Doküman dili tanıma için ikili örüntüler tabanlı yeni bir yaklaşım

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Doküman dili tanıma için ikili örüntüler tabanlı yeni bir yaklaşım"

Transkript

1 Doküman dili tanıma için ikili örüntüler tabanlı yeni bir yaklaşım Yılmaz KAYA 1, Ömer Faruk ERTUĞRUL 2, Ramazan TEKİN 3 1 Siirt Üniversitesi, Bilgisayar Mühendisliği Bölümü 2 Batman Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü 3 Batman Üniversitesi, Bilgisayar Mühendisliği Bölümü Özet Otomatik dil tanıma (DT) doğal dil işlemenin önemli alt konularından biridir. DT, bir dokümanın içeriğine göre yazıldığı dili belirleme işlemidir. Bu çalışmada, karakterlerin UTF-8 değerlerini birbirleri ile karşılaştırmalar sonucu elde edilen ikili örüntüler kullanarak yeni bir dil tanıma yaklaşımı, bir boyutlu yerel ikili örüntüler (1B- YİÖ) önerilmiştir. Önerilen yöntem İngilizce, Almanca, Fransızca ve Türkçe den oluşan iki farklı veri seti ile test edilmiştir. 1B-YİÖ ile dokümanlardan elde edilen öznitelikler yapay sinir ağları(ysa) ile kullanılarak sınıflandırma işlemi gerçekleştirilmiştir. Sınıflandırma başarıları %99 ve %89 olarak gözlenmiştir. Elde edilen sonuçlara göre önerilen öznitelik çıkarım yönteminin dil tanıma için önemli örüntüler sağladığı görülmüştür. Anahtar Kelimeler: metin tabanlı dil tanıma, yerel ikili örüntüler, doğal dil işleme 1. Giriş Son yıllarda internet üzerinde web sayfaların artması ile bu sayfalardan içerik tanımlaması veya bilgi çıkarımı için yeni tekniklere ihtiyaç duyulmaktadır (Selamat ve Ng, 2011). Bilgi çıkarımı aşaması öncesinde içeriğinin dil tanımlanması önemli bir aşamadır. Dil tanıma (DT), bir dokümanın içeriğini kullanarak İngilizce, Türkçe, Arapça İngilizce veya herhangi bir dile ait olduğunun otomatik olarak tespitidir. DT, yazılı veya konuşma dili tanıma şeklinde iki farklı şekilde değerlendirilmektedir (Takci ve Ekinci, 2012). DT için literatürde dilbilimsel (linguistik) veya istatistiksel tabanlı farklı yaklaşımlar söz konusudur. Dilbilimsel yaklaşımlar, bir dile ait özel bir kelime veya karakteri arayan ve indeksleyen metotlardır. Bu yaklaşımlar dile ait kurallar ile bilgi tabanlı olarak çalışırlar. İstatistiksel yaklaşımlar ise dili oluşturan kelime veya karakter frekans ve dağılımlarına bağlıdır. Dilbilimsel yöntemlere göre yeterli bilgi vermeyen ancak dilleri matematiksel olarak modellemek için yardımcı olurlar. İstatistiksel yaklaşımlar dokümanın içeriği ile ilgilenmezler. İçerik-bağımsız yöntemlerdir. Bu yaklaşımların en büyük dezavantajı benzer dillerde ayırt etme başarısının düşük olmasıdır (Takçi ve Ekinci, 2012). DT bir metin sınıflandırma problemidir. DT dokümana ait kelime veya karakter boyutunda elde edilen özelliklere bağlıdır (Xafopoulos ve ark., 2004). Genellikle karakter seviyesinde yapılan çalışmalar kelime düzeyindeki çalışmalardan daha kararlıdırlar (Xafopoulos ve ark., 2004). Literatürde web tabanlı dokümanları kullanılarak bilgi çıkarımı, dijital kütüphane oluşturma, konuşulan dili modelleme (Li ve ark., 2007), çoklu dil çeviri sistemleri, spam tespiti, doküman sınıflama (Selamat ve Ng, 2011), metin özetleme, otomatik soru-cevap sistemler ve çeviri sistemleri DT ile ilgili gerçekleştirilen uygulamalardır. DT için tekil karakter kombinasyonları, kısa kelime, n-gram ve ASCII veya Unicode karakter frekans vektörleri gibi çeşitli öznitelik çıkarım yöntemleri kullanılmıştır (Ahmed ve ark., 2004). Literatürde öznitelik çıkarım yöntemi olarak en başarılı E-Posta: (Y. Kaya).

2 yöntemin n-gram olduğu görülmektedir. Ancak bu yöntem ile çok fazla öznitelik çıkarıldığından dolayı farklı öznitelik uzayının büyümesi, hesaplama maliyeti gibi sorunlar oluşmaktadır. Bu yüzden ekstra maliyet gerektirecek öznitelik seçim yöntemleri kullanılmaktadır. Bu çalışmada, karakterlerin UTF-8 değerlerinin ikili karşılaştırmalar sonucu elde edilen bilgileri kullanan yeni bir öznitelik çıkarım yöntemi önerilmiştir. Dokümanlardan öznitelik çıkarımı için bir boyutlu yerel ikili örüntüler (1B-YİÖ) metodu kullanılmıştır. YİÖ görüntülerden öznitelik çıkarımı için kullanılmaktadır (Burçin ve Vasif, 2011). YİÖ, görüntüdeki yerel değişimleri kullanarak öznitelik çıkarımı gerçekleştirmektedir. YİÖ uygulaması kolay ve etkili bir yöntemdir. Bu çalışmada YİÖ metodu tek boyutlu hale getirilerek, metin madenciliğinde bir öznitelik çıkarım metodu olarak kullanılmıştır. Önerilen yöntem karakterlerin Unikod değerlerini kullanmaktadır. Karakterlerin Unikod değerleri komşuları ile karşılaştırılarak; büyük olması durumunda 1 diğer durumlarda 0 değeri üretilerek bir ikili dizge elde edilmektedir. Bu ikili dizgelerin onlu karşılığı karşılaştırılan karakterin yeni değeri olarak alınmaktadır. Bu şekilde tüm karakterlerden elde edilen yeni değerler YİÖ sinyalini oluşturmaktadır. Bu sinyale ait histogram öznitelik vektörü olarak kullanılmaktadır. Önerilen 1B-YİÖ yöntemi P, α ve β gibi üç(3) parametreye bağlıdır. Bu parametreler dokümanda mikro-makro örüntülerin taranması için kullanılmaktadır. Önerilen yöntemi test etmek için farklı şekillerde oluşturulmuş iki veri seti kullanılmıştır. Sınıflama aşamasında yapay sinir ağları (YSA) kullanılmıştır. 10 kat çapraz geçerlilik yöntemine göre başarılı sonuçlar elde edilmiştir. 2. Yapılan Çalışmalar Öznitelik çıkarımı, bilgi çıkarımı, sınıflandırma veya dil tanıma gibi doğal dil işleme uygulamaları önemli ilgi alanları olmuştur. DT için önemli miktarda çalışma yapılmıştır. Markov modeller (Li ve Chin, 2010), entropi tabanlı metotlar, Gaussian karışımlı modeller (Song ve ark., 2009), karar ağaçları, yapay sinir ağları, karar destek vektörleri (SVM), melez modeller (Jiang ve ark., 2010), knn ve regresyon modeller (Botha ve Barnard, 2012) uygulanan makine öğrenmesi yöntemlerdir. Prager (1999) n-gram yöntemi ile 13 dil için denemeler gerçekleştirmiştir. Suzuki ve ark. (2002) web dokümanları için n-gram ile elde ettiği özellikler ile sınıflandırma yapmışlar. Takcı ve Sogukpınar (2004) bir dile ait özel karakterleri kullanarak DT işlemini gerçekleştirmişlerdir. Ng ve Selamat (2009) Arapça metinler üzerinde denemeler yapmışlardır. Yapılan çalışmalara bakıldığında, DT için yapılan çalışmaların önemli bir kısmının öznitelik seçim tabanlı olduğu görülmektedir. öznitelik çıkarım yöntemlerinin yetersiz olduğu bu anlamda DT için yeni metotlara ihtiyaç duyulmaktadır. 3. Veri setleri DT için önerilen öznitelik çıkarım yöntemini test etmek için 2 farklı veri seti kullanıldı. Bu veri setlerin oluşturma biçimleri aşağıda verilmiştir. (1)-Birinci veri seti Türkçe Wikipedia dan elde edilmiştir. Aşk, iktidar, barış, bilgisayar, bilişim, teknoloji, insanlık, aile, mutluluk, kanser, spor, uzay, para vs. gibi genel farklı kelimeler için 110 doküman elde edildi. Daha sonra elde edilen bu metinler Google çeviri sistemi ile Fransızca, Almanca ve İngilizce dillerine çevrildi. Toplamda 440 metin elde edilmiş olundu. Metin boyutlarına bakıldığında karakter sayılarının arasında değiştiği görülmüştür. (2)-İkinci veri seti BBC web sitesinden (www.bbc.com) spor, sanat, teknoloji, güncel haberlerden elde edilmiştir. BBC web sitesinden İngilizce, Almanca ve Fransızca olarak rasgele belirtilen kategorilerde 100 er

3 haber elde edilmiştir. Türkçe için ise popular Türkçe haber partallarında benzer kategoriler için 100 metin elde edilmiştir. İkinci veri seti toplamda 400 metinden oluşmaktadır. Tüm metinler özel karakterlerin desteklenmesi için UTF-8 formatında kayıt edilmiştir. Özel isimler, noktalama işaretleri, boşluklar ve özel işaretler metinlerden atılmıştır. 4. Metot 4.1. Geliştirilen 1B-Yerel İkili Örüntüler Yöntemi 1B-YİÖ yöntemi, metinlerden yeni öznitelik çıkarımı için görüntü işlemede yaygın bir şekilde kullanılan YİÖ metodundan geliştirilmiştir. 1B-YİÖ yöntemi işleyiş olarak görüntü işlemede kullanılan YİÖ yöntemi ile benzerlik göstermektedir. Ancak 1B-YİÖ yöntemi zaman serisi şeklinde dizilmiş tek boyutlu sinyallere uygulanabilir. Sinyal üzerindeki her değer için değerler ile komşuları arasında yapılan karşılaştırmalar sonucu ikili kodlar üretilir. Elde edilen bu kodların onluk karşılıkları sinyali ifade eden yeni bir sinyal olarak ele alınmaktadır (Kaya et al., 2014). İkili karşılaştırmalar için 1B-YİÖ e ait formül aşağıda verilmiştir. t Pi Pc P LBP( x ) i 0 1, t 0 Sign 0,t 0 Sign( t )2 i 1 (1) Burada P i ve P c sırasıyla ele alınan komşular ve karşılaştırılan merkez değeri belirtir. P, ve parametrelerine bağlıdır. P, merkez noktanın sağından ve solundan alınacak toplam komşu sayısını belirtir,, merkez nokta ile alınacak ilk komşular arasındaki mesafeyi belirtir. ise alınan komşular arasındaki mesafeyi belirtir. ve (2) 1B-YİÖ, sinyal üzerinde verilen örnek bir nokta için kendi komşuları ile yapılan karşılaştırmalar sonucu elde edilen ikili dizi seti olarak hesaplanır. Sinyal üzerindeki her sinyal için öncesinde ve sonrasında (sağından ve solundan) P/2 kadar komşu alınır. Örneğin P=8 olması durumunda her nokta için (P c ) öncesinde 4 komşu (P 0, P 1, P 2, P 3 ) ve sonrasında 4 komşu (P 4, P 5, P 6, P 7 ) alınır. Şekil 1 sinyal üzerindeki örnek bir noktayı göstermekte. Şekil 1. Sinyal üzerindeki örnek bir nokta.

4 Şekil 1 de gösterildiği gibi tüm komşular P={P 0, P 1, P 2, P 3, P 4, P 5, P 6, P 7 } merkez değer ile (P c ) karşılaştırılıp denklem 1 e göre ikili değerler elde edilir. Karşılaştırmalarda eğer P i değeri P c den büyük ve eşit ise 1, diğer durumlarda 0 alınır. Bu karşılaştırmalar sonucunda 1B-YİÖ kodu oluşur. Bu ikili diziler Şekil 1 deki örnek için şekil 2 de gösterilmiştir. Şekil 2. Pc nin Pi ile karşılaştırılması Her noktanın 1B-YİÖ kodları eşitlik 1 ile hesaplanır. Her ikili kodların onlu karşılıkları P c noktasının etrafındaki yerel bilgileri ifade eder. Yukarıdaki aşamalar tüm sinyal üzerindeki değerler için gerçekleştirilir. Bu aşamalardan sonra YİÖ sinyali elde edilmiş olacaktır. YİÖ sinyali üzerindeki tüm değerler 0 ile 255 arasındaki değişim göstermektedir. Her değerin frekansı bir örüntüyü ifade eder. P=8 olması durumunda 2^8= 256 örüntü elde edilir Önerilen Metot Bu çalışmada DT için önerilen önceki çalışmalardan tümüyle farklı bir yaklaşım önerilmiştir. Önerilen yöntem karakter seviyesinde istatistiksel bir yaklaşımdır. Önerilen yaklaşıma ait bir örnek ve blok diyagram şekil 3 te verilmiştir. Şekil 3: Önerilen yönteme ait blok diyagram. Blok 1: Bu blokta metin içende geçen boşluklar, noktalama işaretleri, yeni satır gibi özel karakterler atılır. Temizleme işleminden sonra metin Unicode lara dönüştürülür. Unicode lerden oluşan yeni dizi bir boyutlu sinyal olarak ele alınır. Mesajın aşağıdaki ifade olması durumunda bir örnek aşağıda gösterilmiştir. A novel approach for language identification based on binary patterns Öncelikle metin içendeki istenilmeyen karakterler atılır. Bu karakterler atıldıktan sonra geriye kalan mesaj Anovelapproachforlanguageidentificationbasedonbinarpatterns Geriye kalan mesajın UTF-8 kodlarına dönüştürülmesi sonucunda elde edilen sinyal aşağıda belirtilmiştir. 65, 110, 111, 118, 101, 108, 97, 112, 112, 114, 111, 97, 99, 104, 102, 111, 114, 108, 97, 110, 103, 117, 97, 103, 101, 105, 100, 101, 110, 116, 105, 102, 105, 99, 97, 116, 105, 111, 110, 98, 97, 115, 101, 100, 111, 110, 98, 105, 110, 97, 114, 121, 112, 97, 116, 116, 101, 114, 110, 115

5 Block 2: Elde edilen UTF-8 kodlar sinyali 1B-YİÖ metodu ile YİÖ düzlemine taşınır. Bu düzleme taşınan değerler 0 ile 255 arasında değerlerden oluşur. Her değerin frekansı bir farklı örüntü tanımlar. P, parametrelerin farklı değerlerine örnekler Şekil 4 te gösterilmiştir. Şekil 4: Mesaja ait örnek bir sinyal bölümü Şekil 4 ten görüldüğü gibi 1B-YİÖ parametrelerinin farklı değerlerine göre aynı sinyal parçası ile farklı örüntüler elde edilebilir. Block 3: Bu blokta YİÖ sinyaline ait histogram elde edilir. YİÖ sinyalinde her değerin frekansı belirlenir. Her değerin frekansı bir örüntü veya öznitelik olarak değerlendirilir. P=8 olması durumunda 256 örüntü bulunmaktadır. Block 4: Elde edilen öznitelikleri kullanarak sınıflama aşamasıdır. Yapay sinir ağları (YSA) sınıflandırma metodu olarak kullanıldı.10 katlı çapraz geçerlilik testine göre sınıflandırma işlemi gerçekleştirilmiştir. 5. Deneysel Sonuçlar Bu çalışmada DT için karakterlerin UTF-8 değerlerini kullanarak yeni bir yaklaşım önerilmiştir. Önerilen i 3 parametreye bağlıdır. Bu parametrelerin farklı değerlerine göre elde edilen örüntülerin dağılımı şekil 5 te verilmiştir. α ve β parametrelerin farklı değerleri için farklı örüntülerin elde edildiği şekil 5 te görülmektedir. Bu parametrelerin farklı değerleri ile elde edilen örüntüler için sınıflandırma başarı oranları tablo 1 de verilmiştir. Her iki veri seti için sınıflandırma işlemleri YSA ile gerçekleştirilmiştir. Tablo 1 de görüldüğü gibi önerilen yöntem ile önemli sınıflandırma başarıları elde edilmiştir. : ile birinci veri seti için %98.86, ikinci veri seti için ise %89 başarı elde edilmiştir. Birinci veri seti için daha yüksek tanıma başarısı elde edilmiştir. Daha yüksek sınıflandırma başarısı veri setlerin oluşturma biçimlerinden kaynaklanıyor olabilir. Birinci veri seti Google çeviri sistemi ile oluşturulurken, ikinci veri seti rasgele metinlerin toplanması ile oluşturulmuştur.

6 Veri Seti 2 Veri Seti 1 Veriseti 2 Veriseti1 Şekil 5: α ve β parametrelerine göre örüntülerin dağılımı Tablo 1: ve parametrelerine göre başarı oranları Veri setleri α =1 (%) α =2(%) α =3(%) β= β= β= β= β= β= En uygun α ve β değerleri yapılan denemeler sonucunda karar verilir. α ve β parametrelerin uygun örüntülerin yakalanması için önemli olmaktadır. Önerilen yöntem ile elde edilen duyarlılık(precision), geriçağırım(recall), ve f-ölçütü (f-measure) değerleri Tablo 2 de verilmiştir. Elde edilen performans değerleri öznitelik grubuna aittir. Tablo 2: için performans değerleri Veri Setleri Dil Precision Recall F-measure Türkçe İngilizce Fransızca Almanca Ortalamalar Türkçe İngilizce Fransızca Almanca Ortalamalar

7 6. Sonuç Bu çalışmada, metin tabanlı dil tanıma için yeni bir yaklaşım önerilmiştir. DT hem metin tabanlı hem de konuşma tabanlı önemli bir problem haline gelmiştir. Çalışmada, karakterlerin sırasal düzenlerine göre elde edilen bilgilere göre dil tanıma işlemi gerçekleştirilmiştir. İki farklı veri seti için elde edilen tanıma başarı oranları %98,89 ve% 89 dir. Önerilen yöntem farklı uzunlukta metinler için denenmiş metin uzunluklarının 500 byte ve üzeri uzunluklarda daha başarılı olduğu görülmüştür. Sonuç olarak önerilen yöntem spam tanıma, metin kategorize etme gibi farklı metin madenciliği alanlarında kullanılabilir. Referanslar Ahmed, B., Cha, S. H., and Tappert, C Language identification from text using n-gram based cumulative frequency addition. Proceedings of Student/Faculty Research Day, CSIS, Pace University, Botha, G. R., and Barnard, E Factors that affect the accuracy of text-based language identification. Computer Speech & Language, 26(5): Burçin, K., and Vasif, N. V Down syndrome recognition using local binary patterns and statistical evaluation of the system. Expert Systems with Applications, 38(7): Jiang, C., Coenen, F., Sanderson, R., and Zito, M Text classification using graph mining-based feature extraction. Knowledge-Based Systems, 23(4): Kaya, Y., Uyar, M., Tekin, R., and Yıldırım, S D-local binary pattern based feature extraction for classification of epileptic EEG signals. Applied Mathematics and Computation, 243: Li, H., Ma, B., and Lee, C. H A vector space modeling approach to spoken language identification. IEEE Transactions on Audio, Speech, and Language Processing,, 15(1): Li, Q., and Chen, Y. P Personalized text snippet extraction using statistical language models. Pattern Recognition, 43(1): Ng, C. C., and Selamat, A Improved letter weighting feature selection on arabic script language identification. In Intelligent Information and Database Systems, ACIIDS First Asian Conference on (pp ). IEEE.. Selamat, A., and Ng, C. C Arabic script web page language identifications using decision tree neural networks. Pattern Recognition, 44(1): Song, Y., Dai, L., and Wang, R An automatic language identification method based on subspace analysis. In Multimedia and Expo, ICME IEEE International Conference on (pp ). IEEE. Suzuki, I., Mikami, Y., Ohsato, A., and Chubachi, Y A language and character set determination method based on N-gram statistics. ACM Transactions on Asian Language Information Processing (TALIP), 1(3): Takcı, H., and Soğukpınar, İ Centroid-based language identification using letter feature set. In Computational Linguistics and Intelligent Text Processing(pp ). Springer Berlin Heidelberg. Takçı, H. and Ekinci, E Minimal feature set in language identification and finding suitable classification method with it, Procedia Technology, 1: Xafopoulos, A., Kotropoulos, C., Almpanidis, G., and Pitas, I Language identification in web documents using discrete HMMs. Pattern recognition,37(3):

Doküman dili tanıma için yeni bir öznitelik çıkarım yaklaşımı: İkili desenler

Doküman dili tanıma için yeni bir öznitelik çıkarım yaklaşımı: İkili desenler Journal of the Faculty of Engineering and Architecture of Gazi University 31:4 (216) 185-194 Doküman dili tanıma için yeni bir öznitelik çıkarım yaklaşımı: İkili desenler Yılmaz Kaya 1*, Ömer Faruk Ertuğrul

Detaylı

Türkçe Dokümanlar Ġçin Yazar Tanıma

Türkçe Dokümanlar Ġçin Yazar Tanıma Türkçe Dokümanlar Ġçin Yazar Tanıma Özcan KOLYĠĞĠT, Rıfat AġLIYAN, Korhan GÜNEL Adnan Menderes Üniversitesi, Matematik Bölümü Bölümü, Aydın okolyigit@gmail.com, rasliyan@adu.edu.tr, kgunel@adu.edu.tr Özet:

Detaylı

Kelebek Görüntülerin Sınıflandırılmasında Yeni Yerel İkili Örüntüler

Kelebek Görüntülerin Sınıflandırılmasında Yeni Yerel İkili Örüntüler Kelebek Görüntülerin Sınıflandırılmasında Yeni Yerel İkili Örüntüler Yılmaz KAYA 1, Lokman KAYCİ 2 1 Bilgisayar Mühendisliği Bölümü, Siirt Üniversitesi, 56100 Siirt 2 Biyoloji Bölümü, Siirt Üniversitesi,

Detaylı

Makine Öğrenmesi İle Duygu Analizinde Veri Seti Performansı

Makine Öğrenmesi İle Duygu Analizinde Veri Seti Performansı Makine Öğrenmesi İle Duygu Analizinde Veri Seti Performansı Hatice NİZAM İstanbul Üniversitesi Bilgisayar Mühendisliği Bölümü haticenizam@outlook.com Saliha Sıla AKIN ERS Turizm Yazılım Şirketi, Bilgisayar

Detaylı

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

Otomatik Doküman Sınıflandırma

Otomatik Doküman Sınıflandırma Otomatik Doküman Sınıflandırma Rumeysa YILMAZ, Rıfat AŞLIYAN, Korhan GÜNEL Adnan Menderes Üniversitesi, Fen Edebiyat Fakültesi Matematik Bölümü, Aydın rumeysa2903@gmailcom, rasliyan@aduedutr, kgunel@aduedutr

Detaylı

A. SCI ve SCIE Kapsamındaki Yayınlar

A. SCI ve SCIE Kapsamındaki Yayınlar A. SCI ve SCIE Kapsamındaki Yayınlar A.1. Erilli N.A., Yolcu U., Egrioglu E., Aladag C.H., Öner Y., 2011 Determining the most proper number of cluster in fuzzy clustering by using artificial neural networks.

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

SÜREKLİ SAKLI MARKOV MODELLERİ İLE METİNDEN BAĞIMSIZ KONUŞMACI TANIMA PARAMETRELERİNİN İNCELENMESİ

SÜREKLİ SAKLI MARKOV MODELLERİ İLE METİNDEN BAĞIMSIZ KONUŞMACI TANIMA PARAMETRELERİNİN İNCELENMESİ Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 12, Sayı 1, 2007 SÜREKLİ SAKLI MARKOV MODELLERİ İLE METİNDEN BAĞIMSIZ KONUŞMACI TANIMA PARAMETRELERİNİN İNCELENMESİ Cemal HANİLÇİ Figen

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ EĞİTİM ÖĞRETİM YILI DERS KATALOĞU

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ EĞİTİM ÖĞRETİM YILI DERS KATALOĞU T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ - EĞİTİM ÖĞRETİM YILI DERS KATALOĞU Ders Kodu Bim Kodu Ders Adı Türkçe Ders Adı İngilizce Dersin Dönemi T Snf Açıl.Dönem P

Detaylı

K-En Yakın Komşu Algoritması Parametrelerinin Sınıflandırma Performansı Üzerine Etkisinin İncelenmesi

K-En Yakın Komşu Algoritması Parametrelerinin Sınıflandırma Performansı Üzerine Etkisinin İncelenmesi K-En Yakın Komşu Algoritması Parametrelerinin Sınıflandırma Performansı Üzerine Etkisinin İncelenmesi Erdal TAŞCI* Aytuğ ONAN** *Ege Üniversitesi Bilgisayar Mühendisliği Bölümü **Celal Bayar Üniversitesi

Detaylı

Makine Öğrenme Yöntemleriyle N-Gram Tabanlı Dil Tanıma. N-Gram Based Language Identification with Machine Learning Methods

Makine Öğrenme Yöntemleriyle N-Gram Tabanlı Dil Tanıma. N-Gram Based Language Identification with Machine Learning Methods Makine Öğrenme Yöntemleriyle N-Gram Tabanlı Dil Tanıma N-Gram Based Language Identification with Machine Learning Methods Şengül Bayrak 1, Hidayet Takçı 2, Mübariz Eminli 1 1 Bilgisayar Mühendisliği Bölümü,

Detaylı

Veri ve Metin Madenciliği

Veri ve Metin Madenciliği Veri ve Metin Madenciliği Zehra Taşkın Veri Madenciliği Bir kutu toplu iğne İçine 3 boncuk düşürdünüz Nasıl alacağız? Fikirler? Veri Madenciliği Data Information Knowledge Veri madenciliği; Büyük yoğunluklu

Detaylı

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ Ezgi Özkara a, Hatice Yanıkoğlu a, Mehmet Yüceer a, * a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği Bölümü, Malatya, 44280 myuceer@inonu.edu.tr

Detaylı

5. Akademik Unvanlar. 6. Yönetilen Yüksek lisans ve Doktora Tezleri. 7. Yayınlar

5. Akademik Unvanlar. 6. Yönetilen Yüksek lisans ve Doktora Tezleri. 7. Yayınlar 1. Adı Soyadı : Hidayet TAKÇI 2. Doğum Tarihi : Gürün 1974 3. Unvanı : Yrd. Doç. Dr. 4. Öğrenim Durumu Derece Bölüm/Program Üniversite Yıl Lisans Bilgisayar Mühendisliği Trakya Üniversitesi 1993-1997 Y.

Detaylı

İleri Örüntü Tanıma Teknikleri Ve Uygulamaları İçerik

İleri Örüntü Tanıma Teknikleri Ve Uygulamaları İçerik Tekrar Konular İleri Örüntü Tanıma Teknikleri Ve Uygulamaları İçerik 1. Uygulamalar ve tanımlamalar 2. Örüntü tanıma sistemleri ve bir örnek 3. Bayes karar teorisi 4. En yakın komşu sınıflandırıcıları

Detaylı

Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu

Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı Mehmet Ali Çavuşlu Özet Yapay sinir ağlarının eğitiminde genellikle geriye

Detaylı

Büyük Veri ve Endüstri Mühendisliği

Büyük Veri ve Endüstri Mühendisliği Büyük Veri ve Endüstri Mühendisliği Mustafa Gökçe Baydoğan Endüstri Mühendisliği Bölümü Boğaziçi Üniversitesi İstanbul Yöneylem Araştırması/Endüstri Mühendisliği Doktora Öğrencileri Kolokyumu 21-22 Nisan

Detaylı

MÜHENDİSLİK FAKÜLTESİ / ENSTİTÜSÜ / YÜKSEKOKULU BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ /ABD LİSANS PROGRAMI - 2 ( yılı öncesinde birinci

MÜHENDİSLİK FAKÜLTESİ / ENSTİTÜSÜ / YÜKSEKOKULU BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ /ABD LİSANS PROGRAMI - 2 ( yılı öncesinde birinci MÜHENDİSLİK FAKÜLTESİ / ENSTİTÜSÜ / YÜKSEKOKULU BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ /ABD LİSANS PROGRAMI - 2 (2016-17 yılı öncesinde birinci sınıfa başlayan öğrenciler için) BİRİNCİ YIL 1. Dönem CMPE113

Detaylı

VERİ MADENCİLİĞİ Metin Madenciliği

VERİ MADENCİLİĞİ Metin Madenciliği VERİ MADENCİLİĞİ Metin Madenciliği Yrd. Doç. Dr. Şule Gündüz Öğüdücü 1 2 Metin için Veri Madenciliği Metin Madenciliğinde Sorunlar Metin madenciliği: Veri madenciliği teknikleri ile yazılı belgeler arasındaki

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DOKTORA YETERLİK SINAVI YÖNETMELİĞİ

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DOKTORA YETERLİK SINAVI YÖNETMELİĞİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DOKTORA YETERLİK SINAVI YÖNETMELİĞİ Doktora Yeterlik Sınavı, başvurunun yapıldığı ve Doktora Yeterlik Komitesi nin başvuruyu onayladığı dönemdeki, dönem sonu sınavlarının

Detaylı

Sahne Geçişlerinin Geometrik Tabanlı olarak Saptanması

Sahne Geçişlerinin Geometrik Tabanlı olarak Saptanması Sahne Geçişlerinin Geometrik Tabanlı olarak Saptanması 1 Giriş Binnur Kurt, H. Tahsin Demiral, Muhittin Gökmen İstanbul Teknik Üniversitesi, Bilgisayar Mühendisliği Bölümü, Maslak, 80626 İstanbul {kurt,demiral,gokmen}@cs.itu.edu.tr

Detaylı

Algoritma Geliştirme ve Veri Yapıları 3 Veri Yapıları. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 3 Veri Yapıları. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 3 Veri Yapıları Veri yapısı, bilginin anlamlı sırada bellekte veya disk, çubuk bellek gibi saklama birimlerinde tutulması veya saklanması şeklini gösterir. Bilgisayar

Detaylı

Geliştirilmiş Fisher Ayraç Kriteri Kullanarak Hiperspektral Görüntülerde Sınıflandırma

Geliştirilmiş Fisher Ayraç Kriteri Kullanarak Hiperspektral Görüntülerde Sınıflandırma Geliştirilmiş Fisher Ayraç Kriteri Kullanarak Hiperspektral Görüntülerde Sınıflandırma Mustafa TEKE, Dr. Ufuk SAKARYA TÜBİTAK UZAY IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013),

Detaylı

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Kümeleme İşlemleri Kümeleme Tanımı Kümeleme Uygulamaları Kümeleme Yöntemleri Kümeleme (Clustering) Kümeleme birbirine

Detaylı

Spam filtrelemek için kaydırmalı ikili örüntüler tabanlı yeni bir yaklaşım

Spam filtrelemek için kaydırmalı ikili örüntüler tabanlı yeni bir yaklaşım Spam filtrelemek için kaydırmalı ikili örüntüler tabanlı yeni bir yaklaşım Yılmaz KAYA 1, Cüneyt ÖZDEMİR 2 1 Bilgisayar Mühendisliği Bölümü, Siirt Üniversitesi, 56100 Siirt 2 Bilgisayar Teknolojileri Bölümü,

Detaylı

Sözlük Kullanarak Türkçe için Kavram Madenciliği Metotları Geliştirme

Sözlük Kullanarak Türkçe için Kavram Madenciliği Metotları Geliştirme 1 Cem Rıfkı Aydın, 1 Ali Erkan, 1 Tunga Güngör, 2 Hidayet Takçı 1 Boğaziçi Üniversitesi, 2 Cumhuriyet Üniversitesi Sözlük Kullanarak Türkçe için Kavram Madenciliği Metotları Geliştirme AB 14 7 Şubat 2014

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: Pattern Recognition

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: Pattern Recognition Dersi Veren Birim: Fen Bilimleri Enstitüsü Dersin Türkçe Adı: Örüntü Tanıma Dersin Orjinal Adı: Pattern Recognition Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisansüstü Dersin Kodu: CSE

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı : Olcay Taner Yıldız. 2. Doğum Tarihi : 15.05.1976. 3. Unvanı : Doç. Dr. 4. Öğrenim Durumu :

ÖZGEÇMİŞ. 1. Adı Soyadı : Olcay Taner Yıldız. 2. Doğum Tarihi : 15.05.1976. 3. Unvanı : Doç. Dr. 4. Öğrenim Durumu : ÖZGEÇMİŞ 1. Adı Soyadı : Olcay Taner Yıldız 2. Doğum Tarihi : 15.05.1976 3. Unvanı : Doç. Dr. 4. Öğrenim Durumu : Derece Alan Üniversite Yıl Lisans Bilgisayar Mühendisliği Boğaziçi Üniversitesi 1997 Y.

Detaylı

Bulanık Mantık Tabanlı Uçak Modeli Tespiti

Bulanık Mantık Tabanlı Uçak Modeli Tespiti Bulanık Mantık Tabanlı Uçak Modeli Tespiti Hüseyin Fidan, Vildan Çınarlı, Muhammed Uysal, Kadriye Filiz Balbal, Ali Özdemir 1, Ayşegül Alaybeyoğlu 2 1 Celal Bayar Üniversitesi, Matematik Bölümü, Manisa

Detaylı

Kablosuz Sensör Ağlar ve Eniyileme. Tahir Emre KALAYCI. 21 Mart 2008

Kablosuz Sensör Ağlar ve Eniyileme. Tahir Emre KALAYCI. 21 Mart 2008 Kablosuz Sensör Ağlar ve Eniyileme Tahir Emre KALAYCI 21 Mart 2008 Gündem Genel Bilgi Alınan Dersler Üretilen Yayınlar Yapılması Planlanan Doktora Çalışması Kablosuz Sensör Ağlar Yapay Zeka Teknikleri

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Resim ÖZGEÇMİŞ 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Telefon : 386 280 45 50 Mail : kskula@ahievran.edu.tr

Detaylı

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir.

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir. ÇELĐK YÜZEYLERĐN SINIFLANDIRILMASI * Cem ÜNSALAN ** Aytül ERÇĐL * Ayşın ERTÜZÜN *Boğaziçi Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü unsalan@boun.edu.tr **Boğaziçi Üniversitesi, Endüstri Mühendisliği

Detaylı

Doç.Dr. M. Mengüç Öner Işık Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü oner@isikun.edu.tr

Doç.Dr. M. Mengüç Öner Işık Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü oner@isikun.edu.tr Doç.Dr. M. Mengüç Öner Işık Üniversitesi Elektrik-Elektronik Bölümü oner@isikun.edu.tr 1. Adı Soyadı : Mustafa Mengüç ÖNER 2. Doğum Tarihi : 01.02.1977 3. Unvanı : Doçent Dr. 4. Öğrenim Durumu : ÖĞRENİM

Detaylı

Ayrık Dalgacık Dönüşümü Bileşenlerine Ait İstatistiksel Veriler ile Epileptik EEG İşaretlerinin Sınıflandırılması

Ayrık Dalgacık Dönüşümü Bileşenlerine Ait İstatistiksel Veriler ile Epileptik EEG İşaretlerinin Sınıflandırılması 214 Spring/Bahar Cilt/Vol: 5 - Sayı/Num: 15 DOI: 1.5824/139-1581.214.2.3.x Ayrık Dalgacık Dönüşümü Bileşenlerine Ait İstatistiksel Veriler ile Epileptik EEG İşaretlerinin Sınıflandırılması Tuğba PALABAŞ,

Detaylı

Elena Battini SÖNMEZ Önder ÖZBEK N. Özge ÖZBEK. 2 Şubat 2007

Elena Battini SÖNMEZ Önder ÖZBEK N. Özge ÖZBEK. 2 Şubat 2007 AVUÇ İZİ VE PARMAK İZİNE DAYALI BİR BİYOMETRİK TANIMA SİSTEMİ Elena Battini SÖNMEZ Önder ÖZBEK N. Özge ÖZBEK İstanbul Bilgi Üniversitesi Bilgisayar Bilimleri 2 Şubat 2007 Biyometrik Biyometrik, kişileri

Detaylı

Plazma İletiminin Optimal Kontrolü Üzerine

Plazma İletiminin Optimal Kontrolü Üzerine Plazma İletiminin Optimal Kontrolü Üzerine 1 Yalçın Yılmaz, 2 İsmail Küçük ve 3 Faruk Uygul *1 Faculty of Arts and Sciences, Dept. of Mathematics, Sakaya University, Sakarya, Turkey 2 Faculty of Chemical

Detaylı

Yard. Doç. Dr. İrfan DELİ. Matematik

Yard. Doç. Dr. İrfan DELİ. Matematik Unvanı Yard. Doç. Dr. Adı Soyadı İrfan DELİ Doğum Yeri ve Tarihi: Çivril/Denizli -- 06.04.1986 Bölüm: E-Posta Matematik irfandeli20@gmail.com, irfandeli@kilis.edu.tr AKADEMİK GELİŞİM ÜNİVERSİTE YIL Lisans

Detaylı

Veri Madenciliği Yaklaşımı ile Mesleki Yönlendirme Sistemi

Veri Madenciliği Yaklaşımı ile Mesleki Yönlendirme Sistemi Veri Madenciliği Yaklaşımı ile Mesleki Yönlendirme Sistemi YRD. DOÇ. DR. HÜSEYİN GÜRÜLER MUĞLA SITKI KOÇMAN ÜNİVERSİTESİ, TEKNOLOJİ FAKÜLTESİ, BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ Meslek Seçimi Meslek Seçimi

Detaylı

Güz Dönemi Zorunlu Dersleri

Güz Dönemi Zorunlu Dersleri T.C. AKSARAY ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRİK-ELEKTRONİK ve BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI Güz Dönemi Zorunlu Dersleri EEBM 501 İleri Mühendislik Matematiği

Detaylı

Çoktan Seçmeli Değerlendirme Soruları Akış Şemaları İle Algoritma Geliştirme Örnekleri Giriş 39 1.Gündelik Hayattan Algoritma Örnekleri 39 2.Say

Çoktan Seçmeli Değerlendirme Soruları Akış Şemaları İle Algoritma Geliştirme Örnekleri Giriş 39 1.Gündelik Hayattan Algoritma Örnekleri 39 2.Say İÇİNDEKİLER 1. Bilgisayarın Yapısı Ve Programlama Dilleri Giriş 1 Bilgisayar ve Programlamanın Kısa Bir Tarihçesi 2 Donanım ve Yazılım Kavramları 3 Bilgisayarın Donanımsal yapısı 4 Giriş Birimi (Input

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 11 Hiperspektral Görüntülerde Kümeleme ve Sınıflandırma Alp Ertürk alp.erturk@kocaeli.edu.tr Sınıflandırma Sınıflandırma işleminin amacı, her piksel vektörüne bir ve

Detaylı

Eğiticili (supervised) öğrenme: Sınıflandırma (classification) Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğu bilinir

Eğiticili (supervised) öğrenme: Sınıflandırma (classification) Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğu bilinir Eğiticili (supervised) öğrenme: Sınıflandırma (classification) Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğu bilinir Eğiticisiz (unsupervised) öğrenme: Kümeleme (clustering) Hangi nesnenin hangi

Detaylı

Gezgin Etmen Sistemlerinin Başarım Ölçümü: Benzetim Tekniği

Gezgin Etmen Sistemlerinin Başarım Ölçümü: Benzetim Tekniği Gezgin Etmen Sistemlerinin Başarım Ölçümü: Benzetim Tekniği Gürol Erdoğan 1, Mustafa Yıldız 1, Mehmet Erdem Türsem 2, Selahattin Kuru 1 1 Enformatik Uygulama ve Araştırma Merkezi, Işık Üniversitesi, İstanbul

Detaylı

91-03-01-517 YAPAY ZEKA (Artificial Intelligence)

91-03-01-517 YAPAY ZEKA (Artificial Intelligence) 91-03-01-517 YAPAY ZEKA (Artificial Intelligence) Dersi Veren Öğretim Üyesi Y. Doç. Dr. Aybars UĞUR Ders Web Sayfası : http://yzgrafik.ege.edu.tr/~ugur 27.09.2009 Y. Doç. Dr. Aybars UĞUR (517 Yapay Zeka)

Detaylı

Ö Z G E Ç M İ Ş. 1. Adı Soyadı: Mustafa GÖÇKEN. 2. Doğum Tarihi: 12 Haziran 1976. 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Ph.D.

Ö Z G E Ç M İ Ş. 1. Adı Soyadı: Mustafa GÖÇKEN. 2. Doğum Tarihi: 12 Haziran 1976. 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Ph.D. Ö Z G E Ç M İ Ş 1. Adı Soyadı: Mustafa GÖÇKEN 2. Doğum Tarihi: 12 Haziran 1976 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Ph.D. Derece Alan Üniversite Yıl Lisans Endüstri Mühendisliği Çukurova Üniversitesi

Detaylı

ÖZGEÇMİŞ. 7. Yayınlar 7.1 Uluslararası hakemli dergilerde yayınlanan makaleler (SCI,SSCI,Arts and Humanities)

ÖZGEÇMİŞ. 7. Yayınlar 7.1 Uluslararası hakemli dergilerde yayınlanan makaleler (SCI,SSCI,Arts and Humanities) ÖZGEÇMİŞ 1. Adı Soyadı : Ebru Arısoy SARAÇLAR 2. Doğum Tarihi : 01.01.1979 3. Unvanı : Doktor 4. Öğrenim Durumu : Doktora Derece Alan Üniversite Yıl Lisans Elektrik-Elektronik Mühendisliği Boğaziçi Üniversitesi

Detaylı

BBO Algoritmasının Optimizasyon Başarımının İncelenmesi Optimization Performance Investigation of BBO Algorithm

BBO Algoritmasının Optimizasyon Başarımının İncelenmesi Optimization Performance Investigation of BBO Algorithm BBO Algoritmasının Optimizasyon Başarımının İncelenmesi Optimization Performance Investigation of BBO Algorithm Tufan İNAÇ 1, Cihan KARAKUZU 2 1 Bilgisayar Mühendisliği Anabilim Dalı Bilecik Şeyh Edebali

Detaylı

Görev Unvanı Alan Üniversite Yıl Prof. Dr. Elek.-Eln Müh. Çukurova Üniversitesi Eylül 2014

Görev Unvanı Alan Üniversite Yıl Prof. Dr. Elek.-Eln Müh. Çukurova Üniversitesi Eylül 2014 ÖZGEÇMİŞ 1. Adı Soyadı : MUSTAFA GÖK 2. Doğum Tarihi: : 1972 3. Unvanı : Prof. Dr. 4. Öğrenim Durumu Derece Alan Üniversite Yıl Lisans Elektronik Mühendisliği İstanbul Üniversitesi 1995 Yüksek Lisans Electrical

Detaylı

YAPAY SİNİR AĞI KULLANARAK DEPREM EĞİLİMİNİN KESTİRİMİ. Umut FIRAT

YAPAY SİNİR AĞI KULLANARAK DEPREM EĞİLİMİNİN KESTİRİMİ. Umut FIRAT YAPAY SİNİR AĞI KULLANARAK DEPREM EĞİLİMİNİN KESTİRİMİ Umut FIRAT ufirat@yahoo.com Öz: Depremler yeryüzünde en çok yıkıma neden olan doğal afetlerdir. Bu durum, depremlerin önceden tahmin edilmesi fikrini

Detaylı

YRD. DOÇ. DR. KADİR SABANCI

YRD. DOÇ. DR. KADİR SABANCI YRD. DOÇ. DR. KADİR SABANCI Adres : Karamanoğlu Mehmetbey Üniversitesi, Mühendislik Fakültesi, Elektrik- Elektronik Mühendisliği Bölümü, Yunus Emre Yerleşkesi, 70100, Karaman Telefon : +90 338 226 20 00/5160

Detaylı

Hidden Markov Model. Forward Algoritması Viterbi Algoritması. Doç.Dr.Banu Diri. Rasgele Olmayan /Gerekirci Model

Hidden Markov Model. Forward Algoritması Viterbi Algoritması. Doç.Dr.Banu Diri. Rasgele Olmayan /Gerekirci Model Hidden Markov Model Forward Algoritması Viterbi Algoritması Doç.Dr.Banu Diri Rasgele Olmayan /Gerekirci Model Bir trafik lambası düşünelim; ışıkların sırasıyla red - red/amber - green - amber - red. Bu

Detaylı

MAKİNE ÖĞRENMESİ YARDIMIYLA OPTİK KARAKTER TANIMA SİSTEMİ OPTICAL CHARACTER RECOGNITION SYSTEM VIA MACHINE LEARNING

MAKİNE ÖĞRENMESİ YARDIMIYLA OPTİK KARAKTER TANIMA SİSTEMİ OPTICAL CHARACTER RECOGNITION SYSTEM VIA MACHINE LEARNING MAKİNE ÖĞRENMESİ YARDIMIYLA OPTİK KARAKTER TANIMA SİSTEMİ OPTICAL CHARACTER RECOGNITION SYSTEM VIA MACHINE LEARNING Burcu BEKTAŞ Öğr.Gör., burcu.bektas@istanbul.edu.tr, İstanbul Üniversitesi, Teknik Bilimler

Detaylı

ADNAN MENDERES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI MATEMATİK PROGRAMI DERS LİSTESİ

ADNAN MENDERES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI MATEMATİK PROGRAMI DERS LİSTESİ Ders List ADNAN MENDERES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI MATEMATİK PROGRAMI DERS LİSTESİ 17.11.2016 Yüksek Lisans Dersleri Kod Ders Adı Ders Adı (EN) T U L K AKTS MTK501 Reel

Detaylı

3.3. İki Tabanlı Sayı Sisteminde Dört İşlem

3.3. İki Tabanlı Sayı Sisteminde Dört İşlem 3.3. İki Tabanlı Sayı Sisteminde Dört İşlem A + B = 2 0 2 1 (Elde) A * B = Sonuç A B = 2 0 2 1 (Borç) A / B = Sonuç 0 + 0 = 0 0 0 * 0 = 0 0 0 = 0 0 0 / 0 = 0 0 + 1 = 1 0 0 * 1 = 0 0 1 = 1 1 0 / 1 = 0 1

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Dijital Sinyal İşleme EEE

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Dijital Sinyal İşleme EEE DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Dijital Sinyal İşleme EEE409 7 3+0 3 5 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Seçmeli / Yüz Yüze

Detaylı

Yapay Sinir Ağları ile Web İçeriklerini Sınıflandırma. Yazarlar: Esra Nergis Güven, Hakan Onur ve Şeref Sağıroğlu. Sunan : Esra Nergis Güven

Yapay Sinir Ağları ile Web İçeriklerini Sınıflandırma. Yazarlar: Esra Nergis Güven, Hakan Onur ve Şeref Sağıroğlu. Sunan : Esra Nergis Güven Yapay Sinir Ağları ile Web İçeriklerini Sınıflandırma Yazarlar: Esra Nergis Güven, Hakan Onur ve Şeref Sağıroğlu Sunan : Esra Nergis Güven İçerik Giriş Amaç ve Kapsam Sınıflandırma Geliştirilen Sistem

Detaylı

MÜFREDAT DERS LİSTESİ

MÜFREDAT DERS LİSTESİ MÜFREDAT DERS LİSTESİ MÜHENDİSLİK FAK. / BİLGİSAYAR MÜHENDİSL / 2010 BİLGİSAYAR MÜHENDİSLİĞİ Müfredatı 0504101 Matematik I Calculus I 1 GÜZ 4 5 Z 0504102 Genel Fizik I General Physics I 1 GÜZ 4 4 Z 0504103

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

1: DENEYLERİN TASARIMI VE ANALİZİ...

1: DENEYLERİN TASARIMI VE ANALİZİ... İÇİNDEKİLER Bölüm 1: DENEYLERİN TASARIMI VE ANALİZİ... 1 1.1. Deneyin Stratejisi... 1 1.2. Deneysel Tasarımın Bazı Tipik Örnekleri... 11 1.3. Temel Kurallar... 16 1.4. Deneyleri Tasarlama Prensipleri...

Detaylı

KAHKAHA TANIMA İÇİN RASSAL ORMANLAR

KAHKAHA TANIMA İÇİN RASSAL ORMANLAR KAHKAHA TANIMA İÇİN RASSAL ORMANLAR Heysem Kaya, A. Mehdi Erçetin, A. Ali Salah, S. Fikret Gürgen Bilgisayar Mühendisliği Bölümü Boğaziçi Üniversitesi / Istanbul Akademik Bilişim'14, Mersin, 05.02.2014

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

Coğrafi Veri Üretimi Bakış Açısı İle TÜBİTAK UZAY daki Uzaktan Algılama Araştırmaları

Coğrafi Veri Üretimi Bakış Açısı İle TÜBİTAK UZAY daki Uzaktan Algılama Araştırmaları Coğrafi Veri Üretimi Bakış Açısı İle TÜBİTAK UZAY daki Uzaktan Algılama Araştırmaları Sunan: Dr. Ufuk SAKARYA TÜBİTAK UZAY Katkıda Bulunanlar: Mustafa Teke, Can Demirkesen, Ramazan Küpçü, Hüsne Seda Deveci,

Detaylı

TÜRK İŞARET DİLİ TANIMA SİSTEMİ ( TURKISH SIGN LANGUAGE RECOGNITION SYSTEM )

TÜRK İŞARET DİLİ TANIMA SİSTEMİ ( TURKISH SIGN LANGUAGE RECOGNITION SYSTEM ) TÜRK İŞARET DİLİ TANIMA SİSTEMİ ( TURKISH SIGN LANGUAGE RECOGNITION SYSTEM ) Şekil 1 İşaret dili tanıma örnek ekran görüntüsü Türk İşaret Dili Tanıma projesi 2005 2006 yılının 2. döneminde Yıldız Teknik

Detaylı

Çift Tonlu Çoklu Frekans Kodlama Sisteminin Optimize Edilmesi

Çift Tonlu Çoklu Frekans Kodlama Sisteminin Optimize Edilmesi ISSN: 2148-0273 Cilt 3, Sayı 1, 2015 Vol. 3, Issue 1, 2015 Çift Tonlu Çoklu Frekans Kodlama Sisteminin Optimize Edilmesi Halil Kaygısız 1, Abdülkadir Çakır 2 Özet Çift Tonlu Çoklu Frekans (Dual Tone Multi

Detaylı

Hazırladığı Tezler Yüksek lisans tezi

Hazırladığı Tezler Yüksek lisans tezi ÖZGEÇMİŞ 1 Adı Soyadı : Dr. Serdar BİROĞUL Doğum Yeri ve Tarihi : İzmit, 10/09/1980 Yabancı Dil : İngilizce İş adresi : Muğla Üniversitesi Teknoloji Fakültesi Elektronik-Bilgisayar Teknolojisi Bölümü Cep

Detaylı

Fatih Kölmek. ICCI 2012-18.Uluslararası Enerji ve Çevre Fuarı ve Konferansı 25 Nisan 2012, İstanbul, Türkiye

Fatih Kölmek. ICCI 2012-18.Uluslararası Enerji ve Çevre Fuarı ve Konferansı 25 Nisan 2012, İstanbul, Türkiye Fatih Kölmek ICCI 2012-18.Uluslararası Enerji ve Çevre Fuarı ve Konferansı 25 Nisan 2012, İstanbul, Türkiye Türkiye Elektrik Piyasası Dengeleme ve Uzlaştırma Mekanizması Fiyat Tahmin Modelleri Yapay Sinir

Detaylı

GÜR EMRE GÜRAKSIN AFYON KOCATEPE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ / BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ / AFYONKARAHİSAR

GÜR EMRE GÜRAKSIN AFYON KOCATEPE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ / BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ / AFYONKARAHİSAR GÜR EMRE GÜRAKSIN AFYON KOCATEPE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ / BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ / AFYONKARAHİSAR KİŞİSEL BİLGİLER İş: (272) 228 14 23 E-mail: emreguraksin@aku.edu.tr Uyruğu Doğum Yeri

Detaylı

Türkçe Dokümanlar İçin N-gram Tabanlı Yeni Bir Sınıflandırma(Ng-ind): Yazar, Tür ve Cinsiyet

Türkçe Dokümanlar İçin N-gram Tabanlı Yeni Bir Sınıflandırma(Ng-ind): Yazar, Tür ve Cinsiyet Türkçe Dokümanlar İçin N-gram Tabanlı Yeni Bir Sınıflandırma(Ng-ind): Yazar, Tür ve Cinsiyet Sibel Doğan 1, Banu Diri 2 1,2 Yıldız Teknik Üniversitesi, Bilgisayar Mühendisliği, 34349 İstanbul-Türkiye 1

Detaylı

Bilişim Sistemleri Değerlendirme Modeli ve Üç Örnek Olay İncelemesi

Bilişim Sistemleri Değerlendirme Modeli ve Üç Örnek Olay İncelemesi Bilişim Sistemleri Değerlendirme Modeli ve Üç Örnek Olay İncelemesi Özet Dr. Sevgi Özkan ve Prof. Dr Semih Bilgen Enformatik Enstitüsü, Orta Doğu Teknik Üniversitesi, Ankara Tel: (312) 210 3796 e-posta:

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ Adı Soyadı: Çetin KURNAZ Doğum Tarihi: 1 Ekim 1978 Öğrenim Durumu: Derece Alan Üniversite Yıl Lisans Elektrik-Elektronik Mühendisliği Ondokuz Mayıs Üniversitesi 1999

Detaylı

Örüntü Tanıma (EE 448) Ders Detayları

Örüntü Tanıma (EE 448) Ders Detayları Örüntü Tanıma (EE 448) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Örüntü Tanıma EE 448 Bahar 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin Dili Dersin Türü Dersin

Detaylı

BİLGİ VE BELGE YÖNETİMİ BÖLÜMÜ LİSANS EĞİTİM BAHAR DÖNEMİ PROGRAMI

BİLGİ VE BELGE YÖNETİMİ BÖLÜMÜ LİSANS EĞİTİM BAHAR DÖNEMİ PROGRAMI ANADAL EĞİTİM PROGRAMI ZORUNLU DERSLERİ SINIF / II.YARIYIL in önceki eğitim programında eşdeğer bir dersi var mı? 3 YDİ 0 YDF 0 YDA 0 Temel Yabancı Dil (İngilizce) Temel Yabancı Dil (Fransızca) Temel Yabancı

Detaylı

DOÇ. DR. HAKAN GÜRKAN Işık Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü hakan@isikun.edu.tr

DOÇ. DR. HAKAN GÜRKAN Işık Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü hakan@isikun.edu.tr DOÇ. DR. HAKAN GÜRKAN Işık Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü hakan@isikun.edu.tr 1. Adı Soyadı : Hakan Gürkan 2. Doğum Tarihi : 04.02.1973 3. Unvanı : Doçent 4.

Detaylı

AYTUĞ ONAN CELAL BAYAR ÜNİVERSİTESİ, BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ SERDAR KORUKOĞLU EGE ÜNİVERSİTESİ, BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

AYTUĞ ONAN CELAL BAYAR ÜNİVERSİTESİ, BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ SERDAR KORUKOĞLU EGE ÜNİVERSİTESİ, BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Metin Sınıflandırmada Öznitelik Seçim Yöntemlerinin Değerlendirilmesi AYTUĞ ONAN CELAL BAYAR ÜNİVERSİTESİ, BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ SERDAR KORUKOĞLU EGE ÜNİVERSİTESİ, BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Detaylı

PARALEL VERİ MADENCİLİĞİ ALGORİTMALARI. BAŞARIM 09, 15-18 Nisan 2009, ODTÜ, Ankara

PARALEL VERİ MADENCİLİĞİ ALGORİTMALARI. BAŞARIM 09, 15-18 Nisan 2009, ODTÜ, Ankara PARALEL VERİ MADENCİLİĞİ ALGORİTMALARI BAŞARIM 09, 15-18 Nisan 2009, ODTÜ, Ankara Veri Madenciliğine Genel Bir Bakış Veri Madenciliğinin Görevleri Sınıflama Seri Sınıflama Algoritmaları Paralel Sınıflama

Detaylı

Akım Modlu Çarpıcı/Bölücü

Akım Modlu Çarpıcı/Bölücü Akım Modlu Çarpıcı/Bölücü (Novel High-Precision Current-Mode Multiplier/Divider) Ümit FARAŞOĞLU 504061225 1/28 TAKDİM PLANI ÖZET GİRİŞ AKIM MODLU ÇARPICI/BÖLÜCÜ DEVRE ÖNERİLEN AKIM MODLU ÇARPICI/BÖLÜCÜ

Detaylı

Büyük, Dağıtık, Veri Yoğunluklu Uygulamalarda Programlama Paradigmaları

Büyük, Dağıtık, Veri Yoğunluklu Uygulamalarda Programlama Paradigmaları Büyük, Dağıtık, Veri Yoğunluklu Uygulamalarda Programlama Paradigmaları Güven Fidan AGMLAB Bilişim Teknolojileri 18/10/11 GRID ÇALIŞTAYI 2007 1 MapReduce Nedir? Büyük data kümelerini işlemek ve oluşturmak

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Sınıflandırma yöntemleri Karar ağaçları ile sınıflandırma Entropi Kavramı ID3 Algoritması C4.5

Detaylı

SİNYAL TEMELLERİ İÇİN BİR YAZILIMSAL EĞİTİM ARACI TASARIMI A SOFTWARE EDUCATIONAL MATERIAL ON SIGNAL FUNDAMENTALS

SİNYAL TEMELLERİ İÇİN BİR YAZILIMSAL EĞİTİM ARACI TASARIMI A SOFTWARE EDUCATIONAL MATERIAL ON SIGNAL FUNDAMENTALS SİNYAL TEMELLERİ İÇİN BİR YAZILIMSAL EĞİTİM ARACI TASARIMI Öğr. Gör. Hakan Aydogan Uşak Üniversitesi hakan.aydogan@usak.edu.tr Yrd. Doç. Dr. Selami Beyhan Pamukkale Üniversitesi sbeyhan@pau.edu.tr Özet

Detaylı

Dijital Görüntü İşleme Teknikleri

Dijital Görüntü İşleme Teknikleri Teknikleri Ders Notları, 2013 Doç. Dr. Fevzi Karslı Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 08 Ekim 2013 Salı 1 Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, temel kavramlar, kaynaklar.

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Sınıflandırıcıların Değerlendirilmesi Skorlar Karışıklık matrisi Accuracy Precision Recall

Detaylı

SAYISAL MODÜLASYON TANIMA SİSTEMLERİ İÇİN BAYES KARAR KURALLARI SINIFLANDIRICISININ KULLANIMI

SAYISAL MODÜLASYON TANIMA SİSTEMLERİ İÇİN BAYES KARAR KURALLARI SINIFLANDIRICISININ KULLANIMI ISSN:306-3 e-journal of New World Sciences Academy 008, Volume: 3, Number: Article Number: A0056 NATURAL AND APPLIED SCIENCES ELECTRONIC AND COMPUTER ENGINEERING Received: July 007 Accepted: December 007

Detaylı

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics 2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics Özet: Bulanık bir denetleyici tasarlanırken karşılaşılan en önemli sıkıntı, bulanık giriş çıkış üyelik fonksiyonlarının

Detaylı

SU KALITE SİSTEMİ. Türkiye Halk Sağlığı Kurumu

SU KALITE SİSTEMİ. Türkiye Halk Sağlığı Kurumu Türkiye Halk Sağlığı Kurumu Başarsoft Su Kalite Bilgi Dokumanı 10.10.2013 İçindekiler 1. SU KALITE SİSTEMİ... 2 1.1 Sistemin Genel Amaçları:... 3 1.2 Kullanılan Bileşen ve Teknolojiler:... 4 2. UYGULAMALARA

Detaylı

PROJEM İSTANBUL ARAŞTIRMA PROJESİ BİLGİSAYARLI GÖRÜ VE SINIFLANDIRMA TEKNİKLERİYLE ARAZİ KULLANIMININ OTOMATİK OLARAK BULUNMASI

PROJEM İSTANBUL ARAŞTIRMA PROJESİ BİLGİSAYARLI GÖRÜ VE SINIFLANDIRMA TEKNİKLERİYLE ARAZİ KULLANIMININ OTOMATİK OLARAK BULUNMASI PROJEM İSTANBUL ARAŞTIRMA PROJESİ BİLGİSAYARLI GÖRÜ VE SINIFLANDIRMA TEKNİKLERİYLE ARAZİ KULLANIMININ OTOMATİK OLARAK BULUNMASI Proje Yüklenicisi: Yeditepe Üniversitesi Mühendislik ve Mimarlık Fakültesi

Detaylı

Yeşim AKSAN, Selma Ayşe ÖZEL, Yasin BEKTAŞ, Mustafa AKSAN, Umut Ufuk DEMİRHAN, Ümit MERSİNLİ, Hakan YILMAZER. Sunan : Yasin BEKTAŞ.

Yeşim AKSAN, Selma Ayşe ÖZEL, Yasin BEKTAŞ, Mustafa AKSAN, Umut Ufuk DEMİRHAN, Ümit MERSİNLİ, Hakan YILMAZER. Sunan : Yasin BEKTAŞ. Yeşim AKSAN, Selma Ayşe ÖZEL, Yasin BEKTAŞ, Mustafa AKSAN, Umut Ufuk DEMİRHAN, Ümit MERSİNLİ, Hakan YILMAZER Sunan : Yasin BEKTAŞ 5 Şubat 2014 1. Giriş 2. Alanyazın 3. Açık Kaynak / Ücretsiz Yazılımlarla

Detaylı

KIRIKKALE ÜNİVERSİTESİ FEN-EDEBIYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI

KIRIKKALE ÜNİVERSİTESİ FEN-EDEBIYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI KIRIKKALE ÜNİVERSİTESİ FEN-EDEBIYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI Kırıkkale Üniversitesi Fen-Edebiyat Fakültesi İstatistik Bölümü Lisans Programı, Kırıkkale Üniversitesi Önlisans ve Lisans

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ Adı Soyadı E-posta İletişim Adresileri : Özge CAĞCAĞ YOLCU : ozge.cagcag_yolcu@kcl.ac.uk ozgecagcag@yahoo.com : Giresun Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği

Detaylı

91-03-01-529 SAYISAL GÖRÜNTÜ İŞLEME (Digital Image Processing)

91-03-01-529 SAYISAL GÖRÜNTÜ İŞLEME (Digital Image Processing) 91-03-01-529 SAYISAL GÖRÜNTÜ İŞLEME (Digital Image Processing) Dersi Veren Öğretim Üyesi Doç. Dr. Aybars UĞUR Ders Web Sayfası : http://yzgrafik.ege.edu.tr/~ugur 1 Amaçlar Öğrencileri Matlab gibi teknik

Detaylı

Türkçe de Ünlülerin Formant Analizi

Türkçe de Ünlülerin Formant Analizi Türkçe de Ünlülerin Formant Analizi Oytun Türk*, Ömer Şayli**, A. Sumru Özsoy***, Levent M. Arslan* Boğaziçi Üniversitesi *Elektrik-Elektronik Mühendisliği Bölümü **Biyomedikal Mühendisliği Enstitüsü ***Batı

Detaylı

ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ SANAL ARTIRILMIŞ VE AKILLI TEKNOLOJİLER (SAAT) LABORATUVARI SAAT Laboratuvarı Koordinatör: Yrd. Doç. Dr. Gazi Erkan BOSTANCI SAAT

Detaylı

İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL oda no: 303 (T4 / EEM)

İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL oda no: 303 (T4 / EEM) İşaret ve Sistemler İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL aakgul@sakarya.edu.tr oda no: 303 (T4 / EEM) Kaynaklar: 1. Signals and Systems, Oppenheim. (Türkçe versiyonu: Akademi Yayıncılık)

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler Mühendislikte İstatistik Yöntemler Referans Kitaplar Türkçe : Mühendisler için İstatistik, Mehmetçik Bayazıt, Beyhan Oğuz, Birsen Yayınevi Mühendislikte İstatistik Metodlar, Erdem KOÇ,ÇÜ, Müh.Mim.Fak.

Detaylı

Yrd. Doç. Dr. Mustafa NİL

Yrd. Doç. Dr. Mustafa NİL Yrd. Doç. Dr. Mustafa NİL ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Fırat Üniversitesi Elektrik-Elektronik Mühendisliği Y. Kocaeli Üniversitesi Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

Detaylı

Biyometrik Sistemlerin Örüntü Tanıma Perspektifinden İncelenmesi ve Ses Tanıma Modülü Simülasyonu

Biyometrik Sistemlerin Örüntü Tanıma Perspektifinden İncelenmesi ve Ses Tanıma Modülü Simülasyonu Biyometrik Sistemlerin Örüntü Tanıma Perspektifinden İncelenmesi ve Ses Tanıma Modülü Simülasyonu Gülin Dede 1 Murat Hüsnü Sazlı 2 1 Savunma Bilimleri Enstitüsü, Kara Harp Okulu, Ankara 2 Elektronik Mühendisliği

Detaylı

Formüller ÜNİTE 5. Bu üniteyi çalıştıktan sonra; Formüller Menüsü İşlev Kitapçığı Tanımlı Adlar Formül Denetleme Hesaplama

Formüller ÜNİTE 5. Bu üniteyi çalıştıktan sonra; Formüller Menüsü İşlev Kitapçığı Tanımlı Adlar Formül Denetleme Hesaplama Formüller ÜNİTE 5 Formüller Menüsü İşlev Kitapçığı Tanımlı Adlar Formül Denetleme Hesaplama Bu üniteyi çalıştıktan sonra; Microsoft Excel hakkında temel işlemler öğrenildikten sonra hücrelere uygulanacak

Detaylı

ÜÇ BOYUTLU M-BANTLI DALGACIK DÖNÜŞÜMÜ İLE TRAFİK TIKANIKLIĞININ BELİRLENMESİ

ÜÇ BOYUTLU M-BANTLI DALGACIK DÖNÜŞÜMÜ İLE TRAFİK TIKANIKLIĞININ BELİRLENMESİ ÜÇ BOYUTLU M-BANTLI DALGACIK DÖNÜŞÜMÜ İLE TRAFİK TIKANIKLIĞININ BELİRLENMESİ 1. Giriş Tolga Kurt, Emin Anarım Boğaziçi Üniversitesi, Elektrik-Elektronik Mühendisliği 80815,Bebek, İstanbul-Türkiye e-posta:

Detaylı

Fonksiyon Optimizasyonunda Genetik Algoritmalar

Fonksiyon Optimizasyonunda Genetik Algoritmalar 01-12-06 Ümit Akıncı Fonksiyon Optimizasyonunda Genetik Algoritmalar 1 Fonksiyon Optimizasyonu Fonksiyon optimizasyonu fizikte karşımıza sık çıkan bir problemdir. Örneğin incelenen sistemin kararlı durumu

Detaylı

DEVAM ETMEKTE OLAN ÖĞRENCİLERE UYGULANACAK PROGRAMLAR VE DERSLERİN İNTİBAKLARI

DEVAM ETMEKTE OLAN ÖĞRENCİLERE UYGULANACAK PROGRAMLAR VE DERSLERİN İNTİBAKLARI Updated at 28.04.2016 DEVAM ETMEKTE OLAN ÖĞRENCİLERE UYGULANACAK PROGRAMLAR VE DERSLERİN İNTİBAKLARI A) Birinci Sınıfa 2013 2014 Öğretim Yılında Başlayan Öğrenciler: III. Yarıyıl (2014 2015 Güz) IV. Yarıyıl

Detaylı