suat ÖZDEMİR Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü 8. Anahtarlama Konular Giriş Circuit switched (devreanahtarlamalı) ağlar Datagram ağlar Virtual circuit

Detaylı

Bölüm 8 : PROTOKOLLER VE KATMANLI YAPI: OSI, TCP/IP REFERANS MODELLERİ.

Bölüm 8 : PROTOKOLLER VE KATMANLI YAPI: OSI, TCP/IP REFERANS MODELLERİ. Bölüm 8 : PROTOKOLLER VE KATMANLI YAPI: OSI, TCP/IP REFERANS MODELLERİ. Türkçe (İngilizce) karşılıklar Servis Kalitesi (Quality of Service, QoS) Uçtan-uca (end-to-end) Düğümden-ağa (host-to-network) Bölüm

Detaylı

DOSYA ORGANİZASYONU. Ağaç Yapıları ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

DOSYA ORGANİZASYONU. Ağaç Yapıları ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DOSYA ORGANİZASYONU ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Ağaç Yapıları Sunum planı Genel kavramlar İkili ağaç İkili arama ağacı AVL Tree B-Tree Genel Kavramlar Bir ağaç yapısı

Detaylı

İŞ SIRALAMA. İş Sıralamanın Amaçları. İş Sıralama Türleri - 1. İş Sıralama. İş Sıralama Türleri - 2

İŞ SIRALAMA. İş Sıralamanın Amaçları. İş Sıralama Türleri - 1. İş Sıralama. İş Sıralama Türleri - 2 İş Sıralamanın Amaçları İŞ SIRALAMA İşleri zaman içinde işlemciye yerleştirmek Sistem hedeflerine uygun olarak: İşlemci verimi Cevap süresi (response time) Debi (throughput) 23 İş Sıralama İş Sıralama

Detaylı

ÖZET Yüksek Lisans Tezi YAPAY SİNİR AĞLARI İLE KONUŞMA TANIMA Gülin DEDE Ankara Üniversitesi Fen Bilimleri Enstitüsü Elektronik Mühendisliği Anabilim

ÖZET Yüksek Lisans Tezi YAPAY SİNİR AĞLARI İLE KONUŞMA TANIMA Gülin DEDE Ankara Üniversitesi Fen Bilimleri Enstitüsü Elektronik Mühendisliği Anabilim ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ YAPAY SİNİR AĞLARI İLE KONUŞMA TANIMA Gülin DEDE ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI ANKARA 2008 Her hakkı saklıdır ÖZET Yüksek Lisans Tezi

Detaylı

İŞLETİM SİSTEMLERİNE GİRİŞ. Modern bilgisayar çalışma prensipleri, Von Neumann ın 1945 de geliştirdiği

İŞLETİM SİSTEMLERİNE GİRİŞ. Modern bilgisayar çalışma prensipleri, Von Neumann ın 1945 de geliştirdiği İŞLETİM SİSTEMLERİNE GİRİŞ Von Neumann Mimarisi Modern bilgisayar çalışma prensipleri, Von Neumann ın 1945 de geliştirdiği mimariyi temel almaktadır. Merkezi İşlem Birimi Aritmetik ve Mantık Birimi Kontrol

Detaylı

İĞNECİKLİ SİNİR AĞLARI

İĞNECİKLİ SİNİR AĞLARI İSTANBUL AYDIN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Yüksek Lisans Semineri İĞNECİKLİ SİNİR AĞLARI Peren Jerfi CANATALAY Danışman: Prof. Dr.Hasan Hüseyin BALIK İstanbul, Mayıs 2014 İÇİNDEKİLER.... Sayfa

Detaylı

TÜRKĐYE CUMHURĐYETĐ ANKARA ÜNĐVERSĐTESĐ SAĞLIK BĐLĐMLERĐ ENSTĐTÜSÜ

TÜRKĐYE CUMHURĐYETĐ ANKARA ÜNĐVERSĐTESĐ SAĞLIK BĐLĐMLERĐ ENSTĐTÜSÜ TÜRKĐYE CUMHURĐYETĐ ANKARA ÜNĐVERSĐTESĐ SAĞLIK BĐLĐMLERĐ ENSTĐTÜSÜ YAPAY SĐNĐR AĞLARININ ĐNCELENMESĐ VE SIRT AĞRISI OLAN BĐREYLER ÜZERĐNDE BĐR UYGULAMASI Burcu KARAKAYA BĐYOĐSTATĐSTĐK ANABĐLĐM DALI YÜKSEK

Detaylı

Çekişme Temelli Ortam Erişimi Algoritmaları Dilim Atama İhtimalleri Karşılaştırması

Çekişme Temelli Ortam Erişimi Algoritmaları Dilim Atama İhtimalleri Karşılaştırması Çekişme Temelli Ortam Erişimi Algoritmaları Dilim Atama İhtimalleri Karşılaştırması Hasan Ferit Enişer İlker Demirkol Boğaziçi Üniversitesi / Türkiye Univ. Politecnica de Catalunya / İspanya 1. MOTİVASYON

Detaylı

MİKROŞERİT HAT ENDÜKTANS BÜYÜKLÜĞÜNÜN BİLGİ TABANLI YAPAY SİNİR AĞLARI ile MODELLENMESİ

MİKROŞERİT HAT ENDÜKTANS BÜYÜKLÜĞÜNÜN BİLGİ TABANLI YAPAY SİNİR AĞLARI ile MODELLENMESİ MİKROŞERİT HAT ENDÜKTANS BÜYÜKLÜĞÜNÜN BİLGİ TABANLI YAPAY SİNİR AĞLARI ile MODELLENMESİ Levent AKSOY e-posta: levent@ehb.itu.edu.tr Neslihan Serap ŞENGÖR e-posta: neslihan@ehb.itu.edu.tr Elektronik ve

Detaylı

FPGA ĐLE YAPAY SĐNĐR AĞI EĞĐTĐMĐNĐN DONANIMSAL GERÇEKLENMESĐ. Mehmet Ali ÇAVUŞLU

FPGA ĐLE YAPAY SĐNĐR AĞI EĞĐTĐMĐNĐN DONANIMSAL GERÇEKLENMESĐ. Mehmet Ali ÇAVUŞLU FPGA ĐLE YAPAY SĐNĐR AĞI EĞĐTĐMĐNĐN DONANIMSAL GERÇEKLENMESĐ Mehmet Ali ÇAVUŞLU Anahtar Kelimeler: FPGA, Yapay Sinir Ağları, VHDL, Paralel Programlama, Kayan Noktalı Aritmetik Özet Yapay sinir ağlarının

Detaylı

Yapay Sinir Ağlarına Giriş

Yapay Sinir Ağlarına Giriş Yapay Sinir Ağlarına Giriş Neslihan Serap Şengör Oda no: 1107 Tel: 0212 285 36 10 e-mail: sengorn@itu.edu.tr Tuba Ayhan Oda no: 1109 Tel: 0212 285 36 17 e-mail: ayhant@itu.edu.tr Ders Hakkında Yarıyıliçi

Detaylı

İLERİ ALGORİTMA ANALİZİ-5 YAPAY SİNİR AĞLARI

İLERİ ALGORİTMA ANALİZİ-5 YAPAY SİNİR AĞLARI İLERİ LGORİTM NLİZİ-5. Giriş YPY SİNİR ĞLRI Yapay sinir ağları (YS), insan beyninin özelliklerinden olan öğrenme yolu ile yeni bilgiler türetebilme, yeni bilgiler oluşturabilme ve keşfedebilme gibi yetenekleri,

Detaylı

Bilgisayımsal SinirBilim Computational Neuroscience. Adnan Kurt

Bilgisayımsal SinirBilim Computational Neuroscience. Adnan Kurt Bilgisayımsal SinirBilim Computational Neuroscience Adnan Kurt İÜTF Fizyoloji AD 07 Mayıs 2010 1 Neler Anlatacaktım? Beyin Modelleri Sinir Hücresi Modelleri Model Yazılımlarının Türleri Nörofizyolojik

Detaylı

NETWORK BÖLÜM-5 OSI KATMANLARI. Öğr. Gör. MEHMET CAN HANAYLI CELAL BAYAR ÜNİVERSİTESİ AKHİSAR MESLEK YÜKSEKOKULU 1/27

NETWORK BÖLÜM-5 OSI KATMANLARI. Öğr. Gör. MEHMET CAN HANAYLI CELAL BAYAR ÜNİVERSİTESİ AKHİSAR MESLEK YÜKSEKOKULU 1/27 NETWORK BÖLÜM- OSI KATMANLARI CELAL BAYAR ÜNİVERSİTESİ AKHİSAR MESLEK YÜKSEKOKULU Öğr. Gör. MEHMET CAN HANAYLI / OSI Modeli İletişimin genel modeli OSI referans modeli OSI modeli ile TCP/IP modelinin karşılaştırılması

Detaylı

T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI. Doç.Dr. Necaattin BARIŞÇI FİNAL PROJESİ

T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI. Doç.Dr. Necaattin BARIŞÇI FİNAL PROJESİ T.C. KIRIKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI Doç.Dr. Necaattin BARIŞÇI YAPAY SİNİR AĞLARI İLE KORONER ARTER HASTALIĞI RİSK Öğrenci : SİNEM ÖZDER Numarası : 118229001004

Detaylı

DERS 3 MİKROİŞLEMCİ SİSTEM MİMARİSİ. İçerik

DERS 3 MİKROİŞLEMCİ SİSTEM MİMARİSİ. İçerik DERS 3 MİKROİŞLEMCİ SİSTEM MİMARİSİ İçerik Mikroişlemci Sistem Mimarisi Mikroişlemcinin yürüttüğü işlemler Mikroişlemci Yol (Bus) Yapısı Mikroişlemci İç Veri İşlemleri Çevresel Cihazlarca Yürütülen İşlemler

Detaylı

Yrd. Doç. Dr. Caner ÖZCAN

Yrd. Doç. Dr. Caner ÖZCAN Yrd. Doç. Dr. Caner ÖZCAN BAĞLI LİSTELER Bağlı listeler konusuna çalışmanın bazı faydaları var. Bağlı listeler gerçek programlarda kullanılabilecek bir veri yapısıdır. Bağlı listelerin güçlü ve zayıf yönlerini

Detaylı

OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI

OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI BLOK DİYAGRAM İNDİRGEME KURALLARI Örnek 9: Aşağıdaki açık çevrim blok diyagramının transfer fonksiyonunu bulunuz? 2 BLOK DİYAGRAM İNDİRGEME

Detaylı

mikroc Dili ile Mikrodenetleyici Programlama Ders Notları / Dr. Serkan DİŞLİTAŞ

mikroc Dili ile Mikrodenetleyici Programlama Ders Notları / Dr. Serkan DİŞLİTAŞ 12. Motor Kontrolü Motorlar, elektrik enerjisini hareket enerjisine çeviren elektromekanik sistemlerdir. Motorlar temel olarak 2 kısımdan oluşur: Stator: Hareketsiz dış gövde kısmı Rotor: Stator içerisinde

Detaylı

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması Ağaç, verilerin birbirine sanki bir ağaç yapısı oluşturuyormuş gibi sanal olarak bağlanmasıyla elde edilen hiyararşik yapıya sahip

Detaylı

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ Ezgi Özkara a, Hatice Yanıkoğlu a, Mehmet Yüceer a, * a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği Bölümü, Malatya, 44280 myuceer@inonu.edu.tr

Detaylı

ELN1002 BİLGİSAYAR PROGRAMLAMA 2

ELN1002 BİLGİSAYAR PROGRAMLAMA 2 ELN1002 BİLGİSAYAR PROGRAMLAMA 2 VERİ YAPILARI Sunu Planı Kendini-gösteren Yapılar Dinamik Bellek Tahsisi Bağlı Listeler Yığınlar Kuyruklar Ağaçlar 1 Veri Yapıları Şu ana kadar, diziler, matrisler ve yapılar

Detaylı

Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli Graf, matematiksel anlamda, düğümler ve bu düğümler arasındaki ilişkiyi gösteren kenarlardan oluşan bir kümedir; mantıksal ilişki düğüm ile düğüm

Detaylı

AĞ SĠSTEMLERĠ. Öğr. Gör. Durmuş KOÇ

AĞ SĠSTEMLERĠ. Öğr. Gör. Durmuş KOÇ AĞ SĠSTEMLERĠ Öğr. Gör. Durmuş KOÇ Ağ Ġletişimi Bilgi ve iletişim, bilgi paylaşımının giderek önem kazandığı dijital dünyanın önemli kavramları arasındadır. Bilginin farklı kaynaklar arasında transferi,

Detaylı

YAPAY SİNİR AĞLARI VE GEZGİN SATICI PROBLEMİNE UYGULANMALARI. Müh. Murat YILDIRIMHAN

YAPAY SİNİR AĞLARI VE GEZGİN SATICI PROBLEMİNE UYGULANMALARI. Müh. Murat YILDIRIMHAN İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YAPAY SİNİR AĞLARI VE GEZGİN SATICI PROBLEMİNE UYGULANMALARI YÜKSEK LİSANS TEZİ Müh. Murat YILDIRIMHAN Anabilim Dalı : Endüstri Mühendisliği Programı

Detaylı

ÖZEL EGE LİSESİ ORTAÖĞRETİM ÖĞRENCİLERİNİN SINAV PERFORMANSI MODELLEMESİNDE YAPAY SİNİR AĞLARI KULLANIMI

ÖZEL EGE LİSESİ ORTAÖĞRETİM ÖĞRENCİLERİNİN SINAV PERFORMANSI MODELLEMESİNDE YAPAY SİNİR AĞLARI KULLANIMI ÖZEL EGE LİSESİ ORTAÖĞRETİM ÖĞRENCİLERİNİN SINAV PERFORMANSI MODELLEMESİNDE YAPAY SİNİR AĞLARI KULLANIMI HAZIRLAYAN ÖĞRENCİLER: Yaren DEMİRAĞ Ege Onat ÖZSÜER DANIŞMAN ÖĞRETMEN: Gülşah ARACIOĞLU İZMİR 2015

Detaylı

İşletim Sistemlerine Giriş

İşletim Sistemlerine Giriş İşletim Sistemlerine Giriş İşletim Sistemleri ve Donanım İşletim Sistemlerine Giriş/ Ders01 1 İşletim Sistemi? Yazılım olmadan bir bilgisayar METAL yığınıdır. Yazılım bilgiyi saklayabilir, işleyebilir

Detaylı

HĠBRĠT RADYAL TABANLI FONKSĠYON AĞLARI ĠLE DEĞĠġKEN SEÇĠMĠ VE TAHMĠNLEME: MENKUL KIYMET YATIRIM KARARLARINA ĠLĠġKĠN BĠR UYGULAMA

HĠBRĠT RADYAL TABANLI FONKSĠYON AĞLARI ĠLE DEĞĠġKEN SEÇĠMĠ VE TAHMĠNLEME: MENKUL KIYMET YATIRIM KARARLARINA ĠLĠġKĠN BĠR UYGULAMA T.C. Ġstanbul Üniversitesi Sosyal Bilimler Enstitüsü ĠĢletme Anabilim Dalı Sayısal Yöntemler Bilim Dalı Doktora Tezi HĠBRĠT RADYAL TABANLI FONKSĠYON AĞLARI ĠLE DEĞĠġKEN SEÇĠMĠ VE TAHMĠNLEME: MENKUL KIYMET

Detaylı

Uygulama 6. Sunum 5. Oturum 4. Taşıma 3. Ağ 2. Veri iletim 1

Uygulama 6. Sunum 5. Oturum 4. Taşıma 3. Ağ 2. Veri iletim 1 OSI MODELİ OSI Modeli Farklıbilgisayarların ve standartların gelişmesi ile sorunların ortaya çıkması nedeniyle ISO (International Organization for Standardization), OSI(Open Systems Interconnection) modelini

Detaylı

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Doç.Dr.Mehmet Hakan Satman mhsatman@istanbul.edu.tr İstanbul Üniversitesi 2014.10.22 Doç.Dr.Mehmet Hakan Satmanmhsatman@istanbul.edu.tr Tedarik Zinciri

Detaylı

TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI

TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI 1 TÜRKİYE CUMHURİYETİ ÇUKUROVA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI TÜRKİYE DE FAALİYET GÖSTEREN TİCARİ BANKALARIN FİNANSAL RİSKLERİNİN YAPAY SİNİR AĞLARI YAKLAŞIMI İLE BELİRLENMESİ

Detaylı

Makine Öğrenmesi 6. hafta

Makine Öğrenmesi 6. hafta Makne Öğrenmes 6. hafta Yapay Snr Ağlarına Grş Tek katmanlı YSA lar Algılayıcı (Perceptron) Aalne (Aaptve Lnear Elemen Byolojk Snr Hücres Byolojk snrler ört ana bölümen oluşmaktaır. Bunlar: Denrt, Akson,

Detaylı

Bilgisayar Mimarisi ve Organizasyonu Giriş

Bilgisayar Mimarisi ve Organizasyonu Giriş + Bilgisayar Mimarisi ve Organizasyonu Giriş Bilgisayar Mimarisi Bilgisayar Organizasyonu Programcının görebileceği bir sistemin nitelikleri Bir programın mantıksal yürütülmesi üzerinde direk bir etkisi

Detaylı

Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu

Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı Mehmet Ali Çavuşlu Özet Yapay sinir ağlarının eğitiminde genellikle geriye

Detaylı

KÜTAHYA İLİNİN YAPAY SİNİR AĞLARI KULLANILARAK ELEKTRİK PUANT YÜK TAHMİNİ

KÜTAHYA İLİNİN YAPAY SİNİR AĞLARI KULLANILARAK ELEKTRİK PUANT YÜK TAHMİNİ ELECTRICAL PEAK LOAD FORECASTING IN KÜTAHYA WITH ARTIFICIAL NEURAL NETWORKS. Y. ASLAN * & C. YAŞAR * & A. NALBANT * * Elektrik-Elektronik Mühendisliği Bölümü, Mühendislik Fakültesi Dumlupınar Üniversitesi,

Detaylı

İŞ SIRALAMA. İş Sıralama 6. İşletim Sistemleri

İŞ SIRALAMA. İş Sıralama 6. İşletim Sistemleri 6 İŞ SIRALAMA İş Sıralama Çok programlı ortamlarda birden fazla proses belirli bir anda bellekte bulunur Çok programlı ortamlarda prosesler: işlemciyi kullanır bekler giriş çıkış bekler bir olayın olmasını

Detaylı

VERİ YAPILARI VE PROGRAMLAMA

VERİ YAPILARI VE PROGRAMLAMA VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

Alkın Küçükbayrak alkin@superonline.com. Beyin ve Yapay Zeka III - Beyin Simulatörleri

Alkın Küçükbayrak alkin@superonline.com. Beyin ve Yapay Zeka III - Beyin Simulatörleri Alkın Küçükbayrak alkin@superonline.com Beyin ve Yapay Zeka III - Beyin Simulatörleri Bundan önceki yazımızda Yapay Sinir Ağları konusunu örneklerle incelemiştik. İstatistiksel yöntemler kullanılarak yapılan

Detaylı

KPSS SONUÇLARININ VERİ MADENCİLİĞİ YÖNTEMLERİYLE TAHMİN EDİLMESİ

KPSS SONUÇLARININ VERİ MADENCİLİĞİ YÖNTEMLERİYLE TAHMİN EDİLMESİ KPSS SONUÇLARININ VERİ MADENCİLİĞİ YÖNTEMLERİYLE TAHMİN EDİLMESİ Pamukkale Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi Bilgisayar Mühendisliği Anabilim Dalı Hüseyin ÖZÇINAR Danışman: Yard.

Detaylı

CETP KOMPOZİTLERİN DELİNMELERİNDEKİ İTME KUVVETİNİN ANFIS İLE MODELLENMESİ MURAT KOYUNBAKAN ALİ ÜNÜVAR OKAN DEMİR

CETP KOMPOZİTLERİN DELİNMELERİNDEKİ İTME KUVVETİNİN ANFIS İLE MODELLENMESİ MURAT KOYUNBAKAN ALİ ÜNÜVAR OKAN DEMİR CETP KOMPOZİTLERİN DELİNMELERİNDEKİ İTME KUVVETİNİN ANFIS İLE MODELLENMESİ MURAT KOYUNBAKAN ALİ ÜNÜVAR OKAN DEMİR Çalışmanın amacı. SUNUM PLANI Çalışmanın önemi. Deney numunelerinin üretimi ve özellikleri.

Detaylı

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması 1 Emre DANDIL Bilecik Ş. Edebali Üniversitesi emre.dandil@bilecik.edu.tr +90228 214 1613 Sunum İçeriği Özet Giriş

Detaylı

Oğuz ÜSTÜN. Geliş Tarihi/Received : 16.07.2009, Kabul Tarihi/Accepted : 02.09.2009

Oğuz ÜSTÜN. Geliş Tarihi/Received : 16.07.2009, Kabul Tarihi/Accepted : 02.09.2009 Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Cilt 15, Sayı 3, 2009, Sayfa 395-403 Genetik Algoritma Kullanılarak İleri Beslemeli Bir Sinir Ağında Etkinlik Fonksiyonlarının Belirlenmesi Determination

Detaylı

Bölüm. Internet: Dayandığı Teknik Temeller

Bölüm. Internet: Dayandığı Teknik Temeller Bölüm Internet: Dayandığı Teknik Temeller 8 Bilgisayar Ağları Temelleri İletişim Ağları Yapısal Modeli Bu bölümde bilgisayar ağlarının birbirleri ile olan iletişimi (internetworking) konusunda bazı temel

Detaylı

Derste Neler Anlatılacak? Temel Mekatronik Birimler,temel birim dönüşümü Güncel konular(hes,termik Santral,Rüzgar Enerjisi,Güneş

Derste Neler Anlatılacak? Temel Mekatronik Birimler,temel birim dönüşümü Güncel konular(hes,termik Santral,Rüzgar Enerjisi,Güneş Derste Neler Anlatılacak? Temel Mekatronik Birimler,temel birim dönüşümü Güncel konular(hes,termik Santral,Rüzgar Enerjisi,Güneş Enerjisi,Doğalgaz,Biyogaz vs.) Mekatroniğin uygulama alanları Temel Mekanik

Detaylı

T.C. FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI (BİTİRME ÖDEVİ) Süha TOZKAN 99220056

T.C. FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI (BİTİRME ÖDEVİ) Süha TOZKAN 99220056 T.C. FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ YAPAY SİNİR AĞLARI (BİTİRME ÖDEVİ) Süha TOZKAN 99220056 YÖNETEN Yrd. Doç. Dr. Hasan H. BALIK ELAZIĞ 2004 1 T.C. FIRAT

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

Kontrol Đşaretleşmesi

Kontrol Đşaretleşmesi Kontrol Đşaretleşmesi Dinamik değişken yönlendirme, çağrıların kurulması, sonlandırılması gibi ağ fonksiyonlarının gerçekleştirilmesi için kontrol bilgilerinin anahtarlama noktaları arasında dağıtılması

Detaylı

GS3055-I GSM/GPRS Universal Kablosuz Alarm Komünikatör. BORMET www.bormet.com.tr

GS3055-I GSM/GPRS Universal Kablosuz Alarm Komünikatör. BORMET www.bormet.com.tr GS3055-I GSM/GPRS Universal Kablosuz Alarm Komünikatör GS3055-I Genel Bakış GS3055-I: 1. GSM universal kablosuz alarm haberleştiricisi yedeklemede birincil rol oynar. 2. Bir GSM network cihazı; alarm kontrol

Detaylı

Yapay Sinir Ağları İçin Net Platformunda Görsel Bir Eğitim Yazılımının Geliştirilmesi

Yapay Sinir Ağları İçin Net Platformunda Görsel Bir Eğitim Yazılımının Geliştirilmesi BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 5, SAYI: 1, OCAK 2012 19 Yapay Sinir Ağları İçin Net Platformunda Görsel Bir Eğitim Yazılımının Geliştirilmesi Kerim Kürşat ÇEVİK 1, Emre DANDIL 2 1 Bor Meslek Yüksekokulu,

Detaylı

Beynin Temelleri BEYNİN TEMELLERİ 1: BEYNİN İÇİNDE NE VAR?

Beynin Temelleri BEYNİN TEMELLERİ 1: BEYNİN İÇİNDE NE VAR? Beynin Temelleri Kitabın geri kalanının bir anlam ifade etmesi için beyinle ve beynin nasıl işlediğiyle ilgili bazı temel bilgilere ihtiyacınız var. Böylece, ileriki sayfalarda nöron gibi bir sözcük kullandığımda

Detaylı

Çok katmanlı ileri sürümlü YSA da standart geri yayıyım ve momentum geri yayılım algoritmalarının karşılaştırılması. (Eğitim/Hata geri yayılım)

Çok katmanlı ileri sürümlü YSA da standart geri yayıyım ve momentum geri yayılım algoritmalarının karşılaştırılması. (Eğitim/Hata geri yayılım) Çok katmanlı ileri sürümlü YSA da standart geri yayıyım ve momentum geri yayılım algoritmalarının karşılaştırılması (Eğitim/Hata geri yayılım) Özetçe Bu çalışmada çok katmanlı ve ileri sürümlü bir YSA

Detaylı

27.10.2011 HAFTA 1 KALICI OLMAYAN HAFIZA RAM SRAM DRAM DDRAM KALICI HAFIZA ROM PROM EPROM EEPROM FLASH HARDDISK

27.10.2011 HAFTA 1 KALICI OLMAYAN HAFIZA RAM SRAM DRAM DDRAM KALICI HAFIZA ROM PROM EPROM EEPROM FLASH HARDDISK Mikroişlemci HAFTA 1 HAFIZA BİRİMLERİ Program Kodları ve verinin saklandığı bölüm Kalıcı Hafıza ROM PROM EPROM EEPROM FLASH UÇUCU SRAM DRAM DRRAM... ALU Saklayıcılar Kod Çözücüler... GİRİŞ/ÇIKIŞ G/Ç I/O

Detaylı

Askı Madde Konsantrasyonu ve Miktarının Yapay Sinir Ağları ile Belirlenmesi 1

Askı Madde Konsantrasyonu ve Miktarının Yapay Sinir Ağları ile Belirlenmesi 1 İMO Teknik Dergi, 2004 3267-3282, Yazı 219 Askı Madde Konsantrasyonu ve Miktarının Yapay Sinir Ağları ile Belirlenmesi 1 Mahmut FIRAT * Mahmud GÜNGÖR ** ÖZET Son yıllarda, inşaat mühendisliğindeki bilgisayarlı

Detaylı

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ENDÜSTRİ MÜHENDİSLİĞİ ANABİLİM DALI

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ENDÜSTRİ MÜHENDİSLİĞİ ANABİLİM DALI T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ENDÜSTRİ MÜHENDİSLİĞİ ANABİLİM DALI TRANSFORMATÖR ÜRETİMİNDE ÜRETİM ZAMANLARININ YAPAY SİNİR AĞLARI İLE TAHMİNİ İÇİN BİR ÇALIŞMA YÜKSEK LİSANS TEZİ ÖMÜR

Detaylı

YAPAY SĐNĐR AĞLARI ĐLE YÜZ TANIMA

YAPAY SĐNĐR AĞLARI ĐLE YÜZ TANIMA YAPAY SĐNĐR AĞLARI ĐLE YÜZ TANIMA Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi Mekatronik Mühendisliği Bölümü, Mekatronik Mühendisliği Anabilim Dalı Ozan TAŞOVA Haziran, 2011 ĐZMĐR

Detaylı

BIP116-H14-1 BTP104-H014-1

BIP116-H14-1 BTP104-H014-1 VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

T.C. BİLECİK ŞEYH EDEBALI ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BİLGİSAYAR MÜHENDİSLİĞİ LİSANSÜSTÜ DERSLERİ

T.C. BİLECİK ŞEYH EDEBALI ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BİLGİSAYAR MÜHENDİSLİĞİ LİSANSÜSTÜ DERSLERİ T.C. BİLECİK ŞEYH EDEBALI ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BİLGİSAYAR MÜHENDİSLİĞİ LİSANSÜSTÜ DERSLERİ BİLGİSAYAR MÜHENDİSLİĞİ LİSANSÜSTÜ DERSLERİ KODU DERS ADI T U K AKTS S/Z BM501 Algoritmaların

Detaylı

Cluster i Linux'ta Kümeleme Özgür Yazılım ve Açık Kaynak G 2006 Ali Erdinç Köroğlu

Cluster i Linux'ta Kümeleme Özgür Yazılım ve Açık Kaynak G 2006 Ali Erdinç Köroğlu Cluster i Linux'ta Kümeleme Özgür Yazılım ve Açık Kaynak G 2006 Ali Erdinç Köroğlu Kümelere giriş giriş :) :) Kümeleme nedir? Kümeleme çeşitleri ve ve amaçları RedHat Cluster'a giriş giriş RedHat Cluster

Detaylı

Yapay Sinir Ağları ile Ağ Üzerinde Saldırı Tespiti ve Paralel Optimizasyonu

Yapay Sinir Ağları ile Ağ Üzerinde Saldırı Tespiti ve Paralel Optimizasyonu Yapay Sinir Ağları ile Ağ Üzerinde Saldırı Tespiti ve Paralel Optimizasyonu Mehmet Zahid Yıldırım 1, Abdullah Çavuşoğlu 2, Baha Şen 2, İdris Budak 3 1 Karabük Üniversitesi, Fen Bilimleri Enstitüsü Bilgisayar

Detaylı

İZOLE SİNYALİZE KAVŞAKLARDAKİ ORTALAMA TAŞIT GECİKMELERİNİN YAPAY SİNİR AĞLARI İLE MODELLENMESİ

İZOLE SİNYALİZE KAVŞAKLARDAKİ ORTALAMA TAŞIT GECİKMELERİNİN YAPAY SİNİR AĞLARI İLE MODELLENMESİ T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İZOLE SİNYALİZE KAVŞAKLARDAKİ ORTALAMA TAŞIT GECİKMELERİNİN YAPAY SİNİR AĞLARI İLE MODELLENMESİ Özgür BAŞKAN Yüksek Lisans Tezi DENİZLİ-2004 İZOLE SİNYALİZE

Detaylı

Türkiyede ki İş Kazalarının Yapay Sinir Ağları ile 2025 Yılına Kadar Tahmini

Türkiyede ki İş Kazalarının Yapay Sinir Ağları ile 2025 Yılına Kadar Tahmini International Journal of Engineering Research and Development, Vol.4, No., January 202 46 Türkiyede ki İş Kazalarının Yapay Sinir Ağları ile 2025 Yılına Kadar Tahmini Hüseyin Ceylan ve Murat Avan Kırıkkale

Detaylı

T.C. GAZİOSMANPAŞA ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ

T.C. GAZİOSMANPAŞA ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ T.C. GAZİOSMANPAŞA ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ LOJİSTİK REGRESYON ANALİZİ (LRA), YAPAY SİNİR AĞLARI (YSA) ve SINIFLANDIRMA ve REGRESYON AĞAÇLARI (C&RT) YÖNTEMLERİNİN KARŞILAŞTIRILMASI ve TIP

Detaylı

ESTIMATION OF EFFLUENT PARAMETERS AND EFFICIENCY FOR ADAPAZARI URBAN WASTEWATER TREATMENT PLANT BY ARTIFICIAL NEURAL NETWORK

ESTIMATION OF EFFLUENT PARAMETERS AND EFFICIENCY FOR ADAPAZARI URBAN WASTEWATER TREATMENT PLANT BY ARTIFICIAL NEURAL NETWORK ESTIMATION OF EFFLUENT PARAMETERS AND EFFICIENCY FOR ADAPAZARI URBAN WASTEWATER TREATMENT PLANT BY ARTIFICIAL NEURAL NETWORK ADAPAZARI KENTSEL ATIKSU ARITMA TESĐSĐ ÇIKIŞ SUYU PARAMETRELERĐ VE VERĐM DEĞERLERĐNĐN

Detaylı

OTOMATİK KONTROL 18.10.2015

OTOMATİK KONTROL 18.10.2015 18.10.2015 OTOMATİK KONTROL Giriş, Motivasyon, Tarihi gelişim - Tanım ve kavramlar, Lineer Sistemler, Geri Besleme Kavramı, Sistem Modellenmesi, Transfer Fonksiyonları - Durum Değişkenleri Modelleri Elektriksel

Detaylı

Bölüm 2 : ANAHTARLAMA : DEVRE ANAHTARLAMA. MESAJ ANAHTARLAMA. PAKET ANAHTARLAMA.

Bölüm 2 : ANAHTARLAMA : DEVRE ANAHTARLAMA. MESAJ ANAHTARLAMA. PAKET ANAHTARLAMA. Bölüm 2 : ANAHTARLAMA : DEVRE ANAHTARLAMA. MESAJ ANAHTARLAMA. PAKET ANAHTARLAMA. Türkçe (İngilizce) karşılıklar Devre Anahtarlama (circuit switching) Mesaj Anahtarlama (message switching) Paket Anahtarlama

Detaylı

Bilgisayar Programcılığı

Bilgisayar Programcılığı Bilgisayar Programcılığı Uzaktan Eğitim Programı e-bġlg 121 AĞ TEKNOLOJĠLERĠNĠN TEMELLERĠ Öğr. Gör. Bekir Güler E-mail: bguler@fatih.edu.tr Hafta 7: Bağlantı (link) katmanı ve Yerel Alan ağı (Local Area

Detaylı

YAPAY SİNİR AĞLARI TEMELLİ TIBBÎ TEŞHİS SİSTEMİ. Muzaffer DOĞAN Yüksek Lisans Tezi

YAPAY SİNİR AĞLARI TEMELLİ TIBBÎ TEŞHİS SİSTEMİ. Muzaffer DOĞAN Yüksek Lisans Tezi YAPAY SİNİR AĞLARI TEMELLİ TIBBÎ TEŞHİS SİSTEMİ Muzaffer DOĞAN Yüksek Lisans Tezi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Anabilim Dalı Ağustos 2003 i ÖZET Yüksek Lisans Tezi YAPAY SİNİR AĞLARI

Detaylı

Week 9: Trees 1. TREE KAVRAMI 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI 2. İKİLİ AĞAÇ VE SUNUMU > =

Week 9: Trees 1. TREE KAVRAMI 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI 2. İKİLİ AĞAÇ VE SUNUMU > = Week 9: Trees 1. TREE KAVRAMI 2. İKİLİ AĞAÇ VE SUNUMU 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI < 6 2 > = 1 4 8 9 1. TREES KAVRAMI Bir ağaç bir veya daha fazla düğümün (T) bir kümesidir : Spesifik olarak

Detaylı

OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR

OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR OTOMATİK KONTROL SİSTEMLERİ TEMEL KAVRAMLAR VE TANIMLAR KONTROL SİSTEMLERİ GİRİŞ Son yıllarda kontrol sistemleri, insanlığın ve uygarlığın gelişme ve ilerlemesinde çok önemli rol oynayan bir bilim dalı

Detaylı

İŞLETİM SİSTEMLERİNE GİRİŞ. Modern bilgisayar çalışma prensipleri, Von Neumann ın 1945 de geliştirdiği

İŞLETİM SİSTEMLERİNE GİRİŞ. Modern bilgisayar çalışma prensipleri, Von Neumann ın 1945 de geliştirdiği İŞLETİM SİSTEMLERİNE GİRİŞ Von Neumann Mimarisi Modern bilgisayar çalışma prensipleri, Von Neumann ın 1945 de geliştirdiği mimariyi temel almaktadır. Merkezi İşlem Birimi Aritmetik ve Mantık Birimi Kontrol

Detaylı

BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK İlhan AYDIN SIMULINK ORTAMI Simulink bize karmaşık sistemleri tasarlama ve simülasyon yapma olanağı vermektedir. Mühendislik sistemlerinde simülasyonun önemi

Detaylı

Doç. Dr. Cüneyt BAYILMIŞ

Doç. Dr. Cüneyt BAYILMIŞ BSM 460 KABLOSUZ ALGILAYICI AĞLAR 1 BSM 460 KABLOSUZ ALGILAYICI AĞLAR 1. Hafta NESNELERİN İNTERNETİ (Internet of Things, IoT) 2 Giriş İletişim teknolojilerinde ve mikroelektronik devrelerde yaşanan gelişmeler

Detaylı

Yapay Zekâ. http://tr.wikipedia.org/wiki/yapay_zekâ 2. http://www.alicebot.org

Yapay Zekâ. http://tr.wikipedia.org/wiki/yapay_zekâ 2. http://www.alicebot.org Yapay Zekâ Yapay zekâ, insan zekâsına özgü olan, algılama, öğrenme, çoğul kavramları bağlama, düşünme, fikir yürütme, sorun çözme, iletişim kurma, çıkarımsama yapma ve karar verme gibi yüksek bilişsel

Detaylı

ROBOT OTOMASYONU SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ KALIPÇILIK TEKNİĞİ DERS NOTU. Doç.Dr. Akın Oğuz KAPTI

ROBOT OTOMASYONU SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ KALIPÇILIK TEKNİĞİ DERS NOTU. Doç.Dr. Akın Oğuz KAPTI ROBOT OTOMASYONU MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ KALIPÇILIK TEKNİĞİ DERS NOTU Doç.Dr. Akın Oğuz KAPTI Endüstriyel Robotlar 2 Robotlar, sensörel bilgi ile çevresini algılayan, algıladıklarını yorumlayan, yapay

Detaylı

YAPAY SİNİR AĞI İLE KRİPTOLOJİ UYGULAMALARI. Apdullah YAYIK. Yüksek Lisans Tezi. Antakya/HATAY

YAPAY SİNİR AĞI İLE KRİPTOLOJİ UYGULAMALARI. Apdullah YAYIK. Yüksek Lisans Tezi. Antakya/HATAY MUSTAFA KEMAK ÜNİVERSTESİ FEN BİLİMLERİ ENSTİTÜSÜ ENFORMATİK ANA BİLİM DALI YAPAY SİNİR AĞI İLE KRİPTOLOJİ UYGULAMALARI Apdullah YAYIK Yüksek Lisans Tezi Antakya/HATAY Haziran 2013 MUSTAFA KEMAL ÜNİVERSTESİ

Detaylı

Data Communications. Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü. 5. Analog veri iletimi

Data Communications. Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü. 5. Analog veri iletimi Veri İletişimi Data Communications Suat ÖZDEMİR Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü 5. Analog veri iletimi Sayısal analog çevirme http://ceng.gazi.edu.tr/~ozdemir/ 2 Sayısal analog çevirme

Detaylı

Fatih Kölmek. ICCI 2012-18.Uluslararası Enerji ve Çevre Fuarı ve Konferansı 25 Nisan 2012, İstanbul, Türkiye

Fatih Kölmek. ICCI 2012-18.Uluslararası Enerji ve Çevre Fuarı ve Konferansı 25 Nisan 2012, İstanbul, Türkiye Fatih Kölmek ICCI 2012-18.Uluslararası Enerji ve Çevre Fuarı ve Konferansı 25 Nisan 2012, İstanbul, Türkiye Türkiye Elektrik Piyasası Dengeleme ve Uzlaştırma Mekanizması Fiyat Tahmin Modelleri Yapay Sinir

Detaylı

BM-311 Bilgisayar Mimarisi

BM-311 Bilgisayar Mimarisi 1 BM-311 Bilgisayar Mimarisi Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Operand türleri Assembly dili 2 İşlemcinin yapacağı iş makine komutlarıyla belirlenir. İşlemcinin

Detaylı

Veri İletişimi ve Bilgisayar Ağları (COMPE 436) Ders Detayları

Veri İletişimi ve Bilgisayar Ağları (COMPE 436) Ders Detayları Veri İletişimi ve Bilgisayar Ağları (COMPE 436) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Veri İletişimi ve Bilgisayar Ağları COMPE 436 Her İkisi 3

Detaylı

İşlem Yönetimi (Process Management)

İşlem Yönetimi (Process Management) İşlem Yönetimi (Process Management) 2 Bir işletim sisteminde, temel kavramlardan bir tanesi işlemdir. İş, görev ve süreç kelimeleri de işlem ile eşanlamlı olarak kullanılabilir. Bir işlem temel olarak

Detaylı

YÜKSEK LİSANS TEZİ Eray AŞIK DANIŞMAN Doç.Dr. Mevlüt GÜLLÜ JEODEZİ VE FOTOGRAMETRİ MÜHENDİSLİĞİ

YÜKSEK LİSANS TEZİ Eray AŞIK DANIŞMAN Doç.Dr. Mevlüt GÜLLÜ JEODEZİ VE FOTOGRAMETRİ MÜHENDİSLİĞİ LOKAL JEOİT BELİRLEMEDE YAPAY SİNİR AĞLARI VE KRİGİNG YÖNTEMLERİNİN KARŞILAŞTIRILMASI YÜKSEK LİSANS TEZİ Eray AŞIK DANIŞMAN Doç.Dr. Mevlüt GÜLLÜ JEODEZİ VE FOTOGRAMETRİ MÜHENDİSLİĞİ Haziran, 2013 Bu tez

Detaylı

Alıştırma 1: Yineleme

Alıştırma 1: Yineleme Alıştırma 1: Yineleme Alıştırma 2: Yineleme H10->H2 çevrimini yapınız 7 2 1 3 2 1 1 1 2 0 Hafta 3: Yineleme Alıştırmaları(1) E1. (44/174) S değerini yineleme kullanarak hesap ediniz S = 1 + 2 + 3 + n Hafta3:

Detaylı