DENEY 5 İkinci Dereceden Sistem
|
|
|
- Aysel Gürsel
- 8 yıl önce
- İzleme sayısı:
Transkript
1 DENEY 5 İkici Drcd Sitm DENEYİN AMACI. İkici drcd itmi karaktritiklrii alamak.. Söüm oraı ζ i, ikici drcd itm üzridki tkiii gözlmlmk. 3. Doğal frka i, ikici drcd itm üzridki tkiii gözlmlmk. GENEL BİLGİLER İkici drcd bir itm, ikici drcd difraiyl dklm il, şu gl formda ifad dilbilir: dct a dc t act b drt () () () b dr () + t brt + 0 () + L+ + 0 () dt dt dt dt Laplac domi döüştürürk b C( + L+ b + b + a + 0 K( R( + a0 + a + a 0 () C( i birici trimi, ıfır başlagıç dğridki (c(0)0) itm tpki ola, ıfır-durum bilşidir. İkici trim, giriş yokk, c(0) başlagıç dğrii d olduğu itm tpki ola, ıfır-giriş bilşidir. K(, başlagıç dğriyl ilişkili bir poliomdur. Başlagıç dğri ıfır ik, dklm () i trafr fokiyou şu şkilddir: C () b + + b+ b G () R () + a + a L 0 0 Bu dyd, bait bir ikici drcd itm l alıacaktır. Bait ikici drcd itmi trafr fokiyou şu şkilddir G( C( b 0 () R( + a + a0 Dklm (), bait ikici drcd itmi taımlar. Bu dklmd, b 0, a 0 v a katayılarıı, itm yada itm karaktritiklri tkilrii alamak oldukça zordur. Aalitik uyguluk içi, ikici drcd itm gllikl aşağıdaki formda yazılır 5-
2 C () R () + + Eğr doğal frka v öüm oraı ζ biliiyora, bularda ikici drcd itmi karaktritiklri ld dilir. İkici drcd itmi blok diyagramı şkil 5- d götrilmiştir. R ( (+ ζ) C ( Şkil 5- İkici drcd itmi blok diyagramı Bu itmi trafr fokiyou şu şkild ifad dilbilir. G( + G( H ( ( + ) + ( + ) İkici drcd itmi diamik davraışı v ζ kullaılarak taımlaabilir. Aşağıda, ikici drcd itmi baamak giriş tpki l alıacaktır.. Ekik Söümlü Durum: 0 < ζ < C(/R( yid yazılıra C( R( ( + + j )( + d j ) d Burada d, öümlü doğal frka olarak adladırılır. Baamak giriş u (t) içi, C () ( + + j )( + j ) d d + ( + ) + ( + ) + d d 5-
3 C( i tr Laplac döüşümü alııra c( t) t (codt + i t) d c( t) t i( dt + ta ) Yukarıdaki dklmd, ikici drcd itmi d frkaıda oilayo yapacağı görülmktdir.. Kritik Söümlü Durum: ζ C(/R( yid yazılıra C () R () ( + ) Baamak giriş u (t) içi, C () ( + ) C( ( + ) ( + ) C( i tr Laplac döüşümü alııra t ct () ( + t) 3. Aşırı Söümlü Durumlar: () ζ > Baamak giriş u (t) içi, C () ( + + )( + ) C( i tr Laplac döüşümü alııra c( t) + + ( + p pt ) p pt ( + ) t ( ) t ( ) 5-3
4 p p + ( ) ( ) () ζ >> Q p p ( + ( ) ) p >> p pt i azalma hızı, pt y gör çok büyük olduğu içi, pt trimi ihmal dilbilir. Başka bir ifadyl, p v p birbirid uzaka v p trimi j ki çok yakıa (şkil 5-), pt trimi ihmal dilbilir. j -p -p σ Şkil 5- Kutup diyagramı Souç olarak, matmatikl dklm yid yazılıra C( R( + p + p Diğr yada, ikici drcd itmd p v p birbirid uzakta i, bu ikici drcd itm, birici drcd bir itm il yaklaşık olarak tmil dilbilir. 4. Söümüz Durum: ζ 0 C(/R( yid yazılıra C () R () ( + j )( j ) + 5-4
5 Baamak giriş u (t) içi, öümüz itm abit glikt oilayo yapmaya dvam dcktir. C () + + C( i tr Laplac döüşümü alııra ct () co t Şkil 5-3, farklı ζ dğrlri içi baamak tpki ğrilrii götrmktdir. Şkil 5-3 İkici drcd itmi baamak giriş tpki Yukarıda, ikici drcd bir itmi tml karaktritiklri l alımıştır. Aşağıda, bu itmi diğr karaktritiklri l alıacaktır. Baamak giriş u (t) içi, C () + + t ct () i( dt + ta ) c(t) i türvi alııra 5-5
6 dc() t dt t i( dt + ta ) t + co( dt + ta ) dc () t dt t i t dc(t)/dt0 i t π 0,,,L t π olduğuda, c(t) yrl miimum yada yrl makimum olur. c( t) mi or max + π i( π ta ) + ( ) π 0,,,L Makimum aşma, t max aıda grçklşir. t max π Souç olarak, makimum aşma C max π. Makimum aşma miktarı adc ζ dğri bağlıdır v d bağımızdır. Başka bir ifadyl, blirli bir ζ dğri, bir makimum aşmaya karşılıktır. π t 0,,, L max or mi Sabit bir ζ içi, i artmaı, tpk hızıı arttırır v çıkışı yrl makimum yada miimum ulaşma ürii azaltır. Şimdi, çıkış iyalid itm paramtrlrii aıl buluacağıı l alalım. Aşağıdaki trafr fokiyoua ahip, bili ikici drcd bir itmi l alalım. 5-6
7 C () B R () + A+ B Burada A v B bilimy katayılardır. Baamak giriş içi, c(t) çıkışı aşmaya ahip, A v B katayıları c(t) çıkış tpkid ld dilbilir. Buu içi aşağıdaki adımlar izlir: Öc iki itmi karşılaştırı. C () B R () C () ad + A+ B R () + + A v B çözülür, A B Şkil 5-4, ikici drcd itmi baamak tpkii götrmktdir. Şkil 5-4 İkici drcd itm tpki C max, T v T, c(t) çıkışıda ld dilbilir. ζ dğri, aşağıdaki dklmlrd ld dilbilir. 5-7
8 C max π π Q 0 π l( C max ) [ l( Cmax ) ] [ l( Cmax ) ] [ l( Cmax ) ] π + [ l( C ) ] π max [ l( Cmax ) ] + [ l( C ) ] max t max v, aşağıdaki dklmlrd buluabilir. π Q tmax π tmax T A v B abitlri, aşağıdaki dklmlr kullaılarak ld dilbilir. A B 5-8
9 DENEYİN YAPILIŞI A. ζ'i İkici Drcd Sitm Etkilri. Şkil 5-5 t götril blok v bağlatı diyagramlarıda yararlaarak grkli bağlatıları yapı. (a) Blok diyagram (b) Bağlatı diyagramı Şkil 5-5. ACS-300 STEP+ çıkış trmialid 0.Hz, Vpp lik bir kar dalga ürti. 3. bt v at olduğu içi, abit bir bt dğri, abit bir dğri şdğrdir. Sabit bt durumuda, at dğridki bir dğişim, ζ dğridki dğişim şdğrdir. ACS-3008 d, T çici aahtarıı x0 koumua gtiri, b yi 0 a ayarlayı ( 0 ). Böylc itmi trafr fokiyou 5-9
10 C( G R( ( 00 + at , T0 v at içi, a olur. b v T yi ayı bırakı. ACS d, a4 yapı (ζ). Oilokop kullaarak, ACS-300 STEP+ çıkış v ACS-3008 Vo çıkış trmiallridki iyallri, şkil 5-6(a) da götrildiği gibi, ölçü v kayddi. 5. a,, 0 (ζ, 0.5, 0) içi 4. adımı tkrarlayı v ouçları, ıraıyla, 5-6(b),(c) v (d) d götrildiği gibi kayddi. (a) 00/( ) tpki, ζ aşırı-öümlü durum (b) 00/( +0+00) tpki, ζ kritik-öümlü durum (c) 00/( +0+00) tpki, ζ0.5, (d) 00/( +00) tpki, ζ0, kik-öümlü durum öümüz durum Şkil
11 B. 'i İkici Drcd Sitm Etkilri. ACS-300 STEP+ çıkış trmialid 0.Hz, Vpp lik bir kar dalga ürti.. bt v at olduğu içi, dğiştirilrk, a v b dğiştirilbilir. ACS d, T çici aahtarıı x0 koumua gtiri, b0 ( 0) v a0.4 (ζ) yapı. Oilokop kullaarak, ACS-300 STEP+ çıkış v ACS-3008 Vo çıkış trmiallridki iyallri, şkil 5-7(a) da götrildiği gibi, ölçü v kayddi. (a) tpki, 0, ζ0., at4, bt00 Şkil 5-7 (b) ζ0., at3., bt64 tpki, 8, 3.. adımı, a0.3 v b6.4 ( 0. v 8 ) içi tkrarlayı v oucu 5-7(b) d götrildiği gibi kayddi. 4.. adımı, a0. v b.5 ( 0. v 5) içi tkrarlayı v oucu 5-8(a) da götrildiği gibi kayddi. 5.. adımı, a0.6 v b.6 ( 0. v 4 götrildiği gibi kayddi. ) içi tkrarlayı v oucu 5-8(b) d 5-
12 (a) tpki (b) tpki 5, 0., at, bt5 Şkil 5-8, 0., at0.8, bt4 C. ACS-3008 d, a, b v T dğrlri kyfi dğrlr atayı v ölçül çıkış tpkid, ζ v i bulu. 5-
13 SIMULINK BENZETİMİ. MATLAB komut pcrii (commad widow) açı.. MATLAB komut pcrid imulik yazıp tr a baı. 3. utitld adlı pcrd, şkil 5-9 da götril blok diyagramı çizi. Şkil Stp bloğuu Fial valu dğrii, Stp tim dğrii 0.0 yapı. 5. Simulatio/Cofiguratio paramtr müü giri v Simulatio tim diyalog pcrid Stop tim dğrii 5.0 olarak dğiştiri. 6. Blok diyagramı Dy_5_.mdl adıyla kayddi. 7. Simülayou çalıştırı v şkil 5-0(a) da götril oucu ld di. (a)00/( +0+00), (b)00/( ), Şkil
14 8. Trafr Fc bloğuu paydaıı, [ 40 00] yapı. Böylc, at40, bt00, 0 v olur. Simülayou çalıştırıp, şkil 5-0(b) dki oucu ld di. 9. Trafr Fc bloğuu paydaıı, [ 0 00] yapı. Böylc, at0, bt00, 0 v 0. 5 olur. Simülayou çalıştırıp, şkil 5-(a) daki oucu ld di. (a) 00/( +0+00), 0. 5 (b) 00/( +00), 0 Şkil 5-0. Trafr Fc bloğuu paydaıı, [ 0 00] olarak ayarlayı. Böylc, at0, bt00, 0 v 0 olur. Simülayou çalıştırı v şkil 5-(b) d götril oucu ld di.. Trafr Fc bloğuu paydaıı, [ 4 00] olarak ayarlayı. Böylc, at4, bt00, 0 v 0. olur. Simülayou çalıştırı v şkil 5-(a) da götril oucu ld di. (a) 00/( +4+00), 0 (b) 00/( ), 8 Şkil 5-5-4
15 . Trafr Fc bloğuu paydaıı, [ 3. 64] olarak ayarlayı. Böylc, at3., bt64, 8 v 0. olur. Simülayou çalıştırı v şkil 5-(b) d götril oucu ld di. 3. Simulatio/Cofiguratio paramtr müü giri v Simulatio tim diyalog pcrid Stop tim dğrii 0.0 olarak dğiştiri. 4. Trafr Fc bloğuu paydaıı, [ 5] olarak ayarlayı. Böylc, at, bt5, 5 v 0. olur. Simülayou çalıştırı v şkil 5-3(a) da götril oucu ld di. 5. Simulatio/Cofiguratio paramtr müü giri v Simulatio tim diyalog pcrid Stop tim dğrii 5.0 olarak dğiştiri. 6. Trafr Fc bloğuu paydaıı, [ 0.8 4] olarak ayarlayı. Böylc, at0.8, bt4, v 0. olur. Simülayou çalıştırı v şkil 5-3(b) d götril oucu ld di. (a) 5/( ++5), 5 (b) 4/( ), Şkil
DENEY 4 Birinci Dereceden Sistem
DENEY 4 Birici Derecede Sistem DENEYİN AMACI. Birici derecede sistemi geçici tepkesii icelemek.. Birici derecede sistemi karakteristiklerii icelemek. 3. Birici derecede sistemi zama sabitii ve kararlı-durum
Sistem Dinamiği ve Modellemesi
Sitm Diamiği v Modllmi aplac Traformayou v Trafr Fokiyou aplac Traformu : Bir itmi diamik davraışı, o itmi matmatikl modlii ifad d difraiyl dklmlri çözümüd kullaıla bir matmatikl yötmdir. f(t foiyouu aplac
ESM 406 Elektrik Enerji Sistemlerinin Kontrolü
8. KAALILIK ESM 6 Elktrik Erji Sitmlrii Kotrolü 8. Kouu Amaç v Kapamı Bir itmi ıırlı hr giriş cvabı ıırlı i o itm kararlıdır. Sitm giriş, rfra dğrid vya bozucu dğrd olabilir. Karalılığı diğr bir taımı
denklemini x=0 adi nokta civarında çözünüz.
dklmii = adi okta ivarıda çözüüz. Rküra bağıtıı DİFERANSİYEL DENKLEMLER UFUK ÖZERMAN y +y +( /6y= ( dklmi içi = oktaıı düzgü tkil okta olduğuu götri, İdi dklmii köklrii bulu v çözü. P( = = = = tkil okta
Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri
Korol Siemleri Taarımı Siem Modellerii Zama Cevabı ve Performa Krierleri Prof.Dr. Galip Caever Korol Siemleri Taarımı Prof.Dr.Galip Caever Kapalı dögü iemi oluşurulmaıda öce iem modelide geçici rejim cevabıı
Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir.
43 BÖLÜM 3 ZAMAN CEVABI Sitemi derecei, itemi karakteritik deklemii e ade halide (çarpaız) paydadaki i e yükek dereceidir. Bir Trafer Fokiyouu Kutupları Trafer fokiyou G() N()/N() şeklide ifade edilire,
BÖLÜM 7. Sürekli hal hatalarının değerlendirilmesinde kullanılan test dalga şekilleri: Dalga Şekli Giriş Fiziksel karşılığı. Sabit Konum.
9 BÖLÜM 7 SÜRELİ HAL HATALARI ontrol itmlrinin analizind v dizaynında üç özlliğ odaklanılır, bunlar ; ) İtniln bir gçici hal cvabı ürtmk. ( T, %OS, ζ, ω n, ) ) ararlı olmaı. ıaca kutupların diky knin olunda
DENEY 1 Laplace Dönüşümü
DENEY 1 Laplace Dönüşümü DENEYİN AMACI 1. Laplace dönüşümü uygulamaını anlamak.. Simulink yardımıyla Laplace dönüşüm çiftlerinin benzetimini yapmak. 3. ACS-1000 Analog Kontrol Sitemini kullanarak, Laplace
Otomatik Kontrol. Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri. Prof.Dr.Galip Cansever. Ders #6-8. Otomatik Kontrol
Der #6-8 Oomaik Korol Siem Modellerii Zama Cevabı ve Performa Krierleri Prof.Dr.Galip Caever Oomaik Korol Prof.Dr.Galip Caever Kapalı dögü iemi oluşurulmaıda öce iem modelide geçici rejim cevabıı aalizi
MENKUL KIYMET DEĞERLEMESİ
MENKUL KIYMET EĞERLEMESİ.. Hiss Sdii Tk ömlik Gtirisii Hsaplaması Bir mkul kıymti gtirisi, bkl akit akımlarıı, şimdiki piyasa fiyatıa şitly iskoto oraıdır. Mkul kıymti özlliği gör bu akit akımları faiz
UFUK ÖZERMAN- 2012-2013 Page 1
- GÜZ P,Q,R fokiolrı poliom olmk üzr d d P Q R d d v P d d Q d P d R P p q dklmi içi P şrıı ğl = okı di ok dir, çözümlri di okıı civrıd şklid rrız. =+-+- +... = = okı; p=q/ P, q= R/ P fokiolrı okıd liik
DENEY 2 Sistem Benzetimi
DENEY Sistem Benzetimi DENEYİN AMACI. Diferansiyel denklem kullanarak, fiziksel bir sistemin nasıl tanımlanacağını öğrenmek.. Fiziksel sistemlerin karakteristiklerini anlamak amacıyla diferansiyel denklem
İşaret ve Sistemler. Ders 10: Sistem Cevabı
İşar v Sismlr Drs 0: Sism Cvabı Sismi İmpuls Cvabı Lir, zamala dğişmy bir sism v işarii uyguladığıı düşülim v işari lir, zamala dğişmy bir sism uyguladığıda çıkış işari bilimiyrsa, sismi lirlik özlliğii
DERS 9. Grafik Çizimi, Maksimum Minimum Problemleri
DERS 9 Grafik Çizimi, Maksimum Minimum Problmlri Bundan öncki drst bir fonksiyonun grafiğini çizmk için izlnbilck yol v yapılabilck işlmlr l alındı. Bu drst, grafik çizim stratjisini yani grafik çizimind
DERS 9. Grafik Çizimi, Maksimum-Minimum Problemleri. 9.1. Grafik çiziminde izlenecek adımlar. y = f(x) in grafiğini çizmek için
DERS 9 Grafik Çizimi, Maksimum-Minimum Problmlri 9.. Grafik çizimind izlnck adımlar. y f() in grafiğini çizmk için Adım. f() i analiz diniz. (f nin tanım kümsi, f() in tanımlı olduğu tüm rl sayıların oluşturduğu
Deney 2: Fark Denklemleri ve Sayısal Süzgeçlerin Geçici Davranışları Ve DZD Sistemlerin Frekans Yanıtının Frekans Bölgesinde Gösterilimi
TEL - D : Fark Dklmlri v Saısal Süzgçlri Gçici Davraışları V DZD Sistmlri Frkas Yaıtıı Frkas Bölgsid Göstrilimi Amaç Bu di amacı, doğrusal, zamala dğişm (DZD) arık zamalı sistmlri fark dklmi göstrimii
Sönümlü Serbest Titreşim
.5.. Söülü Srbs Tirşi Sosza kadar dva d sabi glikli irşilrl grçk hayaa karşılaşılaakadır. Bilidiği gibi, sis irşi harki başladıka bir sür sora hark yavaş yavaş zayıflar. olayısıyla hark dklii aşağıdaki
5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi
5. Drs Dağılımlarda Rasgl Sayı Ürtilmsi Trs Döüşüm Yötmi sürkli bir rasgl dğişk v bu rasgl dğişki dağılım foksiyou olsu. Dağılımı dstk kümsi üzrid dağılım foksiyou arta v bir-bir bir foksiyo olmaktadır.
Kontrol Sistemleri. Frekans Ortamında Karalılık
Kotrol Sistmlri rkas Ortamıda Karalılık BMGS sistmi siusoydal girdiy cvabı rkas davraışı Doğrusal sistmlrd frkas cvabı davraışı, sistmi harmoik girdi uyguladığı durumdaki düzli rjim cvabı olarak taımlamaktadır.
DENEY 3 Kararlı-Durum Hatası
DENEY 3 Krrlı-Durum Htsı DENEYİN AMACI 1. Çıkış tpksinin krrlı-durum htsını inclmk. 2. Frklı sistm tiplri için, frklı tst girişlrin vriln tpkdn krrlı-durum htsını ölçmk. GENEL BİLGİLER Bir kontrol sistmi
ETİL ASETAT ÜRETİMİNİN YAPILDIĞI TEPKİMELİ DAMITMA KOLONUNUN AYIRIMLI ( DECOUPLING ) PID KONTROLÜ
Onuncu Ulual Kimya Mühndiliği Kongri, 3-6 Eylül 2012, Koç Ünivriti, İtanbul ETİL ASETAT ÜRETİMİNİN YAPILDIĞI TEPKİMELİ DAMITMA KOLONUNUN AYIRIMLI ( DECOUPLING ) PID KONTROLÜ Abdulwahab GIWA, Sülyman KARACAN
Hava Kirliliği Yönetimi ve Modelleme Çalışmalarında Karışım Yüksekliği. Parametresinin Önemi ve Hesaplanması
Haa Kirliliği Yötimi Modllm Çalışmalarıda Karışım Yükskliği Özt Paramtrsii Ömi Hsaplaması Frhat Karaca, İsmail Aıl Fatih Üirsitsi, Çr Mühdisliği Bölümü, 34500, Büyükçkmc, İstabul ([email protected],
Deney 21 PID Denetleyici (I)
Deney 21 PID Denetleyici (I) DENEYİN AMACI 1. Ziegler ve Nichols ayarlama kuralı I i kullanarak PID enetleyici parametrelerini belirlemek. 2. PID enetleyici parametrelerinin ince ayarını yapmak. GENEL
ı ı ı ğ ş ı ı ıı ıı ıı ı ı ıı ıı ıı ıı ııı
Ş Ü Ğ Ü Ğİ Ö İ Ö öç Ş İ Ğ ç ç ö Ü Ş ö Ö ç ç ö ö ö Ğ Ğ Ü Ş Ü Ş İ İ ö ö ç ç İ Ç İ Ü Ş İ Ç Ç Ü Ş İ İ ö İ Ü İ İ Ü Ü Ü Ü İ Ü ö ç ö Ç İ ç İ İ ç ç ç İ İ İ ö ö İ ö ö ç İ ö ç İ İ İ ç ç ö ç ö ç ç İ ç İ ö ç ç ç ö
Eğitim-Öğretim Güz Yarıyılı Diferansiyel Denklemler Dersi Çalışma Soruları
- Eğiim-Öğrim Güz rıılı Difril Dklmlr Dri Çlışm Sorlrı 6 // Aşğıd vril kvv rilrii kıklık rıçplrıı lirliiz. = = di ok civrıd kvv rii rdımıl vril difril dklmlri çözüüz. - -= - + -= - + += dklmii kil oklrıı
SİSTEMLERİN ZAMAN CEVABI
DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MM306 SİSTEM DİNAMİĞİ SİSTEMLERİN ZAMAN CEVABI Kutuplar, Sıfırlar ve Zama Cevabı Kavramı Birici Mertebede Sistemleri Zama Cevabı İkici
İntegratör ve Ölü Zaman Etkili Sistemler İçin Bir Seri Ardışıl Kontrol Yapısı
İntgratör v Ölü Zaman Etkili Sitmlr İçin Bir Sri Ardışıl ontrol Yapıı Oman Çakıroğlu, Müjd Güzlkaya, İbrahim Ekin ontrol Mühndiliği Bölümü Elktrik-Elktronik Fakülti İtanbul knik Ünivriti, 4469, Malak,
DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EET305 OTOMATİK KONTROL I Dr. Uğur HASIRCI
DÜZCE ÜNİVERSİTESİ TENOLOJİ FAÜLTESİ ELETRİ-ELETRONİ MÜHENDİSLİĞİ BÖLÜMÜ EET305 OTOMATİ ONTROL I ALICI DURUM HATASI ontrol sistmlrinin tasarımında üç tml kritr göz önünd bulundurulur: Gçici Durum Cvabı
ESM406- Elektrik Enerji Sistemlerinin Kontrolü. 2. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü
ESM406- Elektrik Enerji Sitemlerinin Kontrolü. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü.. Hedefler Bu bölümün hedefleri:. Komplek değişkenlerin tanıtılmaı.. Laplace Tranformayonun tanıtılmaı..
Bilgi Tabanı (Uzman) Karar Verme Kontrol Kural Tabanı. Bulanık. veya. Süreç. Şekil 1 Bulanık Denetleyici Blok Şeması
Bulanık Dntlyicilr Bilgi Tabanı (Uzman) Anlık (Kskin) Girişlr Bulandırma Birimi Bulanık µ( ) Karar Vrm Kontrol Kural Tabanı Bulanık µ( u ) Durulama Birimi Anlık(Kskin) Çıkış Ölçklm (Normali zasyon) Sistm
Hafta 8: Ayrık-zaman Fourier Dönüşümü
Hafta 8: Ayrı-zama ourir Döüşümü El Alıaca Aa Koular Ayrı-zama ourir döüşümü Ayrı-zama priyodi işartlr içi ourir döüşümü Ayrı-zama ourir döüşümüü özllilri Doğrusal, sabit atsayılı far dlmlriyl taımlaa
Deney 3 5 Üç-Fazlı Tam Dalga Tam-Kontrollü Doğrultucu
Deney 3 5 Üç-Fazlı Tam Dalga Tam-Kontrollü Doğrultucu DENEYİN AMACI 1. Üç-fazlı tam dalga tam-kontrollü doğrultucunun çalışma prensibini ve karakteristiklerini anlamak. 2. Üç-fazlı tam dalga tam-kontrollü
BİR ÇUBUĞUN MODAL ANALİZİ. A.Saide Sarıgül
BİR ÇUBUĞUN MODAL ANALİZİ A.Saide Sarıgül DENEYİN AMACI: Akastre bir çubuğu modal parametrelerii (doğal frekas, titreşim biçimi, iç söümü) elde edilmesi. TANIMLAMALAR: Modal aaliz: Titreşe bir sistemi
Otomatik Kontrol. Blok Diyagramlar ve İşaret Akış Diyagramları. Prof.Dr.Galip Cansever. Ders #3. 26 February 2007 Otomatik Kontrol
Der # Otomatik Kontrol Blok Diyagramlar ve İşaret Akış Diyagramları ProfDralip Canever 6 February 007 Otomatik Kontrol ProfDralip Canever Karmaşık itemler bir çok alt itemin bir araya gelmeiyle oluşmuştur
MM 409 MatLAB-Simulink e GİRİŞ
MM 409 MatLAB-Simulink e GİRİŞ 2016-2017 Güz Dönemi 28 Ekim 2016 Arş.Gör. B. Mahmut KOCAGİL Ajanda-İçerik Simulink Nedir? Nerelerde Kullanılır? Avantaj / Dezavantajları Nelerdir? Simulink Arayüzü Örnek
SÜLFÜRİK ASİTLE DEHİDRATE EDİLEN BUĞDAY KEPEĞİ İLE Cu(II) İYONLARININ ADSORPSİYONU
SÜLFÜRİK ASİTLE DEHİDRATE EDİLEN BUĞDAY KEPEĞİ İLE Cu(II) İYONLARININ ADSORPSİYONU A. ÖZER, D.ÖZER Fırat Ünivrsitsi, Mühndislik Fakültsi, Kimya Mühndisliği Bölümü. 23279-ELAZIĞ ÖZET Bu çalışmada, sülfürik
İstatistik ve Olasılık
İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri
TLE 35128R Serisi CATV Hat Tekrarlayıcılar
TLE 35128R Srisi CATV Hat Tkrarlayıcılar Modl Frkas Badı 5-30 / 47-870 MHz 5-42 / 54-870 MHz 5-65 / 85-870 MHz srisi CATV Hat Tkrarlayıcılar, koaksiyl şbk üzrid bslbilm (30-90VAC) özlliği sahip olarak,
Ki- kare Bağımsızlık Testi
PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm
Tanım : Bir rassal deney yapıldığında bir deneyin sonucu sadece iki sonuç içeriyorsa bu deneye Bernoulli deneyi denir.
BRNOULLİ DAĞILIMI Broulli dağılımı bir rassal dy yaıldığıda yalızca iyi öü olumlu-olumsuz başarılı-başarısız gibi sadc ii souç ld dildiğid ullaılır. Taım : Bir rassal dy yaıldığıda bir dyi soucu sadc ii
Ü Ğ Ş Ü Ğ İ ö İ ö öç Ğ ö İ Ü Ş ö Ö ç ç ğ ö ö ğ ö Ğ Ğ «Ü Ş ğ Ü Ş İ ğ İ ğ ğ ğ ö ö ç ç ğ ğ İ ğ Ç ğ ğ Ü Ş İ ğ İ Ç ğ ğ Ç ğ Ü Ş ğ ğ İ ğ ğ ğ ğ İ ö İ ğ İ Ü İ İ Ü Ü Ü Ü İ ğ Ü ğ ö ç ö ğ ğ İ ğ İ ç ç ç İ ğ ğ İ ğ İ
π βk F -F 0.4 0.3 0.2 0.1 0 0.01 0.02 0.03 0.04 kayma 1 2 F + F 1 2 Döndüren kasnak Döndürülen kasnak
TİMAK-Taarım İmalat Analiz Kongri 6-8 Nian 006 - BALIKESİ KAYIŞ KASNAK MEKANİZMALAINDA KAYMA OLAYINI ETKİLEYEN AKTÖLEİN ANALİZİ M. Ndim GEGE Maina Mühndiliği Bölümü Mühndili aülti -Balıir/Türi Özt Kaış
3 Eksenli CNC Freze Tezgahında ĠĢlenen Konik Yüzeyler Ġçin Optimum Eğim Açısının Belirlenmesi
6 t Itratioal Advacd Tcologis Symposium (IATS 11), 16-18 May 211, Elazığ, Turky 3 Eksli CNC Frz Tzgaıda ĠĢl Koik Yüzylr Ġçi Optimum Eğim Açısıı Blirlmsi C. Özl 1, Ġ. H. ġalıtürk 2 1 [email protected] Fırat
IŞINIM VE DOĞAL TAŞINIM DENEYİ
IŞINIM VE DOĞAL TAŞINIM DENEYİ MAK-LAB005 1. DENEY DÜZENEĞİNİN TANITILMASI Dny düznği, şkild görüldüğü gibi çlik bir basınç kabının içind yatay olarak asılı duran silindirik bir lman ihtiva dr. Elman bakırdan
İNTEGRAL KONU ANLATIMI ÖRNEKLER
İNTEGRL KONU NLTIMI ÖRNEKLER Ġtgrl lmk, türi ril ir oksio lmk tır d,, d oksio olrk rildiğii =F i istdiğii rslım d içi i cid idsi: d = + dir, hrhgi ir sit df d koģl sğl = F oksio i gör itgrli dir d F içimid
LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2
LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ SABİT NOKTA İTERASYONU YÖNTEMİ Bu yötemde çözüme gitmek içi f( olarak verile deklem =g( şeklie getirilir. Bir başlagıç değeri seçilir ve g ( ardışık
Ders #10. Otomatik Kontrol. Sürekli Hal Hataları. Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr.
Der #0 Otomatik ontrol Sürekli Hal Hataları Prof.Dr.alip Canever Prof.Dr.alip Canever Denetim Sitemlerinin analiz ve taarımında üç kritere odaklanılır:. eçici Rejim Cevabı. ararlılık 3. Sürekli Hal ararlı
Ramazan Atıcı Accepted: July 2011. ISSN : 1308-7304 [email protected] 2010 www.newwsa.com Elazig-Turkey
ISSN:1306-3111 -Joural of Nw World Scics Acadmy 011, Volum: 6, Numbr: 3, Articl Numbr: 3A0037 PHYSICAL SCIENCES Esat Güzl Rcivd: April 011 Ramaza Atıcı Accptd: July 011 Murat Cayılmaz Sris : 3A Firat Uivrsity
BÖLÜM 2- HATA VE HATA KAYNAKLARI SORULAR ÇÖZÜMLER & MATLAB PROGRAMLAMA
Dpartmnt o Mchanical Enginring MAK 0 MÜHENDİSLİKTE SAYISAL YÖNTEMLER BÖLÜM - HATA VE HATA KAYNAKLARI SORULAR ÇÖZÜMLER & MATLAB PROGRAMLAMA Doç. Dr. Ali Rıza YILDIZ Arş. Gör. Emr DEMİRCİ 7.0.0 7.0.0 MAK
DRC ile tam bölünebilmesi için bir tane 2 yi ayırıyoruz. 3 ile ) x 2 2x < (
nm - / YT / MT MTMTİK NMSİ. il tam bölünbilmsi için bir tan i aırıoruz. il bölünmmsi için bütün lri atıoruz... 7 saısının pozitif tam böln saısı ( + ). ( + ). ( + ) bulunur. vap. 0 + + 0 + ) < ( 0 + +
İnsansız Hava Araçları için Kontrol Yüzey Kaybını Dengeleyici ve Yan Rüzgâr Koşullarında Çalışabilen Otomatik Uçuş ve İniş Sistemi Tasarımı
İnanız Hava Araçları için Kontrol Yüzy Kaybını Dnglyici v Yan Rüzgâr Koşullarında Çalışabiln Otomatik Uçuş v İniş Sitmi Taarımı Coşku Kanakoğlu, Ünvr Kaynak, Arif Öndr Işıkman, Abdullah Giray Yağlıkçı,
Üstel Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK YOĞUNLUK FONKSİYONLARI
..3 SÜREKLİ ŞNS DEĞİŞKENLERİNİN OLSILIK YOĞUNLUK FONKSİYONLRI Üstl Dağılım Sürkli Üniform Dağılım Normal Dağılım Üstl Dağılım Mydana gln iki olay arasındaki gçn sür vya ir aşka ifadyl ilgilniln olayın
MONTE CARLO BENZETİMİ
MONTE CARLO BENZETİMİ U(0,) rassal değişkeler kullaılarak (zamaı öemli bir rolü olmadığı) stokastik ya da determiistik problemleri çözümüde kullaıla bir tekiktir. Mote Carlo simülasyou, geellikle statik
TLE 35128R Serisi CATV Hat Tekrarlayıcılar
TLE 35128R Srisi CATV Hat Tkrarlayıcılar Modl Frkas Badı 5-30 / 47-870 MHz 5-42 / 54-870 MHz 5-65 / 85-870 MHz srisi CATV Hat Tkrarlayıcılar, koaksiyl şbk üzrid bslbilm (30-90VAC) özlliği sahip olarak,
İletkende seri olarak tel direnci ve magnetik alandan doğan reaktans ile şönt olarak elektrik alandan doğan toprak kapasitesi mevcuttur.
9 ÖÜM 4 İETİM HT 4.. İltim hatlarının yapısı üksk grilim iltim hatlarında malzm olarak çlik özlü alüminyum iltknlr kullanılır. ( luminium onductor tl inforcd) Kanada standardı olarak tüm dünyada kuş isimlri
e sayısı. x için e. x x e tabanında üstel fonksiyona doğal üstel fonksiyon (natural exponential function) denir. (0,0)
DERS 4 Üstl v Logaritik Fonksionlar 4.. Üstl Fonksionlar(Eponntial Functions). > 0, olak üzr f ( ) = dnkli il tanılanan fonksiona taanında üstl fonksion (ponntial function with as ) dnir. Üstl fonksionun
DÜNYANIN EN KOLAY KURULAN STAND SİSTEMİ
DÜNYANIN EN KOLAY KURULAN STAND SİSTEMİ Tüm T3 Sitm prçlrıı Edütriyl Trım v Fydlı Mdl tcilllri, İgiltr, ABD, Kd, Avrup Birliği Ülklri, Hidit, Çi, Ruy d ilgili yl kurumlr trfıd, Türkiy d i Türk Ptt Etitüü
ı ı ı ğ ş ı ı ı ı ı ı ı ı
Ş Ü Ğ ö ö İ ö öç Ğ Ş ö ç İ Ö Ü Ş ö Ö ç ç ğ ö ö ğ ö İ Ş ç ç ç ğ ğ ç İ İ İİ ö ç Ş ö İİ ö ç ç İ İ ğ ö İ ğ ğ ö ğ ö ç ğ ç ğ İç Ş Ü Ş ğ Ü Ş ö İŞ Ü Ş İ ğ İ İ Ü İ ö «İ ö Ş ç ç ğ ö ğ ö ç İ ö ğ ç ö İ İ ğ ğ ğ ğ ğ
Bir Kompleks Sayının n inci Kökü.
Prof.Dr.Hüsy ÇAKALLI Br Komplks Sayıı c Kökü. hrhag br sab doğal sayı olmak ür, br komplks sayıı c kökü, c kuvv bu sayıya ş ola komplks sayıdır. ( r(cos s olsu v (cos s dylm. Bu akdrd ( [ (cos s] dr v
İstatistik Ders Notları 2018 Cenap Erdemir BÖLÜM 5 ÖRNEKLME DAĞILIMLARI. 5.1 Giriş
İstatistik Ders Notları 08 Ceap Erdemir BÖLÜM 5 ÖRNEKLME DAĞILIMLARI 5. Giriş Öreklem istatistikleri kullaılarak kitle parametreleri hakkıda çıkarsamalar yapmak istatistik yötemleri öemli bir bölümüü oluşturur.gülük
YÜZME HAVUZUNUN AYARLI SIVI SÖNÜMLEYİCİ OLARAK PERFORMANSI
. Türkiye Deprem Mühediliği ve Simoloi Koferaı -4 Ekim ODTÜ AKARA ÖZET: YÜZME HAVUZUU AYARLI SIVI SÖÜMLEYİCİ OLARAK PERFORMASI A. Bozer Yrd. Doç. Dr., İşaat Müh. Bölümü, uh aci Yazga Üiveritei, Kayeri
Makine Öğrenmesi 4. hafta
ain Öğrnmsi 4. hafta Olasılı v Koşullu Olasılı ays Tormi Naïv ays Sınıflayıcı Olasılı Olasılı ifadsinin birço ullanım şli vardır. Rasgl bir A olayının hrhangi bir olaydan bağımsız olara grçlşm ihtimalini
ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI. Deney No:2 Birinci-İkinci Dereceden Denklemler Açık-Kapalı Çevrim Sistemler
TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI DENEY RAPORU Deney No:2 Birinci-İkinci Dereceden Denklemler Açık-Kapalı Çevrim Sistemler Öğr. Gör. Cenk GEZEGİN Arş.
İletkende seri olarak tel direnci ve magnetik alandan doğan reaktans ile şönt olarak elektrik alandan doğan toprak kapasitesi mevcuttur.
9 ÖÜM 4 İETİM HT 4.. İltim hatlarının yapısı üksk grilim iltim hatlarında malzm olarak çlik özlü alüminyum iltknlr kullanılır. ( luminium onductor tl inforcd) Kanada standardı olarak tüm dünyada kuş isimlri
Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi
3 Cebirsel Olarak Çözüme Gitmede Wegsteı Yötemi Bu yötem bir izdüşüm tekiğie dayaır ve yalış pozisyo olarak isimledirile matematiksel tekiğe yakıdır. Buradaki düşüce f() çizgisi üzerideki bilie iki oktada
ö ğ ğ ğ ö ö ö ö ç ö çö ç ö ö ö ğ ç ö ç ğ ğ ö ğ ö ç ğ ö ğ ç ğ ğ ç ğ Ö ğ ğ ç ç ö ç ğ ö ğ ç ö ğ ç ç ö ö ğ ç ğ ğ ö ğ ç ğ ğ ö ç ö ç ö ö ğ ö ç Ş Ü ğ Ü ö Ö Ş ğ Ş Ü ö ğ ö ğ ö ö Ü ö «Ç ğ ö ğ ç ğ ğ ğ çö ç ğ ö ğ
Ğ Ğ Ğ Ç Ç Ç Ş ç Ş Ü ö çö ö ö Ç ö ç ç ç ö ö ç ç ç ö Ç Ç ç Ç Ç Ç Ç ç ç ç Ç Ö Ç ç Ç ç ç ç ö ç ö ö Ç ç ö ö ö ö ç ö Ş Ş Ü Ü ç ö ö Ö ö ö ö çö ç Ğ ö ç Ğ ö Ü Ü ç ö ö Ö Ç Ç ç Ç Ç ç Ç Ö ö ö ç Ş Ç ç ö Ö Ş Ş Ü Ü ç
Ğ İ Ç Ü Ö Ö ö Ü ö ç İ ö ç ç ğ ç «Ü İ ğ İ Ü Ü İ İ İ ğ Ü Ü İ İ ğ ç ç ğ ğ ö ö Ç Ö İ ö İ ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ ğ ğ ç ğ ö ğ ğ ğ ç ğ ğ ğ ğ ö ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ
STATİK MUKAVEMET İÇİN TASARIM (Design for Static Strength) Maksimum Normal Gerilme Teorisi (Maximum Normal Stress Theory)
Gücelleme:04/11/018 TATİK MUKAVEMET İÇİN TAARIM (Desig for tatic tregth) MUKAVEMET TEORİLERİ (Failure Theories) Maksimum Normal Gerilme Teorisi (Maximum Normal tress Theor) Üç asal gerilmede birisii, malzemei
POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,
POLİNOMLAR Taım : a0, a, a,..., a, a reel sayılar ve doğal sayı olmak üzere P x = a x + a x +... + a x + a x + a biçimideki ifadelere x e bağlı reel katsayılı poliom (çok terimli) deir. 0 a 0 ax + a x
IKTI 102 25 Mayıs, 2010 Gazi Üniversitesi-İktisat Bölümü
DERS NOTU 10 (Rviz Edildi, kısaltıldı!) ENFLASYON İŞSİZLİK PHILLIPS EĞRİSİ TOPLAM ARZ (AS) EĞRİSİ TEORİLERİ Bugünki drsin içriği: 1. TOPLAM ARZ, TOPLAM TALEP VE DENGE... 1 1.1 TOPLAM ARZ EĞRİSİNDE (AS)
Bölüm 7 - Kök- Yer Eğrisi Teknikleri
Bölüm 7 - Kök- Yer Eğrii Teknikleri Kök yer eğrii tekniği kararlı ve geçici hal cevabı analizinde kullanılmaktadır. Bu grafikel teknik kontrol iteminin performan niteliklerini tanımlamamıza yardımcı olur.
Asenkron Makinanın Alan Yönlendirme Kontrolünde FPGA Kullanımı ALAN İ., AKIN Ö.
Asnkron Makinanın Alan Yönlndirm Kontrolünd FPGA Kullanımı ALAN İ., AKIN Ö. ABSTRACT In this study, th fasibility of usag of fild programmabl gat arrays (FPGA) in th fild orintd control (FOC) of induction
Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2
Açıklama Sorusu : V kayışlar, ayı mekaizma büyüklükleride düz kayışlara göre daha yüksek dödürme mometlerii taşıyabildikleri bilimektedir. V kayışları düz kayışlara göre gözlee bu üstülüğü sebebi "kama
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.
POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ
POLİNOMLARDA İNDİRGENEBİLİRLİK Derleye Osma EKİZ Eskişehir Fatih Fe Lisesi. GİRİŞ Poliomları idirgeebilmesi poliomları sıfırlarıı bulmada oldukça öemlidir. Şimdi poliomları idirgeebilmesi ile ilgili bazı
Kontrol Sistemleri Tasarımı. Kontrolcü Tasarımı Tanımlar ve İsterler
ontrol Sitemleri Taarımı ontrolcü Taarımı Tanımlar ve İterler Prof. Dr. Bülent E. Platin ontrolcü Taarımı İterleri Birincil iterler: ararlılık alıcı rejim hataı Dinamik davranış İterlerin işlevel boyutu:
SAYISAL KONTROL 2 PROJESİ
SAYISAL KONTROL 2 PROJESİ AUTOMATIC CONTROL TELELAB (ACT) ile UZAKTAN KONTROL DENEYLERİ Automatic Control Telelab (ACT), kontrol deneylerinin uzaktan yapılmasını sağlayan web tabanlı bir sistemdir. Web
İstatistik ve Olasılık
İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri
BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI
Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei
PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları
PROJE RAPORU PROJENİN ADI: Karmaşık Sayıları. Derecede Kökler Toplamı ve Trigoometrik Yasımaları PROJENİN AMACI: Karmaşık sayıı karekökleri toplamı sıfırdır. Peki. derecede kök toplamı içi de geçerli miydi?
SİSTEM DİNAMİĞİ VE KONTROL
ABANT İZZET BAYSA ÜNİVERSİTESİ MÜHENDİSİK MİMARIK FAKÜTESİ MAKİNE MÜHENDİSİĞİ BÖÜMÜ SİSTEM DİNAMİĞİ VE KONTRO. aplac Dönüşümli Yd. Doç. D. Tuan ŞİŞMAN - BOU . APACE DÖNÜŞÜMERİ.. Giiş Doğual dianiyl dnklmlin
ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ
T SKRY ÜNİERSİTESİ TEKNOLOJİ FKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELM202 ELEKTRONİK-II DERSİ LBORTUR FÖYÜ DENEYİ YPTIRN: DENEYİN DI: DENEY NO: DENEYİ YPNIN DI v SOYDI: SINIFI: OKUL NO: DENEY GRUP
YÜKSEK GERİLİMLERİN ÜRETİLMESİ DARBE GERİLİMLERİ
7.05.0 YÜKSEK GEİLİMLEİN Ø Ø Ø Çşili yalıkan malzmlrin lkrikl açıdan dayanımını blirlybilmk için yükk grilimlr ihiyaç vardır. Yükk grilimlr gnl olarak 3 ınıfa ayrılırlar. Yükk alrnaif (HVA) grilimlr Yükk
Günlük Bülten. 27 Aralık 2012. Merkez Bankası Baş Ekonomisti Hakan Kara 2012 yılının %6 civarında enflasyonla tamamlanacağını düşündüklerini söyledi
27 Aralık 2012 Prşmb Günlük Bültn İMKB vrilri İMKB 100 77,991.1 Piyasa Dğri-TÜM ($m) 304,387.4 Halka Açık Piyasa Dğri-TÜM ($m) 87,677.3 Günlük İşlm Hami-TÜM ($m) 1,243.42 Yurtdışı piyasalar Borsalar Kapanış
>> pretty(f) s exp(10) 1/ s + 1 1/100 (s + 1) + 1 s
ELN5 OTOMATİK KONTROL MATLAB ÖRNEKLERİ - LAPLACE VE TERS LAPLACE DÖNÜŞÜMÜ UYGULAMALARI: Symbolic Math Toolbox içinde tanımlı olan laplace ve ilaplace komutları ile Laplace ve Ter Laplace dönüşümlerinin
