f( F) f(f) K = K F f 1 f( F) f 1 (K) = F F f 1 (S ) = [f 1 (S)] f(x) S V

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "f( F) f(f) K = K F f 1 f( F) f 1 (K) = F F f 1 (S ) = [f 1 (S)] f(x) S V"

Transkript

1 Bölüm 6 SÜREKL FONKS YONLAR 6.1 YEREL SÜREKL L K Tanm (X, T ) ve (Y, S) topolojik uzaylar ile f : X Y fonksiyonu verilsin. E er f(x 0 ) ö esinin her V kom³ulu una kar³lk f(u) V olacak ³ekilde x 0 ö esinin bir U kom³ulu u varsa, f fonksiyonu x 0 noktasnda süreklidir denilir. Bundan böyle, B(z) ile z noktasnn kom³uluklar ailesini; S(z) ile z noktasnn bir kom³uluklar tabann; B ile bir topoloji tabann; s ile bir alttabann gösterece iz. Teorem (X, T ) ve (Y, S) topolojik uzaylar ile f : X Y fonksiyonu verilsin. A³a daki ifadeler e³de erdir: (a) f fonksiyonu x 0 X noktasnda süreklidir; (b) Her Her V B(f(x 0 )) kom³ulu una kar³lk x U f(x) V olacak ³ekilde bir U B(x 0 ) kom³ulu u vardr; (c) Her V B(f(x 0 )) kom³ulu una kar³lk U f 1 (V) olacak ³ekilde bir U B(x 0 ) kom³ulu u vardr; (d) Her V B(f(x 0 )) için f 1 (V) B(x 0 ) dr; (e) Her S S(f(x 0 )) için f 1 (S) B(x 0 ) dr. 61

2 62 BÖLÜM 6. SÜREKL FONKS YONLAR s p a t: (a) (b): Bu gerektirme Tanm den çkar. (b) (c): oldu u f 1 (V) nin tanmndan çkar. (c) (d): oldu u Önerme nin [N1] özeli inden (d) (e): oldu u S(f(x 0 ) B(f(x 0 )) dan çkar. (e) (a): Gerçekten her V B(f(x 0 )) kom³ulu una kar³lk, kom³uluklar taban tanm (bkz. Tanm 5.3.1) gere ince f(x 0 ) W V olacak ³ekilde bir W S(f(x 0 )) vardr. (e) nin varl n kabul edersek f 1 (W) B(x 0 ) olacaktr. U = f 1 (W) alrsak (a) nn varl, hemen f(u) = ff 1 (W) = W V ba ntsndan çkar. Böylece ispat tamamlanr. Önerme (X, T ) ve (Y, S) topolojik uzaylar ile f : X Y fonksiyonu verilsin. E er f fonksiyonu x noktasnda sürekli ve x Ā, A X, ise f(x) f(a) dr. s p a t: V B(f(x)) ise f 1 (V) B(x) dir; yani f 1 (V) A dir. Buradan, f(f 1 (V) A) f(f 1 (V)) f(a) oldu u dü³ünülürse, V f(a) çkar. O halde, Problem 3 gere ince, f(x) f(a) olur. Önerme (X, T ), (Y, S) ve (Z, Z) topolojik uzaylar ile f : X Y ve g : Y Z fonksiyonlar verilsin. E er f fonksiyonu x X noktasnda ve g fonksiyonu da f(x) Y noktasnda sürekli iseler h = gof : X Z bile³ke fonksiyonu x X noktasnda süreklidir. s p a t: A B(h(x)) ise, g fonksiyonu f(x) noktasnda sürekli oldu- una göre g 1 (A) B(f(x)) dir. Yine, f nin x noktasnda sürekli oldu u dü³ünülürse f 1 (g 1 (A)) = h 1 (A) B(x) olacaktr: ki bu istedi imiz ³eyi verir. 6.2 YAYGIN SÜREKL L K Tanm (X, T ) ve (Y, S) topolojik uzaylar ile f : X Y fonksiyonu verilsin. E er bir A X alt-kümesine ait her noktada f fonksiyonu sürekli ise, f fonksiyonu A üzerinde (yaygn) süreklidir (global süreklidir), denilir. E er X kümesine ait her noktada sürekli ise, f fonksiyonu sürekli bir fonksiyondur, diyece iz.

3 6.2. YAYGIN SÜREKL L K 63 E er f fonksiyonunun tanm ya da de er kümesi üzerinde birden çok topolojik yapy ayn zamanda dü³ünüyorsak, f fonksiyonunun hangi topolojilere göre sürekli oldu unu belirtmek için f : (X, T ) (Y, S) süreklidir ya da f fonksiyonu T S süreklidir, diyece iz. Ayrca ispatlarda ksal sa lamak için bir (H, H ) topolojik uzaynn bütün kapal kümeleri ailesini H ile gösterece iz. Teorem (X, T ) ve (Y, S) topolojik uzaylar ile f : X Y fonksiyonu verilsin. A³a daki ifadeler e³de erdir. (a) f fonksiyonu X üzerinde süreklidir; (b) Her A X alt-kümesi için f(ā) f(a) dr; (c) Her K S için f 1 (K) T dür; (d) Her S S için f 1 (S) T dur. s p a t: (a) (b): Bu gerektirme Önerme den çkar. (b) (c): K S için F = f 1 (K) dersek, f( F) f(f) K = K olacaktr ve buradan F f 1 f( F) f 1 (K) = F F çkar, ki bu F = F olmas, yani F kümesinin kapal olmas demektir. (c) (d): S S ise S S dür. (c) den f 1 (S ) T dür. f 1 (S ) = [f 1 (S)] den f 1 (S) T çkar. (d) (a): Bir x X noktas ile bir V B(f(x)) kom³ulu u verilsin. f(x) S V

4 64 BÖLÜM 6. SÜREKL FONKS YONLAR olacak ³ekilde bir S S vardr; öyleyse x f 1 (S) f 1 (V) olacaktr. Varsaymmza göre f 1 (S) T oldu undan, f 1 (V) B(x) çkar. Önerme (X, T ) ve (Y, S) topolojik uzaylar ile f : X Y fonksiyonu verilsin B ailesi S topolojisinin bir taban ise, f fonksiyonunun sürekli olmas için gerekli ve yeterli ko³ul her B B için f 1 (B) T olmasdr. s p a t: Ko³ulun gerekli i Teorem (d) ³kknda verildi. Yeterli ini görmek için bir S S alalm. S = i I{B i : B i B} oldu unu varsayalm. Bu durumda ( ) f 1 (S) = f 1 B i = i I i If 1 (B i ) olacaktr. Varsaymmz gere ince, açk kümelerin bir bile³imi oldu u için f 1 (S) açktr; öyleyse Teorem 6.2.1(d) den f fonksiyonunun süreklili i çkar. Önerme X,Y,Z topolojik uzaylar verilsin f : X Y ile g : Y Z sürekli fonksiyonlar ise h = gof : X Z sürekli bir fonksiyondur. Bunun ispat hemen bile³ke fonksiyon tanmndan çkar Problemler 1. Bir topolojik uzaydan kendisine olan özde³lik dönü³ümü süreklidir. Neden? 2. Her hangi bir topolojik uzaydan ba³ka bir topolojik uzaya olan sabit fonksiyonlar süreklidir. Neden?

5 6.3. AÇIK VE KAPALI DÖNÜ ÜMLER Bir ayrk uzaydan her hangi bir topolojik uzaya olan fonksiyonlar süreklidir. Neden? 4. Her hangi bir topolojik uzaydan ayrk olmayan bir uzaya olan fonksiyonlar süreklidir. Neden? 5. (X, T ) ve (Y, S) topolojik uzaylar ile f : X Y fonksiyonu verilsin. s ailesi S nin bir alt taban ise, f nin sürekli olmas için gerekli ve yeterli ko³ul, her S s için f 1 (S) T olmasdr. Gösteriniz. 6. Bir X topolojik uzayndan bir Y topolojik uzay içine bir f fonksiyonu veriliyor. A³a daki ifadelerin e³de er olduklarn gösteriniz: (a) f fonksiyonu X üzerinde süreklidir, (b) Her A Y alt kümesi için f 1 (A ) (f 1 (A)) dr, (c) Her A Y alt kümesi için f 1 (Ā) (f 1 (A)) dr. 6.3 AÇIK ve KAPALI DÖNÜ ÜMLER Tanm (X, T ) ve (Y, S) topolojik uzaylar ile bir f : X Y fonksiyonu verilsin. E er f fonksiyonu açk kümeleri açk kümelere resmediyorsa f fonksiyonuna açk bir dönü³üm; kapal kümeleri kapal kümelere resmediyorsa f fonksiyonuna kapal bir dönü³ümdür denilir. f fonksiyonu sürekli olsa bile açk kümeleri açk kümelere ya da kapal kümeleri kapal kümelere resmetmeyebilir. Ancak f sürekli oldu u zaman, açk kümelerin f altndaki ters resimlerinin açk; ve kapal kümelerin f altndaki ters resimlerinin kapal oldu unu biliyoruz (bkz. Teorem 6.2.1). Ba³ka bir deyi³le f : X Y fonksiyonu sürekli, bire-bir ve örten (BBÖ) ise f 1 : Y X ters fonksiyonu hem açk, hem de kapal bir dönü³ümdür. Buradan hemen ³u önerme çkar: Önerme Bire-bir ve örten f : X Y bir fonksiyonunun bir topolojik e³yap resmi (homeomorphism) olmas için gerekli ve yeterli ko³ul f nin sürekli ve açk (ya da sürekli ve kapal) olmasdr. Bu önermeye denk olarak hemen ³u önermeyi de söyleyebiliriz.

6 66 BÖLÜM 6. SÜREKL FONKS YONLAR Önerme f : X Y bire-bir ve örten bir fonksiyon olsun. f fonksiyonunun bir topolojik e³yap resmi olmas için gerek ve yeterli ko³ul f ve f 1 fonksiyonlarnn sürekli olmasdr. Önerme f : (X, T ) (Y, S) fonksiyonu verilsin ve B ailesi T topolojisinin bir taban olsun. A³a daki özellikler birbirlerine denktirler: (a) f açk bir dönü³ümdür. (b) Her B B için f(b) S dir. (c) Her x X ve her V B(x) için f(v) B(f(x)) dir. s p a t : (a) (b): Açk dönü³üm ve taban tanm ile [T3] belitinden çkar. (a) (c): V B(x) ise x T V olacak ³ekilde bir T T vardr. f açk bir dönü³üm oldu undan f(t) S dir. Oysa f(x) f(t) f(v) oldu undan f(v) B(f(x)) olacaktr. (c) (a): T T olsun. Her y f(t) için y = f(x) olacak gibi bir x T vardr. T B(x) oldu undan, (c) gere ince, f(t) B(y) = B(f(x)) olacaktr. O halde, Önerme gere ince f(t) S dir. Önerme f : X Y fonksiyonunun sürekli ve kapal olmas için gerekli ve yeterli ko³ul X in her A alt-kümesi için f(ā) = f(a) olmasdr. s p a t : f sürekli ve kapal olsun. Teorem (b) gere ince f(a) f(ā) f(a) olacaktr. f kapal oldu undan f(ā) kapaldr. f(a) kümesini kapsayan en küçük kapal küme, bu kümenin kaplam olaca ndan, yukardaki f(ā) = f(a) olmasn gerektirir. Tersine olarak her A için f(ā) = f(a) ise f kapal olur. Ayrca, Teorem kapsama (b) gere ince f sürekli olur. Bir fonksiyonun açk ya da kapal olmak zorunda olmad n söylemi³tik. Benzer olarak, açk bir fonksiyonun ayn zamanda kapal olmas ya da kapal bir fonksiyonun ayn zamanda açk olmas da gerekmez. Buna bir örnek verelim. Örnek π : R 2 R dönü³ümü π(x,y) = x diye tanmlansn. Buna düzlemin birinci boyut üzerine izdü³ümü denilir. D ailesi düzlemdeki bütün açk daireleri göstersin. D ailesinin düzlemdeki salt (mutlak) topoloji için bir taban oldu unu biliyoruz (bkz. Örnek 4.1.2).

7 6.3. AÇIK VE KAPALI DÖNÜ ÜMLER 67 Basit bir ³ekil çizilince hemen görülebilece i gibi D = {(x,y) : (x a) 2 +(y b) 2 < r 2 } açk diskinin R 1 = R boyutu (yatay eksen) üzerindeki izdü³ümü x a < r açk aral dr. Her D D için π(d) resmi R 1 de açk bir küme oldu una göre, Önerme gere ince, π izdü³üm fonksiyonu açk bir dönü³ümdür. Öte yandan K = {(x,y) : xy 1,x > 0} kümesinin R 2 içinde kapal bir küme oldu u apaçktr. Oysa π(k) = (0, ) oldu undan, K kapal kümesinin π altndaki resmi R 1 de açk bir kümedir. Yani π izdü³üm fonksiyonu kapal bir dönü³üm de ildir. Örnek α sfrdan farkl bir gerçel say olmak üzere R den R ye tanmlanan f : x αx (6.1) fonksiyonuna α-boylamas diyece iz. Bu dönü³üm bir topolojik e³yap resmidir. ³ümü s p a t : f nin BBÖ (bire-bir-örten) oldu u apaçktr. f 1 ters dönü- f 1 : x 1 x (α 0) (6.2) α dir ve bu da bir boylama dönü³ümüdür. f dönü³ümü altnda, salt topolojinin tabanna ait her (a, b) aral nn resmi (αa, αb) açk aral dr; yani f açk bir dönü³ümdür. Öte yandan, her (c,d) açk aral nn f 1 altndaki resmi (c/α, d/α) açk aral dr, yani f süreklidir. O halde, Önerme uyarnca, f bir topolojik e³yap resmimdir. Örnek β her hangi bir gerçel say olmak üzere R den R ye tanmlanan g : x x+β (6.3) fonksiyonuna β-kaymas (ötelemesi) diyece iz. Bu dönü³üm bir topolojik e³yap resmidir.

8 68 BÖLÜM 6. SÜREKL FONKS YONLAR s p a t : g nin BBÖ oldu u apaçktr. g 1 ters dönü³ümü g 1 : x x β dr ve bu da bir kaymadr. g dönü³ümü altnda her (a,b) açk aral nn resmi (a + β,b + β) açk aral dr; yani g açk bir dönü³ümdür. Öte yandan, her (c,d) açk aral nn f 1 altndaki resmi (c β,d β) açk aral dr; yani g süreklidir. O halde g bir topolojik e³yap resmidir. Örnek Yukardaki (6.1) ile (6.3) dönü³ümlerinin bile³kesine; yani h = gof : x αx+β (6.4) dönü³ümüne do rusal (linear) bir dönü³üm, denilir. Bunun R den R ye bir topolojik e³yap resmi olaca apaçktr. Bu dönü³ümün tersi h 1 = f 1 og 1 : x 1 (x β) (α 0) (6.5) α dr. Bu da bir do rusal dönü³ümdür. Örnek R den ( 1, +1) açk aral üzerine tanmlanan f(x) = x 1+ x fonksiyonu bir topolojik e³yap dönü³ümüdür. (6.6) Gerçekten (6.6) fonksiyonun bire-bir-örten ve tersinin de f 1 (y) = y 1 y oldu u kolayca görülebilir. Ayrca, x 1 < x 2 ise f(x 1 ) < f(x 2 ) olur; yani, f artan bir fonksiyondur. f nin sürekli oldu unu göstermek için, 1 < c < d < +1 ko³ulunu sa layan her (c, d) R ( R ailesi R içindeki bütün açk aralklarn ailesidir ) açk aral için f 1 ((c,d)) = ( ) c 1 c, d 1 d oldu una dikkat etmek yetecektir (bkz. Problem (5.)). Öte yandan her (a,b) R açk aral için f ((a,b)) = ( ) a 1+ a, b 1+ b oldu undan f açk bir dönü³ümdür. Dolaysyla f bir topolojik e³yap resmidir (bkz. Önerme 6.3.2). Buradan çkan sonuç ³udur:

9 6.3. AÇIK VE KAPALI DÖNÜ ÜMLER 69 Sonuç Salt topolojiye göre gerçel eksen ile ( 1, +1) alt aral topolojik olarak e³yapldr P R O B L E M L E R 1. Gerçel saylardan gerçel saylara tanmlanan sabit bir fonksiyonun sürekli ve kapal bir dönü³üm oldu unu; ama açk bir dönü³üm olmad n gösteriniz. 2. Gerçel saylardan gerçel saylara tanmlanan x x 2 fonksiyonun açk olmad n gösteriniz. 3. Önerme ve Önerme yi ispatlaynz. 4. f : (X, T ) (Y, S) bire-bir örten bir fonksiyon olsun. f fonksiyonunun bir topolojik e³yap resmi olmas için gerekli ve yeterli ko³ul, her A X alt-kümesi için f(ā) = f(a) olmasdr. Gösteriniz. 5. (X, T ) uzaynn ayrk olmas için gerekli ve yeterli ko³ul, X uzayndan her Y uzayna tanml fonksiyonlarn sürekli olmasdr. 6. Bo³ olmayan bir X kümesi veriliyor. X üzerinde öyle bir T topolojisi kurunuz ki, her (Y, S) uzayndan (X, T ) uzayna tanml her fonsiyon sürekli olsun. Bu topolojiyi belirleyiniz. 7. f : (X, T ) (Y, S) sürekli ve örten bir fonksiyon ise, X uzaynn yo un alt kümelerini Y uzaynn yo un alt kümelerine resmeder; yani Ā = X f(a) = Y (6.7) olur. Gösteriniz.

f 1 (H ) T f 1 (H ) = T

f 1 (H ) T f 1 (H ) = T Bölüm 15 TIKIZLIK 15.1 TIKIZ UZAYLAR 15.1.1 Problemler 1. Her sonlu topolojik uzay tkzdr. 2. Ayrk bir topolojik uzayn tkz olmas için gerekli ve yeterli ko³ul sonlu olmasdr. 3. Ayn bir küme üzerinde S T

Detaylı

S = {T Y, X S T T, S S} (9.1)

S = {T Y, X S T T, S S} (9.1) Bölüm 9 ÇARPIM UZAYLARI 9.1 ÇARPIM TOPOLOJ S Bo³ olmayan kümelerden olu³an bo³ olmayan bir ailenin kartezyen çarpmnn da bo³ olmad n, Seçme Aksiyomu [13],[20], [8] ile kabul ediyoruz. imdi verilen aileye

Detaylı

(i) (0,2], (ii) (0,1], (iii) [1,2), (iv) (1,2]

(i) (0,2], (ii) (0,1], (iii) [1,2), (iv) (1,2] Bölüm 5 KOM ULUKLAR 5.1 KOM ULUKLAR Tanm 5.1.1. (X, T ) bir topolojik uzay ve A ile N kümeleri X uzaynn iki alt-kümesi olsun. E er A T N olacak ³ekilde her hangi bir T T varsa, N kümesine A nn bir kom³ulu

Detaylı

Çarpm ve Bölüm Uzaylar

Çarpm ve Bölüm Uzaylar 1 Ksm I Çarpm ve Bölüm Uzaylar ÇARPIM UZAYLARI 1 ÇARPIM TOPOLOJ S 2 KARMA P R O B E M L E R 1. A ile B, srasyla, (X, T )X ile (Y, S ) topolojik uzaylarnn birer alt-kümesi olsunlar. (a) (A B) = A B (b)

Detaylı

TOPOLOJ TEST A. 1. A³a dakilerden hangisi topoloji tanmlama yöntemi de ildir?

TOPOLOJ TEST A. 1. A³a dakilerden hangisi topoloji tanmlama yöntemi de ildir? 1 TOPOLOJ TEST A 1. A³a dakilerden hangisi topoloji tanmlama yöntemi de ildir? (a) Açk kümeleri belirleme (b) Kapal kümeleri belirleme (c) Alt-kümeleri belirleme (d) Kaplamlar belirleme (e) çlemleri belirleme

Detaylı

A = i I{B i : B i S} A = x A{B x A : B x S}

A = i I{B i : B i S} A = x A{B x A : B x S} Bölüm 4 TOPOLOJ TABANI 4.1 TOPOLOJ TABANI Tanm 4.1.1. Bir S P(X) ailesi verilsin. S ye ait kümelerin her hangi bir bile³imine e³it olan bütün kümelerin olu³turdu u aileye S nin üretti i (do urdu u) aile

Detaylı

TOPOLOJ TEST B. (d) Dizinin limiti yoktur; y lma noktas yoktur. 4. Dizisel süreklilik hangi uzaylarda süreklili e denktir?

TOPOLOJ TEST B. (d) Dizinin limiti yoktur; y lma noktas yoktur. 4. Dizisel süreklilik hangi uzaylarda süreklili e denktir? 1 TOPOLOJ TEST B 1. {( 1) n 1 n : n > 0} dizisi için a³a dakilerden hangisi do rudur? (a) Dizinin limiti 1 ve +1 dir; y lma noktas 1 ve +1 dir. (b) Dizinin limiti 1 ve +1 dir; y lma noktas yoktur. (c)

Detaylı

TOPOLOJ SORULARI. Ksm I. 1 Topological Notions. 1. Her açk aralk salt topolojiye göre R uzaynda açktr. Gösteriniz.

TOPOLOJ SORULARI. Ksm I. 1 Topological Notions. 1. Her açk aralk salt topolojiye göre R uzaynda açktr. Gösteriniz. 1 Ksm I TOPOLOJ SORULARI 1 Topological Notions 1. Her açk aralk salt topolojiye göre R uzaynda açktr. Gösteriniz. 2. n Z olmak üzere (n, n + 1) aralklarnn bile³imi açktr. Gösteriniz. 3. {0} = ( 1 n, 1

Detaylı

19.8. PROBLEMLER 0.1 PROBLEMLER 0.1. PROBLEMLER a herhangi bir nicelik says ise

19.8. PROBLEMLER 0.1 PROBLEMLER 0.1. PROBLEMLER a herhangi bir nicelik says ise 0.1. PROBLEMLER 1 19.8. PROBLEMLER // 0.1 PROBLEMLER // 1. a herhangi bir nicelik says ise (i) a + 0 = a, a0 = 0, a 0 = 1 oldu unu gösteriniz. A³a daki kümelerin e³güçlülü ünden nicelik saylar için istenen

Detaylı

0 = ρ(x,x) ρ(x,y)+ρ(y,x) = 2ρ(x,y) 0, x = y δ(x,y) = κ(z 1,z 2 ) = z 1 z 2, (z 1,z 2 C) (17.27)

0 = ρ(x,x) ρ(x,y)+ρ(y,x) = 2ρ(x,y) 0, x = y δ(x,y) = κ(z 1,z 2 ) = z 1 z 2, (z 1,z 2 C) (17.27) 230 BÖLÜM 17. METR K UZAYLAR 17.2 METR K METR K UZAY KAVRAMI Normlanm³ bir uzay, her³eyden önce bir vektör uzaydr, yani (X, ) normlanm³ bir uzay ise, X kümesi üzerinde bir vektör uzay yaps vardr. Oysa,

Detaylı

Soru Toplam Puanlama Alnan Puan

Soru Toplam Puanlama Alnan Puan ..04 No: Ad-Soyad: mza: Soru.. 3. 4. 5. 6. 7. 8. Toplam Puanlama 0 0 0 5 0 0 0 0 00 Alnan Puan 04043006. CEB RSEL TOPOLOJ ARASINAVI CEVAP ANAHTARI ( K NC Ö RET M) Not: Süre 90 Dakika. stedi iniz 7 soruyu

Detaylı

TOPOLOGY TEST A³a dakilerden hangisi bir süzgeç de ildir? 3. A³a dakilerden hangisi a³kn bir süzgeç de ildir?

TOPOLOGY TEST A³a dakilerden hangisi bir süzgeç de ildir? 3. A³a dakilerden hangisi a³kn bir süzgeç de ildir? 1 TOPOLOGY TEST 02 1. S ailesi X kümesi üzerinde bir süzgeç ise, a³a dakilerden hangisi sa lanmaz? (a) / S (b) * S (c) X S (d) A, B S A B S (e) (V S ) (V W ) W S 2. A³a dakilerden hangisi bir süzgeç de

Detaylı

ARA SINAV II. (1) (x k ) k N, R n içinde yaknsak ve limiti x olan bir dizi olsun. {x} = oldu unu gösteriniz.

ARA SINAV II. (1) (x k ) k N, R n içinde yaknsak ve limiti x olan bir dizi olsun. {x} = oldu unu gösteriniz. MC 411/ANAL Z IV ARA SINAV II ÇÖZÜMLER 1 x k k N, R n içinde yaknsak iti x olan bir dizi olsun. {x} = {x m m k} k=1 Çözüm. Her k N için A k := {x m m k} olsun. x k k N dizisinin iti x oldu undan, A k =

Detaylı

Soru Toplam Puanlama Alnan Puan

Soru Toplam Puanlama Alnan Puan 26.11.2013 No: Ad-Soyad: mza: Soru 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Toplam Puanlama 15 15 15 15 15 15 15 15 15 15 105 Alnan Puan 405024142006.1 CEB RSEL TOPOLOJ ARASINAVI CEVAP ANAHTARI SORULARI (ÖRGÜN Ö

Detaylı

BÖLÜM 1. Matematiksel ndüksiyon Prensibi

BÖLÜM 1. Matematiksel ndüksiyon Prensibi BÖLÜM 1 Matematiksel ndüksiyon Prensibi Matematiksel indüksiyon prensibini kullanarak a³a daki e³it(siz)liklerin her n N için gerçeklendi ini ispatlaynz. 1. 1 2 + 2 2 + 3 2 + + n 2 = n(n+1)(2n+1) 6 2.

Detaylı

Ksm I. Simgeler ve Terimler

Ksm I. Simgeler ve Terimler Ksm I Simgeler ve Terimler 1 Bölüm 1 S MGELER ve TER MLER 1.1 KÜMELER CEB R 1.2 FONKS YON 1.3 DENKL K BA INTISI 1.4 SIRALAMA BA INTILARI 1.5 SEÇME AKS YOMU SEÇME AKS YOMU ve E DE ERLER 3 4 BÖLÜM 1. S

Detaylı

(sf) F C = [(s,f) sf] x [0,1] = (sf)(x) = sf(x)

(sf) F C = [(s,f) sf] x [0,1] = (sf)(x) = sf(x) Bölüm 13 MATEMAT KSEL YAPILAR 13.1 YAPI KAVRAMI Ça da³ Matematik kümeleri, kümeler üzerindeki yaplar, yaplar arasndaki dönü³ümleri inceler. Buraya dek ö e, küme, i³lem, fonksiyon kavramlarn kullandk. Bunlar

Detaylı

A = i IA i = i I A = A = i IA i = {x α((α I) (x A α ))} (7.7) A = (α,β I) (α β) A α A β = (7.8) A A

A = i IA i = i I A = A = i IA i = {x α((α I) (x A α ))} (7.7) A = (α,β I) (α β) A α A β = (7.8) A A Bölüm 7 KÜME A LELER 7.1 DAMGALANMI KÜMELER E er inceledi imiz kümelerin says, alfabenin harerinden daha çok de ilse, onlara,b,...,w gibi harerle temsil edebiliriz. E er elimizde albenin harerinden daha

Detaylı

P = {x A (y A y x) f(y) x} (22.6) M p = {m A m p f(p) m} (22.8)

P = {x A (y A y x) f(y) x} (22.6) M p = {m A m p f(p) m} (22.8) Bölüm 22 SEÇME AKS YOMU SEÇME AKS YOMU VE E DE ERLER 22.1 G R Bir X kümesi dü³ünelim. Bu küme ya bo³tur ya de ildir. De ilse, X kümesine ait bir ö e seçilebilir. imdi ba³ka bir Y kümesi daha dü³ünelim.

Detaylı

18.702 Cebir II 2008 Bahar

18.702 Cebir II 2008 Bahar MIT Açk Ders Malzemeleri http://ocw.mit.edu 18.702 Cebir II 2008 Bahar Bu materyallerden alnt yapmak veya Kullanm artlar hakknda bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

x = [x] = [x] β = {y (x,y) β} (8.5) X = {x x X}. x,y X [(x = y) (x y = )]. b(b [x]) b [y] [x] [y] (8.8)

x = [x] = [x] β = {y (x,y) β} (8.5) X = {x x X}. x,y X [(x = y) (x y = )]. b(b [x]) b [y] [x] [y] (8.8) Bölüm 8 DENKL K BA INTILARI 8.1 DENKL K BA INTISI 8.1.1 E³itlik Kavramnn Genelle³mesi Matematikte ve ba³ka bilim dallarnda, birbirlerine e³it olmayan, ama e³itli e benzer niteliklere sahip nesnelerle sk

Detaylı

1. Metrik Uzaylar ve Topolojisi

1. Metrik Uzaylar ve Topolojisi 1. Metrik Uzaylar ve Topolojisi Euclidean R uzayının tabanının B = {(a, b) : a, b R} olduğunu biliyoruz. Demek ki bu uzayda belirleyiçi unsur açık aralıklar. Her açık aralık (a, b) için, olmak üzere, d

Detaylı

BÖLÜM 1. stanbul Kültür Üniversitesi. Fonksiyonlar - Özellikleri ve Limit Kavram. ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir.

BÖLÜM 1. stanbul Kültür Üniversitesi. Fonksiyonlar - Özellikleri ve Limit Kavram. ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir. BÖLÜM 1 0, Q 1. f() = 1, R/Q, Fonksiyonlar - Özellikleri ve Limit Kavram ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir. Buna göre a³a da verilen tanm bölgeleri altnda görüntü cümlelerini

Detaylı

B A. A = B [(A B) (B A)] (2)

B A. A = B [(A B) (B A)] (2) Bölüm 5 KÜMELER CEB R Do a olaylarnn ya da sosyal olaylarn açklanmas için, bazan, matematiksel modelleme yaplr. Bunu yapmak demek, incelenecek olaya etki eden etmenleri içine alan matematiksel formülleri

Detaylı

Soyut Matematik Test A

Soyut Matematik Test A 1 Soyut Matematik Test A 1. A³a dakilerden hangisi do rudur? (a) * A B C(C B) A C) (b) A B C(C B) A C) (c) A B C(B C) A C) (d) A B C(B C) A C) (e) A B C(B C) (A C) 2. Her hangi bir A kümeler ailesi üzerinde

Detaylı

MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER

MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER (1) A³a daki her bir önermenin do ru mu yanl³ m oldu unu belirleyiniz. Do ruysa, gerekçe gösteriniz; yanl³sa, bir kar³-örnek veriniz. (a) (a n ) n N dizisi yaknsak

Detaylı

Soyut Matematik Test B

Soyut Matematik Test B 1 Soyut Matematik Test B 1. Hangisi tümel (tam, linear) sralama ba ntsdr? (a) Yansmal, antisimetrik, geçi³ken ve örgün olan ba ntdr. (b) Yansmal, simetrik, geçi³ken ve örgün olan ba ntdr. (c) Yansmaz,

Detaylı

IV. DERS D FERENS YELLENEB L R MAN FOLDLAR

IV. DERS D FERENS YELLENEB L R MAN FOLDLAR Bölüm 1 IV. DERS D FERENS YELLENEB L R MAN FOLDLAR Bir öceki bölümde bir yüzeyi oktalar yeterice küçük kom³uluklaryla ilgileebildik. Bu prosesi soyut realizasyou içi, souçta bizi diferesiyelleebilir maifold

Detaylı

CEB RSEL TOPOLOJ. Ders Notlar

CEB RSEL TOPOLOJ. Ders Notlar CEB RSEL TOPOLOJ Prof. Dr. smet KARACA Ders Notlar çindekiler 1 HOMEOMORF ZM 2 2 DENT F KASYON UZAYLAR 11 3 BÖLÜM UZAYLARI 17 4 HOMOTOP 24 5 TEMEL GRUPLAR 32 6 ÖRTÜLÜ UZAYLAR 37 7 ÇEMBER N TEMEL GRUBU

Detaylı

A; e A; A kümelerini tan mlay n z. (x) = fb 2 B : x 2 Bg

A; e A; A kümelerini tan mlay n z. (x) = fb 2 B : x 2 Bg Genel Topolojiye Giriş I Ara S nav Sorular 30 Kas m 2010 1 (X; T ) bir topolojik uzay ve A X olsun. 2 (a) Ikinci say labilir topolojik uzay ne demektir? Tan mlay n z. A; e A; A ve @A kümelerini tan mlay

Detaylı

2. Topolojik Uzaylarda Ba¼glant l l k Ba¼glant l Topolojik Uzaylar. Tan m (X; ) topolojik uzay n n her biri boş kümeden farkl olan ayr k

2. Topolojik Uzaylarda Ba¼glant l l k Ba¼glant l Topolojik Uzaylar. Tan m (X; ) topolojik uzay n n her biri boş kümeden farkl olan ayr k 2. Topolojik Uzaylarda Ba¼glant l l k 2.1. Ba¼glant l Topolojik Uzaylar Tan m 2.1.1. (X; ) topolojik uzay n n her biri boş kümeden farkl olan ayr k iki aç ktan oluşan bir örtüsü yok ise, (X; ) topolojik

Detaylı

Soru Toplam Puanlama Alınan Puan

Soru Toplam Puanlama Alınan Puan 18.11.2013 No: Ad-Soyad: İmza: Soru 1. 2. 3. 4. 5. 6. 7. 8. Toplam Puanlama 20 20 20 20 20 20 20 20 100 Alınan Puan 405024142006.1 CEBİRSEL TOPOLOJİ ARASINAVI CEVAP ANAHTARI (ÖRGÜN ÖĞRETİM) Not: Süre 90

Detaylı

DO U ÜN VERS TES 9.Liseleraras Matematik Yar³mas Sorular. (n + 1) n n n + 1 = n(n + 1)

DO U ÜN VERS TES 9.Liseleraras Matematik Yar³mas Sorular. (n + 1) n n n + 1 = n(n + 1) DO U ÜN VERS TES 9.Liseleraras Matematik Yar³mas Sorular 1 1) a n = (n + 1) n + n n + 1 olmak üzere, a 1 + a + a 3 +... + a 99 toplamn bulunuz. 9 evap: 10 a n = (n + 1) n n n + 1 n(n + 1) n (n + 1) oldu

Detaylı

Soyut Matematik Test 01

Soyut Matematik Test 01 1 Soyut Matematik Test 01 1. A³a dakilerden hangisi do rudur? (a) * A B C(C B) A C) (b) A B C(C B) A C) (c) A B C(B C) A C) (d) A B C(B C) A C) (e) A B C(B C) (A C) 2. A³a dakilerden hangisi do rudur?

Detaylı

1.3. Normal Uzaylar. Bu bölümde; regülerlikten daha kuvvetli bir ay rma aksiyomu tan mlanarak. baz temel özellikleri incelenecektir.

1.3. Normal Uzaylar. Bu bölümde; regülerlikten daha kuvvetli bir ay rma aksiyomu tan mlanarak. baz temel özellikleri incelenecektir. 1.3. Normal Uzaylar Bu bölümde; regülerlikten daha kuvvetli bir ay rma aksiyomu tan mlanarak baz temel özellikleri incelenecektir. Tan m 1.3.1. (X; ) bir Hausdor uzay olsun. E¼ger, 8F; K 2 F; F \ K = ;

Detaylı

CHAPTER 1. Vektörler

CHAPTER 1. Vektörler iv CHAPTER 1 Vektörler Vektör kavram, ziksel kavram olarak ortaya çkm³ olsa da matematiksel sistemlerin temel kavram olmu³tur. Gerçekten vektör kavramn geli³imi matematikçilerden çok zikçiler ve kimyaclar

Detaylı

XIV. Ulusal Antalya Matematk Olmpyat Brnc A³ama Snav Sorular -2009

XIV. Ulusal Antalya Matematk Olmpyat Brnc A³ama Snav Sorular -2009 XIV. Ulusal ntalya Matematk Olmpyat rnc ³ama Snav Sorular -009 c www.sbelian.wordpress.com sbelianwordpress@gmail.com Soru 1. dar açl üçgeninde m() = 45 'dir. 'dan 'ye indirilmi³ dikmenin aya E ve 'den

Detaylı

L SANS YERLE T RME SINAVI 1

L SANS YERLE T RME SINAVI 1 LSANS YERLETRME SINAVI MATEMATK TEST SORU KTAPÇII 9 HAZRAN 00. ( )( + ) + ( )( ) = 0 eitliini salayan gerçel saylarnn toplam kaçtr?. ( )( ) < 0 eitsizliinin gerçel saylardaki çözüm kümesi aadaki açk aralklarn

Detaylı

1.4 Tam Metrik Uzay ve Tamlaması

1.4 Tam Metrik Uzay ve Tamlaması 1.4. Tam Metrik Uzay ve Tamlaması 15 1.4 Tam Metrik Uzay ve Tamlaması Öncelikle şunu not edelim: (X, d) bir metrik uzay, (x n ), X de bir dizi ve x X ise lim n d(x n, x) = 0 = lim n,m d(x n, x m ) = 0

Detaylı

SOYUT MATEMAT K DERS NOTLARI. Yrd. Doç. Dr. Hüseyin B LG Ç

SOYUT MATEMAT K DERS NOTLARI. Yrd. Doç. Dr. Hüseyin B LG Ç SOYUT MATEMAT K DERS NOTLARI Yrd. Doç. Dr. Hüseyin B LG Ç Kahramanmara³ Sütçü mam Üniversitesi FenEdebiyat Fakültesi Matematik Bölümü Eylül 2010 çindekiler 1 Önermeler ve spat Yöntemleri 1 2 Kümeler 13

Detaylı

Türevlenebilir Manifoldlara Giri³

Türevlenebilir Manifoldlara Giri³ Türevlenebilir Manifoldlara Giri³ Yldray Ozan Orta Do u Teknik Üniversitesi Matematik Bölümü 7 Temmuz 2016 Sevgili anne ve babamn hatrasna Duydu umu unuturum. Gördü ümü hatrlarm. Yapt m anlarm. -Konfüçyüs

Detaylı

Türevlenebilir Manifoldlara Giri³

Türevlenebilir Manifoldlara Giri³ Türevlenebilir Manifoldlara Giri³ Yldray Ozan Orta Do u Teknik Üniversitesi Matematik Bölümü 2 Temmuz 2015 Sevgili anne ve babamn hatrasna Duydu umu unuturum. Gördü ümü hatrlarm. Yapt m anlarm. -Konfüçyüs

Detaylı

2. SİMETRİK GRUPLAR. Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir.

2. SİMETRİK GRUPLAR. Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir. 2. SİMETRİK GRUPLAR Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir. Tanım 2.2. X boş olmayan bir küme olsun. S X ile X den X e tüm birebir örten fonksiyonlar

Detaylı

ÜZER NDE TANIMLI HER NORM-SINIRLI OPERATÖRÜN REGÜLER OLDU U BANACH ÖRGÜLER YÜKSEK L SANS TEZ. Nazl DO AN

ÜZER NDE TANIMLI HER NORM-SINIRLI OPERATÖRÜN REGÜLER OLDU U BANACH ÖRGÜLER YÜKSEK L SANS TEZ. Nazl DO AN STANBUL KÜLTÜR ÜN VERS TES FEN B L MLER ENST TÜSÜ ÜZER NDE TANIMLI HER NORM-SINIRLI OPERATÖRÜN REGÜLER OLDU U BANACH ÖRGÜLER YÜKSEK L SANS TEZ Nazl DO AN 1109041005 Anabilim Dal: Matematik-Bilgisayar Program:

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

Önsav 1. Her fley yukardaki gibi olsun. {ƒ 1 (V) g 1 (W) : V X, W Y, V ve W aç k}

Önsav 1. Her fley yukardaki gibi olsun. {ƒ 1 (V) g 1 (W) : V X, W Y, V ve W aç k} Kapak Konusu: Topoloji Çarp m Topolojisi Bu yaz da topolojik uzaylar n kartezyen çarp m n do al bir topolojik uzay yap s yla donataca z. E er ve topolojik uzaylarsa, üzerine en do al topolojik yap, herhalde,

Detaylı

Topolojik Uzaylarda Süreklilik Çeşitleri Üzerine

Topolojik Uzaylarda Süreklilik Çeşitleri Üzerine S Ü Fen Ed Fak Fen Derg Sayı 26 (2005) 43-50, KONYA Topolojik Uzaylarda Süreklilik Çeşitleri Üzerine Kemal USLU 1, Şaziye YÜKSEL Selçuk Üniversitesi Fen Edebiyat Fakültesi Matematik Bölümü Kampüs-Konya

Detaylı

II. DERS R 3 te E R LER ve VEKTÖR ALANLARI

II. DERS R 3 te E R LER ve VEKTÖR ALANLARI Bölüm II. DERS R 3 te E R LER ve VEKTÖR ALANLARI Bu kesimde R 3 e ri kavram tanmlanacak ve geometrik özellikleri tart³lacaktr.. D FERENS YELLENEB L R E R VE PARAMETR K TEMS L I notasyonu ile R nin a

Detaylı

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE ÖZEL EGE LİSESİ GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE HAZIRLAYAN ÖĞRENCİ: Berk KORKUT DANIŞMAN ÖĞRETMEN: Gizem GÜNEL İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI 3.33 2. GİRİŞ... 3 3. YÖNTEM 3 4.

Detaylı

3 1 x 2 ( ) 2 = E) f( x) ... Bir sigorta portföyünde, t poliçe yln göstermek üzere, sigortal saysnn

3 1 x 2 ( ) 2 = E) f( x) ... Bir sigorta portföyünde, t poliçe yln göstermek üzere, sigortal saysnn SORU : Aada tanm verilen f fonksiyonlarndan hangisi denklemini her R için salar? f + = f t dt integral e A) f = e B) f = e C) f D) f = E) f = e ( ) = e ( ) SORU : Bir sigorta portföyünde, t poliçe yln

Detaylı

sonlu altörtüsü varsa bu topolojik uzaya tıkız diyoruz.

sonlu altörtüsü varsa bu topolojik uzaya tıkız diyoruz. Ders 1: Önbilgiler Bu derste türev fonksiyonunun geometrik anlamını tartışıp, yalnız R n nin bir açık altkümesinde değil, daha genel uzaylarda tanımlı bir fonksiyonun türevi ve özel noktalarının nasıl

Detaylı

GEOMETR K TOPOLOJ. Ders Notlar

GEOMETR K TOPOLOJ. Ders Notlar GEOMETR K TOPOLOJ Prof. Dr. smet KARACA Ders Notlar çindekiler 1 MAN FOLDLAR 4 1.1 Manifold.............................. 4 1.2 Diferensiyellenebilir Yaplar................... 5 1.3 Diferensiyellenebilir

Detaylı

1 Vektör Uzayları 2. Lineer Cebir. David Pierce. Matematik Bölümü, MSGSÜ mat.msgsu.edu.tr/~dpierce/

1 Vektör Uzayları 2. Lineer Cebir. David Pierce. Matematik Bölümü, MSGSÜ mat.msgsu.edu.tr/~dpierce/ Vektör Uzayları Lineer Cebir David Pierce 5 Mayıs 2017 Matematik Bölümü, MSGSÜ dpierce@msgsu.edu.tr mat.msgsu.edu.tr/~dpierce/ Bu notlarda, alıştırma olarak her teorem, sonuç, ve örnek kanıtlanabilir;

Detaylı

KOMB NATOR K TOPOLOJ L SANS DERS NOTLARI Prof. Dr. smet KARACA

KOMB NATOR K TOPOLOJ L SANS DERS NOTLARI Prof. Dr. smet KARACA KOMB NATOR K TOPOLOJ L SANS DERS NOTLARI 2010 Prof. Dr. smet KARACA çindekiler 1 S MPLEKSLER 3 1.1 Ane Uzaylar........................... 3 1.2 Simpleksler Kompleksi...................... 12 2 HOMOTOP

Detaylı

CEB RSEL TOPOLOJ I L SANSÜSTÜ DERS NOTLARI Prof. Dr. smet KARACA

CEB RSEL TOPOLOJ I L SANSÜSTÜ DERS NOTLARI Prof. Dr. smet KARACA CEBRSEL TOPOLOJ I LSANSÜSTÜ DERS NOTLARI 2010 Prof. Dr. smet KARACA çindekiler 1 GR 3 2 TEMEL TOPOLOJK KAVRAMLAR 7 2.1 HOMOTOP........................... 7 2.2 KONVEKSLK, BÜZÜLEBLRLK VE KONLER...... 14

Detaylı

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x Çalışma Soruları. Aşağıdaki denklemleri çözünüz: a) 7x = 4x + b) x 7x = x 4 c) x 4 x + = 0. Aşağıdaki eşitsizliklerin çözüm kümelerini belirleyiniz ve aralıklar cinsinden ifade ediniz: a) 4x > 9 b) x 4

Detaylı

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b Bölüm 1 Temel Kavramlar Bu bölümde bağıntı ve fonksiyon gibi bazı temel kavramlar üzerinde durulacak, tamsayıların bazı özellikleri ele alınacaktır. Bu çalışma boyunca kullanılacak bazı kümelerin gösterimleri

Detaylı

6 Devirli Kodlar. 6.1 Temel Tan mlar

6 Devirli Kodlar. 6.1 Temel Tan mlar 6 Devirli Kodlar 6.1 Temel Tan mlar Tan m S F n q için e¼ger (a 0 ; a 1 ; : : : ; a n 1 ) 2 S iken (a n 1 ; a 1 ; : : : ; a n 2 ) 2 S oluyorsa S kümesine devirli denir. E¼ger bir C do¼grusal kodu devirli

Detaylı

Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve

Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve düzlem Geçen ders doğrusal cebir aracılığıyla izdüşümsel geometri için bir model kurduk. Şimdi bu modeli daha somut bir şekle sokalım, F = R durumunda kurduğumuz

Detaylı

T. C. NÖNÜ ÜN VERS TES FEN B L MLER ENST TÜSÜ

T. C. NÖNÜ ÜN VERS TES FEN B L MLER ENST TÜSÜ T. C. NÖNÜ ÜN VERS TES FEN B L MLER ENST TÜSÜ Ç FT D Z LER N I-YAKINSAKLI I ÜZER NE Erdinç DÜNDAR DOKTORA TEZ MATEMAT K ANAB L M DALI MALATYA 2010 Tezin Ba³l : Çift Dizilerin I-Yaknsakl Üzerine Tezi Hazrlayan

Detaylı

Cebir II 2008 Bahar

Cebir II 2008 Bahar MIT Açk Ders Malzemeleri http://ocw.mit.edu 18.702 Cebir II 2008 Bahar Bu materyallerden alnt yapmak veya Kullanm artlar hakknda bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

ÖRNEK KİTAP. x ax 12. x.sinx dx. 1 cos x. x x mx 1. 4 (a b ) ise a çifttir. 4. x+y=14 ise x 2.y 5 çarpımının değeri en fazla kaça eşittir?

ÖRNEK KİTAP. x ax 12. x.sinx dx. 1 cos x. x x mx 1. 4 (a b ) ise a çifttir. 4. x+y=14 ise x 2.y 5 çarpımının değeri en fazla kaça eşittir? 1. lim a 1 üzere a+b toplam kaçtr? A)-8 B)-5 C)- C)1 E)4 b, a,b R olmak 4. +y=14 ise.y 5 çarpmnn değeri en fazla kaça eşittir? A)4 6.10 B)10.4 5 C)10 5. D) 5.10 7 E)16.10 5. bir cisim için hareket denklemi

Detaylı

Fath Ünverstes Matematk Olmpyatlar

Fath Ünverstes Matematk Olmpyatlar Fath Ünverstes Matematk Olmpyatlar - 007 www.sbelian.wordpress.com Fatih Üniversitesi Matematik Bölümü tarafndan ilki düzenlenen Liseleraras Matematik Olimpiyat'nn ilk snav 0 Ekim 007 tarihinde üniversite

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocm.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocm.mit.edu/terms veya http://tuba.açık ders.org.tr adresini ziyaret

Detaylı

GEOMETR K TOPOLOJ. Ders Notlar

GEOMETR K TOPOLOJ. Ders Notlar GEOMETR K TOPOLOJ Prof. Dr. smet KARACA Ders Notlar çindekiler 1 EUCLID UZAYINDA DÜZGÜN (SMOOTH) FONKS YON- LAR 5 1.1 R n de Tanjant(Te et) Vektörleri................. 9 1.2 Yönlü Türev............................

Detaylı

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2 1. 1 =? Lys 1 7. x + y = (6k) (x k) + y = (k 5) olduğuna göre x y =?. 6 a.b = ise a + 1 b. b 1 a =? 1k 8. x ve y birbirinden farklı pozitif gerçel sayılar olmak üzere, x y y x. x.y = (x y) ise x y =?.

Detaylı

Topolojik Uzay. Kapak Konusu: Topoloji

Topolojik Uzay. Kapak Konusu: Topoloji Kapak Konusu: Topoloji Topolojik Uzay Geçen yaz da nin, ad na aç k dedi imiz baz altkümelerini tan mlad k ve bir fonksiyonun süreklili ini tamamen aç k kümeler yard m yla (hiç ve kullanmadan) ifade ettik.

Detaylı

SOYUT CEB R DERS NOTLARI

SOYUT CEB R DERS NOTLARI SOYUT CEB R DERS NOTLARI Yrd. Doç. Dr. Hüseyin B LG Ç Kahramanmara³ Sütçü mam Üniversitesi Fen-Edebiyat Fakültesi Matematik Bölümü A ustos 2012 e-posta: h_bilgic@yahoo.com çindekiler 1 Grup Tanm ve Temel

Detaylı

A = {x Φ(x) p(x)} = {x (x E φ ) p(x)}

A = {x Φ(x) p(x)} = {x (x E φ ) p(x)} Bölüm 3 KÜME KAVRAMI Okuma Parças Bu derste, Kümeler Kuramn belitsel (aksiyomatik) incelemeyi amaçlamyoruz. Burada, küme kavramn, sezgiye dayal olarak belirli nesnelerin bir toplulu u diye tanmlayacak

Detaylı

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ DERS: CEBİRDEN SEÇME KONULAR KONU: KARDİNAL SAYILAR ÖĞRETİM GÖREVLİLERİ: PROF.DR. NEŞET AYDIN AR.GÖR. DİDEM YEŞİL HAZIRLAYANLAR: DİRENCAN DAĞDEVİREN ELFİYE ESEN

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) MTEMTİ TESTİ (Mat ). u testte srasyla, Matematik ( ) Geometri ( 0) ile ilgili 0 soru vardr.. evaplarnz, cevap kâğdnn Matematik Testi için ayrlan ksmna işaretleyiniz.. armaşk saylar kümesi üzerinde işlemi,

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 İyi Sıralama 5 Bibliography 13 1 İyi Sıralama Well Ordering İyi sıralama kavramı, doğal sayıların

Detaylı

TEMEL MATEMAT K TEST

TEMEL MATEMAT K TEST TEMEL MATEMAT K TEST KKAT! + Bu bölümde cevaplayaca n z soru say s 40 t r + Bu bölümdeki cevaplar n z cevap ka d ndaki "TEMEL MATEMAT K TEST " bölümüne iflaretleyiniz. 2 4. 4. 0,5 2. iflleminin sonucu

Detaylı

iv ÇINDEKILER 4 Açk Önermeler ÖNERME FONKS YONLARI Evrensel Belirteç Varlk Belirtec

iv ÇINDEKILER 4 Açk Önermeler ÖNERME FONKS YONLARI Evrensel Belirteç Varlk Belirtec çindekiler Önsöz................................. ix 1 MANTIK ve MATEMAT K 1 1.1 ÇA LARI A AN MATEMAT K.................. 1 1.1.1 Mantk tarihine ksa bir bak³................ 1 1.1.2 Matematiksel Mantk....................

Detaylı

CEB RSEL TOPOLOJ II. Prof. Dr. smet KARACA. Yüksek Lisans Ders Notlar

CEB RSEL TOPOLOJ II. Prof. Dr. smet KARACA. Yüksek Lisans Ders Notlar CEBRSEL TOPOLOJ II Prof. Dr. smet KARACA Yüksek Lisans Ders Notlar çindekiler 1 SNGÜLER KOMPLEKS VE HOMOLOJ 2 1.1 Eilenberg-Steenrod Aksiyomlar.............. 9 1.2 Hurewicz Teoremi.......................

Detaylı

Alıştırmalara yanıtlar

Alıştırmalara yanıtlar Alıştırmalara yanıtlar Alıştırma 7. Derste tanımlanan yama kürenin yalnızca {z S 2 : z > 0} kısmını parametrize etmekte. Yapmamız gereken şey bütün küreyi böyle yamalarla örtmek. Önce ϕ : D 2 S 2, (x 1,

Detaylı

ç- çe Tasarmlar Birdal eno lu ükrü Acta³ eno lu & Acta³ statistiksel Deney Tasarm Giri³ ki A³amal ç- çe Üç A³amal ç- çe l A³amal ç- çe

ç- çe Tasarmlar Birdal eno lu ükrü Acta³ eno lu & Acta³ statistiksel Deney Tasarm Giri³ ki A³amal ç- çe Üç A³amal ç- çe l A³amal ç- çe lar Birdal eno lu ükrü çindekiler 1 2 3 4 5 A³amal tasarmlar (hierarchical designs) olarak da bilinen iç-içe tasarmlarda (nested designs), ³u ana kadar gördü ümüz tasarmlardan farkl olarak iki veya ikiden

Detaylı

Içindekiler. Karşk Örnekler 87. TÜBITAK SORULARI (Fonksiyonlar) 55 ULUSAL ANTALYA MATEMATIK OLIMPIYATI SORULARI 64

Içindekiler. Karşk Örnekler 87. TÜBITAK SORULARI (Fonksiyonlar) 55 ULUSAL ANTALYA MATEMATIK OLIMPIYATI SORULARI 64 Içindekiler BIRINCI BÖLÜM Fonksiyonlar Bagnt 11 Fonksiyon 12 Fonksiyonel Denklemlere Giriş 14 Fonksiyonun Gragi 17 Fonksiyon Çeşitleri 18 Bir Fonksiyonun Tersi 20 Bileşke Fonksiyon 23 Tek ve Çift Fonksiyon

Detaylı

E³tszlkler Ders Notlar-I

E³tszlkler Ders Notlar-I E³tszlkler Ders Notlar-I wwww.sbelia.wordpress.com E³itsizlikleri çözerke sklkla saylar ve matematiksel ifadeleri kar³la³trrz. Yada bize verile bir matematiksel ifadei e büyük yada e küçük de erii bulmaya

Detaylı

f : R + R, f(x) = log a 0 < a < 1 için f(x) = log a a. f : ;, 4m R, f(x) = log2 x b. f : R + R, f(x) = log 1, f(2) = 2 2

f : R + R, f(x) = log a 0 < a < 1 için f(x) = log a a. f : ;, 4m R, f(x) = log2 x b. f : R + R, f(x) = log 1, f(2) = 2 2 Fonksionlar f : R R, f() = a Fonksionunun Grafi i f : R R, f() = log a Fonksionunun Grafi i a > için f() = a üstel fonksionunun grafi i andaki gibidir. = a a > için f() = log a fonksionunun grafi i andaki

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri   Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x Çalışma Soruları. Aşağıdaki denklemleri çözünüz: 7x = 4x + b) x 7x = x 4 c) x 4 x + = 0. Aşağıdaki eşitsizliklerin çözüm kümelerini belirleyiniz ve aralıklar cinsinden ifade ediniz: 4x > 9 b) x 4 < - c)

Detaylı

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 206 Ayrık Matematik Yük. Müh. Köksal GÜNDOĞDU 1 Fonksiyonlar Yük. Müh. Köksal GÜNDOĞDU 2 Fonksiyonlar Tanım: A ve B boş olmayan kümeler. A dan B ye bir f fonksiyonu f: A B ile gösterilir ve A nın her

Detaylı

SOYUT CEB R DERS NOTLARI

SOYUT CEB R DERS NOTLARI SOYUT CEB R DERS NOTLARI Yrd. Doç. Dr. Hüseyin B LG Ç Kahramanmara³ Sütçü mam Üniversitesi Fen-Edebiyat Fakültesi Matematik Bölümü Mart 2013 e-posta: h_bilgic@yahoo.com çindekiler 1 Grup Tanm ve Temel

Detaylı

KPSS MATEMATÝK. SOYUT CEBÝR ( Genel Tekrar Testi-1) N tam sayılar kümesinde i N için, A = 1 i,i 1

KPSS MATEMATÝK. SOYUT CEBÝR ( Genel Tekrar Testi-1) N tam sayılar kümesinde i N için, A = 1 i,i 1 SOYUT CEBÝR ( Genel Tekrar Testi-1) 1. A = { k k Z, < k 4 } 4. N tam sayılar kümesinde i N için, k 1 B = { k Z, 1 k < 1 } k 1 A = 1 i,i 1 i ( ] kümeleri verildiğine göre, aşağıdakilerden hangisi doğrudur?

Detaylı

Leyla Bugay Doktora Nisan, 2011

Leyla Bugay Doktora Nisan, 2011 ltanguler@cu.edu.tr Çukurova Üniversitesi, Matematik Bölümü Doktora 2010913070 Nisan, 2011 Yarıgrup Teorisi Nedir? Yarıgrup teorisi cebirin en temel dallarından biridir. Yarıgrup terimi ilk olarak 1904

Detaylı

1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI

1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI Reel sayılar kümesinin "küçük ya da eşit", bağıntısı ile sıralanmış olduğunu biliyoruz. Bu bağıntı herhangi bir X kümesine aşağıdaki şekilde genelleştirilebilir. Bir X kümesi üzerinde aşağıdaki yansıma,

Detaylı

Içindekiler. Karşk Örnekler 87. TÜBITAK SORULARI (Fonksiyonlar) 55 ULUSAL ANTALYA MATEMATIK OLIMPIYATI SORULARI 64

Içindekiler. Karşk Örnekler 87. TÜBITAK SORULARI (Fonksiyonlar) 55 ULUSAL ANTALYA MATEMATIK OLIMPIYATI SORULARI 64 Içindekiler BIRINCI BÖLÜM Fonksiyonlar Bagnt Fonksiyon 2 Fonksiyonel Denklemlere Giriş 4 Fonksiyonun Gragi 7 Fonksiyon Çeşitleri 8 Bir Fonksiyonun Tersi 20 Bileşke Fonksiyon 23 Tek ve Çift Fonksiyon 25

Detaylı

Polinomlar. Polinom Kavram

Polinomlar. Polinom Kavram 1 2 Bölüm 1 Polinomlar Polinom Kavram Polinomlar, yalnz Matematikte de il, ba³ka bilim dallarnda da kar- ³la³lan bir çok problemin çözümünde etkili bir araçtr. Polinom kavram, farkl soyut biçimleriyle

Detaylı

ÖABT Soyut Matematik KONU TESTİ Önermeler ve İspat Yöntemleri

ÖABT Soyut Matematik KONU TESTİ Önermeler ve İspat Yöntemleri ÖABT Soyut Matematik KONU TESTİ Önermeler ve İspat Yöntemleri ÇÖZÜMLER p q r q q p r q q. p r q q p r 5. p q q r r r, p q q r, r p, q q r q, q p q. p q p q p q p q p q q p p 6. p p q p p q p q p p p q

Detaylı

CEBİR DERS NOTLARI Yrd. Doç. Dr. Yıldıray ÇELİK

CEBİR DERS NOTLARI Yrd. Doç. Dr. Yıldıray ÇELİK CEBİR DERS NOTLARI Yrd. Doç. Dr. Yıldıray ÇELİK Karadeniz Teknik Üniversitesi Fen Fakültesi Matematik Bölümü çindekiler 1 Gruplar Teorisi 1 2 Altgruplar, Kosetler ve Lagrange Teoremi 15 3 Normal Altgruplar

Detaylı

ab H bulunur. Şu halde önceki önermenin i) koşulu da sağlanır ve H G bulunur.

ab H bulunur. Şu halde önceki önermenin i) koşulu da sağlanır ve H G bulunur. 3.ALT GRUPLAR HG, Tanım 3.. (G, ) bir grup ve nin boş olmayan bir alt kümesi olsun. Eğer (H, ) bir grup ise H ye G nin bir alt grubu denir ve H G ile gösterilir. Not 3.. a)(h, ), (G, ) grubunun alt grubu

Detaylı

kili ve Çoklu Kar³la³trmalar

kili ve Çoklu Kar³la³trmalar kili ve Çoklu Kar³la³trmalar Birdal eno lu ükrü Acta³ çindekiler 1 Giri³ 2 3 4 5 6 7 Bu bölümde, (2.1) modelinde, H 0 : µ 1 = µ 2 = = µ a = µ (1) ³eklinde ifade edilen sfr hipotezinin reddedilmesi durumunda,

Detaylı

f fonksiyonuna bir üç değişkenli fonksiyon adı verilir. Daha çok değişkenli fonksiyonlar benzer şekilde tanımlanır.

f fonksiyonuna bir üç değişkenli fonksiyon adı verilir. Daha çok değişkenli fonksiyonlar benzer şekilde tanımlanır. Çok Değişkenli Fonksiyonlar Tanım 1. D düzlemin bir bölgesi, f de D nin her bir (x, y) noktasına bir f(x, y) reel sayısı karşılık getiren bir fonksiyon ise f fonksiyonuna bir iki değişkenli fonksiyon adı

Detaylı

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI YÜZEY DOLDURMA TEKNİKLERİ

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI YÜZEY DOLDURMA TEKNİKLERİ İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI YÜZEY DOLDURMA TEKNİKLERİ Deneyde dolu alan tarama dönüşümünün nasıl yapıldığı anlatılacaktır. Dolu alan tarama

Detaylı

LYS MATEMATİK DENEME - 1

LYS MATEMATİK DENEME - 1 LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte

Detaylı

FUZZY İDEAL TOPOLOJİK UZAYLAR. Fadhil ABBAS YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ OCAK 2011 ANKARA

FUZZY İDEAL TOPOLOJİK UZAYLAR. Fadhil ABBAS YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ OCAK 2011 ANKARA FUZZY İDEAL TOPOLOJİK UZAYLAR Fadhil ABBAS YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ OCAK 2011 ANKARA Fadhil ABBAS tarafından hazırlanan "FUZZY İDEAL TOPOLOJİK

Detaylı

ndrgemel Dzler Ders Notlar

ndrgemel Dzler Ders Notlar ndrgemel Dzler Ders Notlar c wwww.sbelian.wordpress.com Bu ders notunda diziler konusunun bir alt konusu olan First Order Recursions ve Second Order Recursions konular anlatlm³ ve bu konularla alakal örnekler

Detaylı

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir. BĞANTI - FONKSİYON 1. Sıralı İkili : (a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.! (x 1,x 2, x 3,x 4,...x n ) : sıralı n li denir. Örnek, (a,b,c) : sıralı

Detaylı