Sistem Dinamiği ve Modellemesi
|
|
|
- Mehmet Poçan
- 9 yıl önce
- İzleme sayısı:
Transkript
1 Sitm Diamiği v Modllmi aplac Traformayou v Trafr Fokiyou aplac Traformu : Bir itmi diamik davraışı, o itmi matmatikl modlii ifad d difraiyl dklmlri çözümüd kullaıla bir matmatikl yötmdir. f(t foiyouu aplac Traformayou [ ( t ] F ( f ( t dt f F( foiyouu Tr aplac Traformayou [ F ( ] f ( t π j σ j σ j F ( t d σ m w. j 7.. aplac Traformu : aplac itgrali kullaılarak difraiyl opratörlr karmaşık ayı uzayıda poliomlara çvrilirlr. Bu ayd itmi çözümü yölik türv, itgral alma v zamada kaydırarak çarpma gibi işlmlr poliomlar il yapıla cbirl işlmlr döüşür. aplac Traformu Avatajları: aplac döüşümü mtodu il difraiyl dklm çözümüü diğr avatajları şu şkild vrilbilir: Dklmi döüşümü, tablolar ayid kolaylıkla yapılabilir. Başlagıç şartları çözüm il brabr ld dildiğid, abitlri ayrıca tayi grk yoktur. Döüşüm ifadi itm Hakkıda çözümd öc fikir vrir aplac Traformuu Doğruallığı: aplac döüşümü doğrual bir işlmdir: { a f ( t a g ( t } { a f ( t a g ( t } a { f ( t } a { g ( t } t a f ( t dt a a F ( a G ( t g ( t dt Bazı Taımlı Fokiyoları aplac Traformları: aplac Traformuu kullaarak difraiyl dklm çözmk itdiğimizd yapacağımız işlm girdi fokiyoumuzu v difraiyl dklmimizi aplac Traformayolarıı alıp, buları birbiri il çarpıp ld ttiğimiz ifadi tr aplac Traformayouu alırız. Buu içi ilk olarak itm davraışıı modllmkt kullaıla taımlı girdi fokiyolarıı aplac Traformayolarıı blirlmi grkir
2 Bazı Taımlı Fokiyoları aplac Traformları: u(t(t Birim Baamak fokiyou: Baamak fokiyoları t uygulama aıa kadar bu ada ora abit bir dğr alırlar.birim baamak fokiyo içi bu dğr dir. Birim baamak fokiyou aplac Traformu: F (.. dt. ( ( t aplac Döüşümü doğrual bir işlm olduğu içi birim baamak fokiyou a il çarpıldığıda aplac Döüşümü alımış fokiyoda a il çarpılır. Bazı Taımlı Fokiyoları aplac Traformları: u(tt Birim Rampa fokiyou: Rampa fokiyoları t uygulama aıa kadar bu ada ora doğrual arta dğrlr alırlar. Birim rampa fokiyo içi bu doğruu ğimi dir Birim rampa fokiyou aplac Traformu: F ( t t. t. dt. t o. t u t, du, dv dt, v aplac Döüşümü doğrual bir işlm olduğu içi birim rampa fokiyou a ğimli olduğu zama aplac Döüşümü alımış fokiyoda a il çarpılır. t Bazı Taımlı Fokiyoları aplac Traformları: f(t -at Ütl Fokiyou : Doğal logaritma tabalı ütl fokiyolar il difraiyl dklmlri çözümüd ıklık il karşılaşılmaktadır. F ( at t.. dt. a ( a. t a Sitm adir ifadi -at şklid bir girdi uygulaada ifadi Tr aplac döüşümü alıırk ıklık il karşımıza çıkmaktadır. a Bazı Taımlı Fokiyoları aplac Traformları: Hrhagi bir f(t fokiyouu -at il çarpılıp aplac Döüşümüü alımaı: at at ( [ f ( t ] [ f ( t ] dt f ( t a t dt F ( a at [ f ( t ] F ( a Görüldüğü gibi f(t i aplac karşılığı F( ik -at f(t ifadi a dğişk döüşümü yapılarak bulumaktadır. Bu işlm torik olarak frka ortamıda kayma diy taımlaır Bazı Taımlı Fokiyoları aplac Traformları: u(ti(wt/co(wt fokiyou: Siuoydal fokiyolar itmlri frka davraışlarıı blirlmk içi kullaıla rfra girdilrdir. Bu fokiyoları aplac döüşümlri Eulr döüşümlri v frka ortamıda kayma özlliği kullaılarak kolayca buluabilmktdir. Bazı Taımlı Fokiyoları aplac Traformları: u(ti(wt/co(wt fokiyou: iwt co( wt i i( wt iwt { } { co( wt } i{ i( wt } iwt iw { ( t. } iw ( iw ( iw { co( wt } i{ i( wt } i w { co( wt } w w { i( wt } w w w
3 Bazı Taımlı Fokiyoları aplac Traformları: İmpul girdii aplac traformu: Taımladığımız tüm girdilr difraiyl dklm üzrid bir işlm yapmaktaydılar, yai dışarıda ürkli v kalıcı bir girdi tkii oluşturmaktaydılar. Bu bp il hpii aplac Döüşümlri dğişkii içrmktydilr v hpi difraiyl dklmi zorlamış çözümlrii vrmktdir. Sitmi ifad d difraiyl dklmii kdi öz davraışıı yai homoj çözümüü aplac ortamıda taımlayabilmk içi aplac döüşümü ola bir fokiyoa ihtiyacımız vardır. Bu fokiyo çok küçük bir alık itm tkiii ifad d impul fokiyoudur. V taımı grği aplac döüşümü: [ δ ( t ] δ ( t dt aplac Döüşümüü Bazı Özlliklri: Diamik davraışları ifad d difraiyl dklmlr çşitli mrtblrd zamaa gör türv ifadlrii toplamları şklid olurlar. Bu yüzd bir fokiyou türvii aplac Döüşümü çözümlm yapabilmk içi grklidir. df ( t u, du dt, dv dt df ( t, v f ( t dt df f dt ( t f ( t ( dt f ( f ( t dt df ( t [ ] F ( f ( dt aplac Döüşümüü Bazı Özlliklri: Bir fokiyou türvii aplac Döüşümü: f ( t. F ( f ( f ( t. F (. f ( f ( 3 f ( t. F (. f (. f ( f ( df ( t ( F ( f ( f '(... f ( dt Bir fokiyou itgral aplac Döüşümü: f ( t dt f ( t dt F ( aplac Döüşümüü Bazı Özlliklri: Başlagıç v o dğr tormlri: lim f ( t limf ( t limf ( t lim. F ( t So dğr tormi itmlri düzli rjim cvabıı bulmakta kullaılır Ötlmiş fokiyou aplac döüşümü: f ( t a f( T a [ f ( t a ] [ f ( T ]. [ f ( t ] Girdi fokiyoları hr zama t aıda tki olmayıp blirli bir ür ora itm uygulaabilirlr aplac Döüşümüü Bazı Özlliklri: Ötlmiş fokiyou aplac döüşümü: A t A f ( t F ( t < İpat : F( f(t dt dt A F ( A A A dt aplac Döüşümüü Bazı Özlliklri: Bir kikli fokiyou aplac döüşümü: f(t At t < t t > f(t At A t Au t ğim A
4 aplac Döüşümüü Bazı Özlliklri: Bir kikli fokiyou aplac döüşümü: f(t At t < t t > A f(t At A t Au t, F( A ğim A A aplac Döüşümüü Tri: E gl hali il F( fokiyou rayol bir kir gibi aşağıdaki şkild yazılabilir(>m içi: A am m m (. am.... a F( B( b. b.... b c c ck c F( k Hr hagi bir c k yı bulmak içi araa c k abitii paydaı il hr iki taraf çarpılır v dklmd k kour v baitlştirilmiş ifad içi tr aplac döüşümü yapılır: [ ] A( ck ( k. B( k t f ( t F( c. c.... c. t t aplac Döüşümüü Tri (Tablolar: Örk: aplac Döüşümüü Tri: Örk: F( F( 3 t f ( t 5 t 8 3 V ( V ( V ( ( v( t it aplac Döüşümüü Tri (Kirlri Ayrılmaı: Örk: A B ( ( 3 3 A( 3 B( ( ( 3 ( ( 3 A B 3 A B ( ( 3 3 t 3t aplac Döüşümüü Tri (Kirlr Ayırma: A( c c c ( 3 B( F c.( (.(.( c.( (.(.( c3.( 3 6 (.(.( 3 F( t 5. t 6. 3t
5 Trafr Fokiyou: Bir itmi diamik davraışıı ifad d difraiyl dklmi aplac ortamıdaki karşılığı trafr fokiyoudur. Trafr fokiyou, itmi ukutt harkt başladığı kabul dilrk (yai tüm başlagıç şartları ik difraiyl dklmi iki tarafııda aplac Traforrmu alııp ld dil poliomları çıktı/girdi olacak şkild düzlmi il ld dilir. f (t mx(t && cx(t & kx(k x ( : x ( F( m( X( x( & x( c(x( x( kx( X( ( F( m c k G Trafr Fokiyou: Trafr fokiyou tamam itmi yapııa bağlı ola v itm paramtrlrii içr itm ha gl bir fokiyodur. Bu fokiyo vril zamaa bağlı blli bir dğişk girdiy karşılık itmi yi zamaa bağlı cvabıı bulumaıı ağlar Trafr Fokiyouv blok diyagramı: V i - I R C - V Blok diyagramı götrimi: Sitm ha v ou fizikl yapııı yaıta gl bir fokiyo olmaı di il trafr fokiyou il itmi girdi v çıktıları araıdaki ilişki, mbolik olarak bir Blok götrimi il blirtilir. R x 6 [Ω], C x -6 [F] ad Vi 5[V], V ( [V] So dğr tormi, uygulamaı Trafr fokiyou blli ik çıktı x(h(.y( ilişkiid haplaır Blok diyagramları itmlri birbirlri il bağlatılarıı kolay ifad dildiği bir itm götrimidir. Blok diyagram işlmlri kullaılrak karmaşık itmlri ifad d trafr fokiyoları kolaylık il buluabilmktdir. Sri Sitmlr: Parall Sitmlr: Toplama Noktaları Parall Sitmlr:
6 Toplama Noktaları Griblm bağlatıı Ayrılma Noktaları Örk: (Bozucu Girdi Örk: (İçiç gri blm yolları Örk: (İçiç gri blm yolları Örk: (İçiç gri blm yolları
7 Örk: (Karmaşık Sitm Örk: (Karmaşık Sitm Örk: (Karmaşık Sitm Örk: (Karmaşık Sitm Örk: (Karmaşık Sitm Dildiğiiz içi tşkkür drim
DENEY 5 İkinci Dereceden Sistem
DENEY 5 İkici Drcd Sitm DENEYİN AMACI. İkici drcd itmi karaktritiklrii alamak.. Söüm oraı ζ i, ikici drcd itm üzridki tkiii gözlmlmk. 3. Doğal frka i, ikici drcd itm üzridki tkiii gözlmlmk. GENEL BİLGİLER
denklemini x=0 adi nokta civarında çözünüz.
dklmii = adi okta ivarıda çözüüz. Rküra bağıtıı DİFERANSİYEL DENKLEMLER UFUK ÖZERMAN y +y +( /6y= ( dklmi içi = oktaıı düzgü tkil okta olduğuu götri, İdi dklmii köklrii bulu v çözü. P( = = = = tkil okta
ESM 406 Elektrik Enerji Sistemlerinin Kontrolü
8. KAALILIK ESM 6 Elktrik Erji Sitmlrii Kotrolü 8. Kouu Amaç v Kapamı Bir itmi ıırlı hr giriş cvabı ıırlı i o itm kararlıdır. Sitm giriş, rfra dğrid vya bozucu dğrd olabilir. Karalılığı diğr bir taımı
Eğitim-Öğretim Güz Yarıyılı Diferansiyel Denklemler Dersi Çalışma Soruları
- Eğiim-Öğrim Güz rıılı Difril Dklmlr Dri Çlışm Sorlrı 6 // Aşğıd vril kvv rilrii kıklık rıçplrıı lirliiz. = = di ok civrıd kvv rii rdımıl vril difril dklmlri çözüüz. - -= - + -= - + += dklmii kil oklrıı
BÖLÜM 7. Sürekli hal hatalarının değerlendirilmesinde kullanılan test dalga şekilleri: Dalga Şekli Giriş Fiziksel karşılığı. Sabit Konum.
9 BÖLÜM 7 SÜRELİ HAL HATALARI ontrol itmlrinin analizind v dizaynında üç özlliğ odaklanılır, bunlar ; ) İtniln bir gçici hal cvabı ürtmk. ( T, %OS, ζ, ω n, ) ) ararlı olmaı. ıaca kutupların diky knin olunda
Kontrol Sistemleri. Frekans Ortamında Karalılık
Kotrol Sistmlri rkas Ortamıda Karalılık BMGS sistmi siusoydal girdiy cvabı rkas davraışı Doğrusal sistmlrd frkas cvabı davraışı, sistmi harmoik girdi uyguladığı durumdaki düzli rjim cvabı olarak taımlamaktadır.
UFUK ÖZERMAN- 2012-2013 Page 1
- GÜZ P,Q,R fokiolrı poliom olmk üzr d d P Q R d d v P d d Q d P d R P p q dklmi içi P şrıı ğl = okı di ok dir, çözümlri di okıı civrıd şklid rrız. =+-+- +... = = okı; p=q/ P, q= R/ P fokiolrı okıd liik
MENKUL KIYMET DEĞERLEMESİ
MENKUL KIYMET EĞERLEMESİ.. Hiss Sdii Tk ömlik Gtirisii Hsaplaması Bir mkul kıymti gtirisi, bkl akit akımlarıı, şimdiki piyasa fiyatıa şitly iskoto oraıdır. Mkul kıymti özlliği gör bu akit akımları faiz
Deney 2: Fark Denklemleri ve Sayısal Süzgeçlerin Geçici Davranışları Ve DZD Sistemlerin Frekans Yanıtının Frekans Bölgesinde Gösterilimi
TEL - D : Fark Dklmlri v Saısal Süzgçlri Gçici Davraışları V DZD Sistmlri Frkas Yaıtıı Frkas Bölgsid Göstrilimi Amaç Bu di amacı, doğrusal, zamala dğişm (DZD) arık zamalı sistmlri fark dklmi göstrimii
İşaret ve Sistemler. Ders 10: Sistem Cevabı
İşar v Sismlr Drs 0: Sism Cvabı Sismi İmpuls Cvabı Lir, zamala dğişmy bir sism v işarii uyguladığıı düşülim v işari lir, zamala dğişmy bir sism uyguladığıda çıkış işari bilimiyrsa, sismi lirlik özlliğii
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.
Diferansiyel Denklemler
Difrsil Dklmlr Doç. Dr. Slhi MADEN Ord Üivrsisi F dbi Fkülsi Mmik Bölümü DĐFERANSĐYEL DENKLEMLER Birii Mrbd Birii Drd Difrsil Dklmlr Birii Mrbd Yüksk Drd Difrsil Dklmlr Yüksk Mrbd Bzı Özl Difrsil Dklmlr
Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir.
43 BÖLÜM 3 ZAMAN CEVABI Sitemi derecei, itemi karakteritik deklemii e ade halide (çarpaız) paydadaki i e yükek dereceidir. Bir Trafer Fokiyouu Kutupları Trafer fokiyou G() N()/N() şeklide ifade edilire,
Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri
Korol Siemleri Taarımı Siem Modellerii Zama Cevabı ve Performa Krierleri Prof.Dr. Galip Caever Korol Siemleri Taarımı Prof.Dr.Galip Caever Kapalı dögü iemi oluşurulmaıda öce iem modelide geçici rejim cevabıı
2013 BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI MATEMATİK
03 BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI MATEMATİK A SORU : lim x 8x 9 (x 3) x ifadsii dğri aşağıdaki sçklrd hagisid vrilmiştir? 0 5 7 SORU : cosax x f x foksiyouu x=0 oktasıda sürkli olması içi f(0) ı dğri
ETİL ASETAT ÜRETİMİNİN YAPILDIĞI TEPKİMELİ DAMITMA KOLONUNUN AYIRIMLI ( DECOUPLING ) PID KONTROLÜ
Onuncu Ulual Kimya Mühndiliği Kongri, 3-6 Eylül 2012, Koç Ünivriti, İtanbul ETİL ASETAT ÜRETİMİNİN YAPILDIĞI TEPKİMELİ DAMITMA KOLONUNUN AYIRIMLI ( DECOUPLING ) PID KONTROLÜ Abdulwahab GIWA, Sülyman KARACAN
ı ı ı ğ ş ı ı ıı ıı ıı ı ı ıı ıı ıı ıı ııı
Ş Ü Ğ Ü Ğİ Ö İ Ö öç Ş İ Ğ ç ç ö Ü Ş ö Ö ç ç ö ö ö Ğ Ğ Ü Ş Ü Ş İ İ ö ö ç ç İ Ç İ Ü Ş İ Ç Ç Ü Ş İ İ ö İ Ü İ İ Ü Ü Ü Ü İ Ü ö ç ö Ç İ ç İ İ ç ç ç İ İ İ ö ö İ ö ö ç İ ö ç İ İ İ ç ç ö ç ö ç ç İ ç İ ö ç ç ç ö
ESM406- Elektrik Enerji Sistemlerinin Kontrolü. 2. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü
ESM406- Elektrik Enerji Sitemlerinin Kontrolü. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü.. Hedefler Bu bölümün hedefleri:. Komplek değişkenlerin tanıtılmaı.. Laplace Tranformayonun tanıtılmaı..
Sistem Dinamiği ve Modellemesi
5..3 Sistm Dimiği v Modllmsi Doğrusl Sistmlri Frks Dvrışı Giriş: Drs ksmıd şu kdr yıl çözümlmlrd, doğrusl sistmlri imuls girdi, bsmk girdi gibi çşitli girdilr krşı zm cvlrıı icldik. Bzı durumlrd doğrusl
DENEY 4 Birinci Dereceden Sistem
DENEY 4 Birici Derecede Sistem DENEYİN AMACI. Birici derecede sistemi geçici tepkesii icelemek.. Birici derecede sistemi karakteristiklerii icelemek. 3. Birici derecede sistemi zama sabitii ve kararlı-durum
Hafta 8: Ayrık-zaman Fourier Dönüşümü
Hafta 8: Ayrı-zama ourir Döüşümü El Alıaca Aa Koular Ayrı-zama ourir döüşümü Ayrı-zama priyodi işartlr içi ourir döüşümü Ayrı-zama ourir döüşümüü özllilri Doğrusal, sabit atsayılı far dlmlriyl taımlaa
y xy = x şeklinde bir özel çözümünü belirleyerek genel
Difransil Dnklmlr I / 94 A Aşağıdaki difransil dnklmlrin çözümlrini bulunuz d d -( + ) 7 + n( ) +, () + n ( + ) 4 + - + 5 6 - ( - ) + 8 9 - - + + - ( -) d- ( + ) d + Not: Çözüm mtodu olarak: Tam difdnk
SİSTEM DİNAMİĞİ VE KONTROL
ABANT İZZET BAYSA ÜNİVERSİTESİ MÜHENDİSİK MİMARIK FAKÜTESİ MAKİNE MÜHENDİSİĞİ BÖÜMÜ SİSTEM DİNAMİĞİ VE KONTRO. aplac Dönüşümli Yd. Doç. D. Tuan ŞİŞMAN - BOU . APACE DÖNÜŞÜMERİ.. Giiş Doğual dianiyl dnklmlin
Hava Kirliliği Yönetimi ve Modelleme Çalışmalarında Karışım Yüksekliği. Parametresinin Önemi ve Hesaplanması
Haa Kirliliği Yötimi Modllm Çalışmalarıda Karışım Yükskliği Özt Paramtrsii Ömi Hsaplaması Frhat Karaca, İsmail Aıl Fatih Üirsitsi, Çr Mühdisliği Bölümü, 34500, Büyükçkmc, İstabul ([email protected],
Sistem Dinamiği ve Modellemesi
8..0 Sit Diiği v Modlli Doğrul Sitlri Z Dvrışı II. Mrtbd Gili Sitlr Giriş: Sit diiği çözülid, frlı fizil özllilr tşıy doğrul itlri rtritilrii blirly tl bğıtılr rıd bzrli (oloji) urulbili ouud itlri blirli
5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi
5. Drs Dağılımlarda Rasgl Sayı Ürtilmsi Trs Döüşüm Yötmi sürkli bir rasgl dğişk v bu rasgl dğişki dağılım foksiyou olsu. Dağılımı dstk kümsi üzrid dağılım foksiyou arta v bir-bir bir foksiyo olmaktadır.
DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EET305 OTOMATİK KONTROL I Dr. Uğur HASIRCI
DÜZCE ÜNİVERSİTESİ TENOLOJİ FAÜLTESİ ELETRİ-ELETRONİ MÜHENDİSLİĞİ BÖLÜMÜ EET305 OTOMATİ ONTROL I ALICI DURUM HATASI ontrol sistmlrinin tasarımında üç tml kritr göz önünd bulundurulur: Gçici Durum Cvabı
DERS 9. Grafik Çizimi, Maksimum Minimum Problemleri
DERS 9 Grafik Çizimi, Maksimum Minimum Problmlri Bundan öncki drst bir fonksiyonun grafiğini çizmk için izlnbilck yol v yapılabilck işlmlr l alındı. Bu drst, grafik çizim stratjisini yani grafik çizimind
LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2
LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ SABİT NOKTA İTERASYONU YÖNTEMİ Bu yötemde çözüme gitmek içi f( olarak verile deklem =g( şeklie getirilir. Bir başlagıç değeri seçilir ve g ( ardışık
Bir Kompleks Sayının n inci Kökü.
Prof.Dr.Hüsy ÇAKALLI Br Komplks Sayıı c Kökü. hrhag br sab doğal sayı olmak ür, br komplks sayıı c kökü, c kuvv bu sayıya ş ola komplks sayıdır. ( r(cos s olsu v (cos s dylm. Bu akdrd ( [ (cos s] dr v
(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.
Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit
BİR STURM-LIOUVILLE PROBLEMİNİN BAZI ÖZELLİKLERİ VE GREEN FONKSİYONU
T.C. AHİ EVRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BİR STURM-LIOUVILLE PROBLEMİNİN BAZI ÖZELLİKLERİ VE GREEN FONKSİYONU Yaemi KUZU YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI KIRŞEHİR HAZİRAN T.C. AHİ
Ü Ğ Ş Ü Ğ İ ö İ ö öç Ğ ö İ Ü Ş ö Ö ç ç ğ ö ö ğ ö Ğ Ğ «Ü Ş ğ Ü Ş İ ğ İ ğ ğ ğ ö ö ç ç ğ ğ İ ğ Ç ğ ğ Ü Ş İ ğ İ Ç ğ ğ Ç ğ Ü Ş ğ ğ İ ğ ğ ğ ğ İ ö İ ğ İ Ü İ İ Ü Ü Ü Ü İ ğ Ü ğ ö ç ö ğ ğ İ ğ İ ç ç ç İ ğ ğ İ ğ İ
BİR STURM-LIOUVILLE TİPİNDE PROBLEMİN ÇÖZÜM FONKSİYONLARININ ASİMPTOTİĞİ VE GREEN FONKSİYONU
T.C. AHİ EVRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BİR STURM-LIOUVILLE TİPİNDE PROBLEMİN ÇÖZÜM FONKSİYONLARININ ASİMPTOTİĞİ VE GREEN FONKSİYONU Oka KUZU YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI KIRŞEHİR
Bilgi Tabanı (Uzman) Karar Verme Kontrol Kural Tabanı. Bulanık. veya. Süreç. Şekil 1 Bulanık Denetleyici Blok Şeması
Bulanık Dntlyicilr Bilgi Tabanı (Uzman) Anlık (Kskin) Girişlr Bulandırma Birimi Bulanık µ( ) Karar Vrm Kontrol Kural Tabanı Bulanık µ( u ) Durulama Birimi Anlık(Kskin) Çıkış Ölçklm (Normali zasyon) Sistm
Otomatik Kontrol. Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri. Prof.Dr.Galip Cansever. Ders #6-8. Otomatik Kontrol
Der #6-8 Oomaik Korol Siem Modellerii Zama Cevabı ve Performa Krierleri Prof.Dr.Galip Caever Oomaik Korol Prof.Dr.Galip Caever Kapalı dögü iemi oluşurulmaıda öce iem modelide geçici rejim cevabıı aalizi
MONTE CARLO BENZETİMİ
MONTE CARLO BENZETİMİ U(0,) rassal değişkeler kullaılarak (zamaı öemli bir rolü olmadığı) stokastik ya da determiistik problemleri çözümüde kullaıla bir tekiktir. Mote Carlo simülasyou, geellikle statik
IŞINIM VE DOĞAL TAŞINIM DENEYİ
IŞINIM VE DOĞAL TAŞINIM DENEYİ MAK-LAB005 1. DENEY DÜZENEĞİNİN TANITILMASI Dny düznği, şkild görüldüğü gibi çlik bir basınç kabının içind yatay olarak asılı duran silindirik bir lman ihtiva dr. Elman bakırdan
İntegratör ve Ölü Zaman Etkili Sistemler İçin Bir Seri Ardışıl Kontrol Yapısı
İntgratör v Ölü Zaman Etkili Sitmlr İçin Bir Sri Ardışıl ontrol Yapıı Oman Çakıroğlu, Müjd Güzlkaya, İbrahim Ekin ontrol Mühndiliği Bölümü Elktrik-Elktronik Fakülti İtanbul knik Ünivriti, 4469, Malak,
TLE 35128R Serisi CATV Hat Tekrarlayıcılar
TLE 35128R Srisi CATV Hat Tkrarlayıcılar Modl Frkas Badı 5-30 / 47-870 MHz 5-42 / 54-870 MHz 5-65 / 85-870 MHz srisi CATV Hat Tkrarlayıcılar, koaksiyl şbk üzrid bslbilm (30-90VAC) özlliği sahip olarak,
Sönümlü Serbest Titreşim
.5.. Söülü Srbs Tirşi Sosza kadar dva d sabi glikli irşilrl grçk hayaa karşılaşılaakadır. Bilidiği gibi, sis irşi harki başladıka bir sür sora hark yavaş yavaş zayıflar. olayısıyla hark dklii aşağıdaki
e sayısı. x için e. x x e tabanında üstel fonksiyona doğal üstel fonksiyon (natural exponential function) denir. (0,0)
DERS 4 Üstl v Logaritik Fonksionlar 4.. Üstl Fonksionlar(Eponntial Functions). > 0, olak üzr f ( ) = dnkli il tanılanan fonksiona taanında üstl fonksion (ponntial function with as ) dnir. Üstl fonksionun
YÖNEYLEM ARAŞTIRMASI III. Dinamik Programlama. Örnek 1: Posta Arabası Problemi. Örnek 1: Posta Arabası Problemi. Hafta 1
YÖNYLM RŞTRMS afta 1 Öğretim Üyei: Yrd. oç. r. eyazıt Ocakta er grubu: e-mail: [email protected] iamik Programlama iamik Programlama (P) bir çok optimizayo problemii çözmek içi kullaılabile bir tekiktir.
DEĞİŞİME AÇIK OLUN 1 [email protected]
1 v 2 SORULARI AŞAĞIDAKİ BİLGİLERE GÖRE CEVAPLAYINIZ 20082006 riid ypıl ks syımıd ksd 585 ABD Dlrı ($) ldğ blirlmişir Ayı ri iibriyl Dlr Kssı l sbıı brç plmı 26845 $, lk plmı 26320 $ lrk izlmkdir B rkı
TOPOLOJİK TEMEL KAVRAMLAR
TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.
YÜK KANCALARI VİDALI BAĞLANTILARINDA KULLANILAN FARKLI VİDA DİŞ PROFİLLERİNİN BİLGİSAYAR DESTEKLİ GERİLME ANALİZİ
. Ulusal Tasarım İmalat v Analiz Kongrsi 11-1 Kasım 010- Balıksir YÜK KANCALARI VİDALI BAĞLANTILARINDA KULLANILAN FARKLI VİDA DİŞ PROFİLLERİNİN BİLGİSAYAR DESTEKLİ GERİLME ANALİZİ Aydın DEMİRCAN*, M. Ndim
İNTEGRAL KONU ANLATIMI ÖRNEKLER
İNTEGRL KONU NLTIMI ÖRNEKLER Ġtgrl lmk, türi ril ir oksio lmk tır d,, d oksio olrk rildiğii =F i istdiğii rslım d içi i cid idsi: d = + dir, hrhgi ir sit df d koģl sğl = F oksio i gör itgrli dir d F içimid
Sistem Dinamiği ve Modellemesi
Sistem Diamiği ve Modellemesi Sistem Nedir? Belli bir görevi yerie getire te bir elemaa veya biribirleri ile fizisel olara ilişiledirilmiş elemalara sistem deir. Sistem Taımı ve Temel Kavramlar Sistem
LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.
LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.
Kontrol Sistemleri. Kontrolcüler. Yrd. Doç. Dr. Aytaç GÖREN
ontrol Sitemleri ontrolcüler Doğrual Sitemlerin Sınıflandırılmaı: Birinci Mertebeden Gecikmeli BMG Sitemler: x a T 1 x a t x e t Son değer teoremi : x x x adr adr adr lim xa 0 lim 0 T 1 t T t 2T t 3T t
ı ı ı ğ ş ı ı ı ı ı ı ı ı
Ş Ü Ğ ö ö İ ö öç Ğ Ş ö ç İ Ö Ü Ş ö Ö ç ç ğ ö ö ğ ö İ Ş ç ç ç ğ ğ ç İ İ İİ ö ç Ş ö İİ ö ç ç İ İ ğ ö İ ğ ğ ö ğ ö ç ğ ç ğ İç Ş Ü Ş ğ Ü Ş ö İŞ Ü Ş İ ğ İ İ Ü İ ö «İ ö Ş ç ç ğ ö ğ ö ç İ ö ğ ç ö İ İ ğ ğ ğ ğ ğ
ö ğ ğ ğ ö ö ö ö ç ö çö ç ö ö ö ğ ç ö ç ğ ğ ö ğ ö ç ğ ö ğ ç ğ ğ ç ğ Ö ğ ğ ç ç ö ç ğ ö ğ ç ö ğ ç ç ö ö ğ ç ğ ğ ö ğ ç ğ ğ ö ç ö ç ö ö ğ ö ç Ş Ü ğ Ü ö Ö Ş ğ Ş Ü ö ğ ö ğ ö ö Ü ö «Ç ğ ö ğ ç ğ ğ ğ çö ç ğ ö ğ
Ğ Ğ Ğ Ç Ç Ç Ş ç Ş Ü ö çö ö ö Ç ö ç ç ç ö ö ç ç ç ö Ç Ç ç Ç Ç Ç Ç ç ç ç Ç Ö Ç ç Ç ç ç ç ö ç ö ö Ç ç ö ö ö ö ç ö Ş Ş Ü Ü ç ö ö Ö ö ö ö çö ç Ğ ö ç Ğ ö Ü Ü ç ö ö Ö Ç Ç ç Ç Ç ç Ç Ö ö ö ç Ş Ç ç ö Ö Ş Ş Ü Ü ç
Ğ İ Ç Ü Ö Ö ö Ü ö ç İ ö ç ç ğ ç «Ü İ ğ İ Ü Ü İ İ İ ğ Ü Ü İ İ ğ ç ç ğ ğ ö ö Ç Ö İ ö İ ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ ğ ğ ç ğ ö ğ ğ ğ ç ğ ğ ğ ğ ö ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ
BÖLÜM 2- HATA VE HATA KAYNAKLARI SORULAR ÇÖZÜMLER & MATLAB PROGRAMLAMA
Dpartmnt o Mchanical Enginring MAK 0 MÜHENDİSLİKTE SAYISAL YÖNTEMLER BÖLÜM - HATA VE HATA KAYNAKLARI SORULAR ÇÖZÜMLER & MATLAB PROGRAMLAMA Doç. Dr. Ali Rıza YILDIZ Arş. Gör. Emr DEMİRCİ 7.0.0 7.0.0 MAK
Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1
Örek.1 YÖNEYLEM ARAŞTIRMASI III Markov Süreçleri Ders 7 Yrd. Doç. Dr. Beyazıt Ocakta Web site: ocakta.bau.edu.tr E-mail: [email protected] Reault marka otomobil sahilerii bir soraki otomobillerii de Reault
1. GRUPLAR. 2) Aşağıdaki kümelerin verilen işlem altında bir grup olup olmadığını belirleyiniz.
Sorular ve Çözümleri 1. GRUPLAR 1) G bir grup olmak üzere aşağıdaki eşitlikleri gösteriiz. i) e G birim elema olmak üzere e 1 = e. ii) a G olmak üzere (a 1 ) 1 = a. iii) a 1, a 2,, a G içi (a 1 a 2 a )
- BANT TAŞIYICILAR -
- BANT TAŞIYICILAR - - YAPISAL ÖZELLİKLER Bir bant taşıyıcının nl örünümü aşağıdaki şkild vrilmiştir. Bant taşıyıcıya ismini vrn bant (4) hm taşınacak malzmyi için alan bir kap örvi örn, hm d harkt için
Mühendisler İçin DİFERANSİYEL DENKLEMLER
Mühndislr İçin DİFERANSİYEL DENKLEMLER Doç. Dr. Tahsin Engin Prof. Dr. Yunus A. Çngl Sakara Ünivrsitsi Makina Mühndisliği Bölümü Elül 8 SAKARYA - - Mühndislr İçin Difransil Dnklmlr İÇİNDEKİLER BÖLÜM BİRİNCİ
Ruppert Hız Mekanizmalarında Optimum Dişli Çark Boyutlandırılması İçin Yapay Sinir Ağları Kullanımı
Makin Tknolojilri Elktronik Drgisi Cilt: 6, No: 2, 2009 (-8) Elctronic Journal of Machin Tchnologis Vol: 6, No: 2, 2009 (-8) TEKNOLOJİK ARAŞTIRMALAR www.tknolojikarastirmalar.com -ISSN:304-44 Makal (Articl)
LOGARİTMİK ORTAM FİLTRELERİNİN SİSTEMATİK SENTEZİ
.C. PAMUKKALE ÜNİERSİESİ FEN BİLİMLERİ ENSİÜSÜ LOGARİMİK ORAM FİLRELERİNİN SİSEMAİK SENEZİ Şaziye SURA YLMAZ Yükek Lia ezi DENİZLİ 5 LOGARİMİK ORAM FİLRELERİNİN SİSEMAİK SENEZİ Pamukkale Üiveritei Fe Bilimleri
AYRIK DALGACIK DÖNÜŞÜMÜ İLE GÜRÜLTÜ SÜZME
AYRIK DALGACIK DÖNÜŞÜMÜ İLE GÜRÜLTÜ SÜZME Fahri VATANSEVER 1 Ferudu UYSAL Adullah UZUN 3 1 Sakarya Üiversitesi, Tekik Eğitim Fakültesi, Elektroik-Bilgisayar Eğitimi Bölümü, 54187 Esetepe Kampüsü/SAKARYA
Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...
MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, [email protected] Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız
YENİ NESİL CAM KORKULUK SİSTEMLERİ
F Mtal v Rklam Ürünlri San Tic AŞ YENİ NESİL CAM KORKULUK SİSTEM F TAL v NTİCAŞ Zmin Üstü Bağlantılı EGANT Srisi C50 Elgant srisi yüksk mimari standarttaki yapıların, dğrin, sağlamlığı v sttiği il dğr
ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir.
ÜSTL DAĞILIM Tanım : X > olma üzr sürli bir rasgl dğişn olsun. ğr a > için X rassal dğişni aşağıdai gibi bir dağılıma sahip olursa X rasgl dğişnin üsl dağılmış rassal dğişn v onsiyonuna da üsl dağılım
DRC ile tam bölünebilmesi için bir tane 2 yi ayırıyoruz. 3 ile ) x 2 2x < (
nm - / YT / MT MTMTİK NMSİ. il tam bölünbilmsi için bir tan i aırıoruz. il bölünmmsi için bütün lri atıoruz... 7 saısının pozitif tam böln saısı ( + ). ( + ). ( + ) bulunur. vap. 0 + + 0 + ) < ( 0 + +
Ders #10. Otomatik Kontrol. Sürekli Hal Hataları. Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr.
Der #0 Otomatik ontrol Sürekli Hal Hataları Prof.Dr.alip Canever Prof.Dr.alip Canever Denetim Sitemlerinin analiz ve taarımında üç kritere odaklanılır:. eçici Rejim Cevabı. ararlılık 3. Sürekli Hal ararlı
TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi
SİSTEMLERİN ZAMAN CEVABI
DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MM306 SİSTEM DİNAMİĞİ SİSTEMLERİN ZAMAN CEVABI Kutuplar, Sıfırlar ve Zama Cevabı Kavramı Birici Mertebede Sistemleri Zama Cevabı İkici
Sistem Dinamiği ve Modellemesi
5.0.03 Sit Diiği v Modlli Doğrul Sitlri Z Dvrışı II. Mrtbd Gcili Sitlr Giriş: Sit diiği çözülid, frlı fizil özllilr tşıy doğrul itlri rtritilrii blirly tl bğıtılr rıd bzrli (oloji) urulbili oucud itlri
SMMM STAJ BAŞLATMA FİNANSAL MUHASEBE/TİCARİ ALACAKLAR. f u a t h o c a. n e t. DEĞİŞİME AÇIK OLUN 1 [email protected]
DEĞİŞİME AÇIK OLUN 1 sjbslmsivi@gmilm DEĞİŞİME AÇIK OLUN 2 sjbslmsivi@gmilm DEĞİŞİME AÇIK OLUN 3 sjbslmsivi@gmilm 1 Bir işlmi bzı bilgilri şğıdki gibidir: (Bi TL) Öki Döm Cri Döm Alıılr 940 610 Alk Slri
İyon Kaynakları ve Uygulamaları
İyon Kaynakları v Uygulamaları E. RECEPOĞLU TAEK-Sarayköy Nüklr Araştırma v Eğitim Mrkzi rdal.rcpoglu [email protected] HPFBU-2012 2012-KARS KONULAR İyon kaynakları hakkında gnl bilgi İyon kaynaklarının
ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI
µ µ içi Güve Aralığı ALTERNATİF İTEMLERİN KARŞILAŞTIRILMAI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları
ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI
ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim
ç ö ö ç ğ ğ ç ğ ğ ö
ç ç ç ç ö ç ğ ğ ğ ğ ç ö ğ ğ ç ç ğ ğ ç ğ ö ö ç ğ ğ ç ç ö ç ö ç ğ ğ ç ö ö ç ö ö ç ğ ğ ç ğ ğ ö ğ ç ğ ö ç ğ ç ç ğ ç ç ö ö ö ç ğ ö ç ğ ç ç ğ ö ç ç ç ö öç ö ç ğ ğ ö ç ğ ç ö ç ç ğ ğ ç ğ ç ğ ö ğ ğ ğ ğ ğ ğ ö ğ
Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi
3 Cebirsel Olarak Çözüme Gitmede Wegsteı Yötemi Bu yötem bir izdüşüm tekiğie dayaır ve yalış pozisyo olarak isimledirile matematiksel tekiğe yakıdır. Buradaki düşüce f() çizgisi üzerideki bilie iki oktada
6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI
6. BÖLÜM VEKTÖR LARI -BOYUTLU (ÖKLİT) I Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a 1, a 2,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay
SİSTEMLER. Sistemlerin Sınıflandırılması
Sinallr & Sismlr - Sismlr SİSTEMLER Sism ori, bir fnomn im olarak, isiplinlr arası ilişkilrin bilimsl aklaşımlarla inclniği bir oriir. Bnn için ilişkinin varlığı va rcsi, ilgili olğ sosal v fn alanlarına
ÇAPRAZ AKIŞLI ISI DEĞİŞTİRİCİ
ÇAPRAZ AKIŞLI ISI DEĞİŞTİRİCİ MAK-LAB012 1. DENEY DÜZENEĞİNİN TANITILMASI Düznk sas olarak dikdörtgn ksitli bir kanaldan ibarttir. 1 hp gücündki lktrik motorunun çalıştırdığı bir vantilatör il kanal içind
İletkende seri olarak tel direnci ve magnetik alandan doğan reaktans ile şönt olarak elektrik alandan doğan toprak kapasitesi mevcuttur.
9 ÖÜM 4 İETİM HT 4.. İltim hatlarının yapısı üksk grilim iltim hatlarında malzm olarak çlik özlü alüminyum iltknlr kullanılır. ( luminium onductor tl inforcd) Kanada standardı olarak tüm dünyada kuş isimlri
DERS 9. Grafik Çizimi, Maksimum-Minimum Problemleri. 9.1. Grafik çiziminde izlenecek adımlar. y = f(x) in grafiğini çizmek için
DERS 9 Grafik Çizimi, Maksimum-Minimum Problmlri 9.. Grafik çizimind izlnck adımlar. y f() in grafiğini çizmk için Adım. f() i analiz diniz. (f nin tanım kümsi, f() in tanımlı olduğu tüm rl sayıların oluşturduğu
ARDIŞIK SAYILAR. lab2_pc32 BERRIN_ESMA_OZGE
2011 ARDIŞIK SAYILAR lab2_pc32 BERRIN_ESMA_OZGE 29.11.2011 İçindekiler bu konu 4. Sınıf müfredatında yer almaktadır... 2 ardisik sayılarda dört işlem... Hata! Yer işareti tanımlanmamış. ardisik sayilarda
1. GAZLARIN DAVRANI I
. GZLRIN DRNI I İdeal Gazlar ç: lm 0 RT İdeal gazlar ç: RT Hacm() basıçla() değşk sıcaklıklarda değşm ekl.. de gösterlmştr. T >T 8 T T T 3 asıç T 4 T T 5 T 7 T 8 Molar Hacm ekl.. Gerçek br gazı değşk sıcaklıklardak
İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...
İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı
DÜNYANIN EN KOLAY KURULAN STAND SİSTEMİ
DÜNYANIN EN KOLAY KURULAN STAND SİSTEMİ Tüm T3 Sitm prçlrıı Edütriyl Trım v Fydlı Mdl tcilllri, İgiltr, ABD, Kd, Avrup Birliği Ülklri, Hidit, Çi, Ruy d ilgili yl kurumlr trfıd, Türkiy d i Türk Ptt Etitüü
NOT: BU DERS NOTLARI TEMEL EKONOMETRİ-GUJARATİ KİTABINDAN DERLENMİŞTİR. HAFTA 1 İST 418 EKONOMETRİ
NOT: BU DERS NOTLARI TEMEL EKONOMETRİ-GUJARATİ KİTABINDAN DERLENMİŞTİR. KULLANILAN ŞEKİLLERİN VE NOTLARIN TELİF HAKKI KİTABIN YAZARI VE BASIM EVİNE AİTTİR. HAFTA 1 İST 418 EKONOMETRİ Ekoometri: Sözcük
İNTEGRAL DENKLEM SİSTEMLERİNİN YAKLAŞIK ÇÖZÜMLERİ
İEGRAL DEKLEM SİSEMLERİİ YAKLAŞIK ÇÖZÜMLERİ İil ULGA Yükk Li zi MAEMAİK AABİLİM DALI ISPARA 6 ii.c. SÜLEYMA DEMİREL ÜİVERSİESİ FE BİLİMLERİ ESİÜSÜ İEGRAL DEKLEM SİSEMLERİİ YAKLAŞIK ÇÖZÜMLERİ İSMAİL ULGA
